GaN基稀磁半导体的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀磁半导体(Dilute Magnetic Semiconductors,DMSs)作为一种优良的自旋电子学的后备材料,迅速成为当今自旋电子学材料研究的热点。它有着半导体的能带结构,而且晶格常数也与基体半导体类似,不仅在制造器件时能够很好的和现有的半导体技术兼容,而且兼有磁性材料的特性。
     但是DMSs的研究受到低的居里温度和磁性掺杂元素固溶度等问题的困扰。2000年Dietl和他的合作者基于Zener模型从理论上预测GaN基的稀磁半导体的居里温度Tc可以达到室温以上。这一理论预测引起了人们对GaN基稀磁半导体材料的关注。GaN基稀磁半导体可以利用扩散法、分子束外延(MBE)、金属有机物化学气相淀积(MOCVD)和离子注入等方法制备。由于利用扩散法将磁性金属元素掺入GaN仍然受到固溶度的限制,并且需要较高的温度和较长的时间,所以不具有实用价值。而对于MBE和MOCVD,如何解决掺杂磁性元素固溶度问题一直是一个难题。由于离子注入本身的技术特点和没有固溶度的限制等优点,因此离子注入是制备DMSs的一种有效的手段。对利用离子注入制备GaN基DMSs,虽然也有过研究报道,但绝大多数也只是对样品的磁特性进行了简单的报道,而且基本都是根据理论预测对Mn掺杂P型GaN进行研究,而对Mn离子注入非故意掺杂GaN的研究非常少,尤其是结合材料微结构的变化特征对样品的磁学特性进行分析仍然是一个有待深入研究的课题。
     在此背景下,本文利用基于密度泛函理论的第一性原理平面波赝势方法对Mn掺杂GaN的电子结构和光学性质进行了计算分析,对Mn离子注入制备的GaN基稀磁半导体的微结构、光学、磁学及电学特性进行了系统的测试研究,获得的主要成果如下:
     (1)首先采用基于密度泛函理论的第一性原理平面波赝势方法对Mn掺杂GaN的能带结构、电子态密度和光学性质进行了计算,分析了掺杂后相关性质的改变。计算表明,Mn掺杂后由于Mn3d与N2p轨道杂化,产生自旋极化杂质带,材料表现为半金属性,如果杂质带中的载流子有足够的移动性,从GaMnN可以产生高极化率的自旋极化载流子注入。此外,Mn离子的掺入在费米面附近提供了大量的载流子,改变了电子在带间的跃迁,对GaN的介电函数产生影响。计算表明,Mn掺杂GaN后,由于Mn掺杂产生的杂质带中不同态之间的带内跃迁,光吸收谱中出现了新的吸收峰。计算结果还表明GaMnN的电子结构更适合于自旋极化电荷的传输,是一种合适的自旋注入源。
     (2)采用蒙特卡罗方法,借助Trim模拟软件对不同能量下Mn离子注入GaN的平均射程、标准偏差和浓度分布进行了统计计算,模拟得到了不同注入能量下Mn离子注入GaN中的浓度分布;设计了Mn离子注入制备的GaN基稀磁半导体的注入工艺参数(能量和注入剂量)及退火条件。
     (3)研究了Mn离子注入GaN的微结构和光学特性。首先对Mn离子注入非故意掺杂GaN的微结构和光学特性进行了研究。借助XRD测试,发现了与Mn替代Ga原子或Ga-Mn相及Mn-N化合物相关的特征。采用显微Raman谱对离子注入前后和退火前后样品微结构的变化进行了研究,除了观察到GaN的特征峰外,样品中还出现了一些新的声子模并且在特征峰E 2high峰两侧显现出了双肩效应。分析认为新出现的声子模分别是与无序激活相关的拉曼散射(DARS),Ga、N空位相关缺陷的振动模以及由Gax-Mny相关的局域振动(LVM)引起的。利用基于洛伦兹变换的分峰拟合方法和约化质量模型,分析认为E 2high峰的左右肩分别由与MnxNy局域结构相关的局域振动(LVM)和(Ga,Mn)N中Mn离子的LVM引起的。利用光致发光谱(PL谱)对样品的光学特性进行了研究,测试显示PL谱中出现了两个与离子注入相关的位于2.53eV和2.92eV的新的发光峰,分析认为位于2.92eV处的发光带是由导带或浅施主能级向深受主能级的跃迁产生的复合辐射,而这一深受主能级可能是与VGa相关的复合体,该复合体的能级大约位于能隙中价带顶以上0.4eV的位置。对于位于2.53eV的绿光发光峰,认为是由浅施主到深受主的辐射复合跃迁产生的。
     研究了Mn离子注入Mg掺杂GaN样品的微结构和光学特性。Raman谱的测试结果和非故意掺杂样品的测试结果基本是一致的。PL谱测试结果显示除了位于2.54eV和2.9eV的这两个峰外,在1.69eV出现了另一个新的发光峰。结合Mg掺杂GaN的特点并通过对样品PL谱中2.9eV峰和2.54eV峰的峰强比随退火温度变化的分析,认为位于2.9eV的发光峰是与MgGa-VN复合体(Dd)和Mg的浅受主形成的深施主-浅受主对之间跃迁相关的辐射复合,并据此分析认为位于1.69eV的发光峰可能是基于MgGa-VN复合体深施主能级(Dd)和VGa复合体相关的深受主能级(Ad)之间的辐射复合。
     (4)研究了离子注入导致的GaN表面损伤及不同退火温度下损伤的修复。借助AFM对离子注入导致的GaN表面损伤及退火修复进行了分析,表明因为GaN表面在高温下的热分解,限制了通过采用更高的热退火温度对样品进行有效的损伤修复。研究也表明采用热靶注入是一种降低离子注入损伤的有效方法。
     通过对Raman谱中A1(LO)和E 2high峰的峰形及半峰宽随退火温度演进的研究,认为离子注入引起的晶格损伤的修复可以分为三个阶段:当退火温度不高于800℃时,离子注入样品开始出现再结晶,由离子注入引起的晶格损伤开始得到修复,随着退火温度从800℃逐步升高到900℃,晶格损伤得到进一步的修复并且离子注入产生的缺陷也逐步减少。当退火温度升高至900℃以上后,GaN外延层的表面开始分解。从晶格修复和铁磁特性两方面同时考虑,认为最佳的离子注入后样品快速热退火处理的温度应控制在800℃至900℃之间。
     (5)研究了Mn离子注入非故意掺杂GaN样品的磁学特性和电学特性。对不同退火温度下样品的磁化特性和磁滞回线的测试表明,经过800℃退火处理后的样品获得了最高的磁化强度,而且室温下样品依然表现出清晰的磁滞回线,表明材料具有室温铁磁特性。分析认为样品的铁磁特性主要来源于(Ga,Mn)N,而GaxMny相一方面由于Ga空位的形成,能够引起参与调节铁磁相互作用的空穴浓度的增加;另外GaxMny相也增强了样品的铁磁性。磁化强度随温度的变化曲线进一步验证了本实验制备的材料的居里温度高于室温,测试表明样品磁化强度随温度的变化趋势明显分为两部分。这一结果进一步验证了前面做出的(Ga,Mn)N和GaxMny相对材料铁磁性的贡献的推理。
     样品的C-V测试和霍尔测试表明离子注入引入的缺陷一方面对载流子的浓度产生了影响,另一方面也降低了载流子的迁移率。降低离子注入产生的缺陷,减小缺陷对稀磁半导体特性的影响是一项需要继续研究的问题。
     (6)研究了Mn离子注入Mg掺杂GaN样品的磁学特性和电学特性。磁学特性测试结果表现出与Mn离子注入非故意掺杂GaN样品相似的结果,样品在800℃退火后获得了最高的磁化强度并显示样品具有室温铁磁性。测试结果显示样品的磁化强度明显高于Mn离子注入非故意掺杂GaN样品。样品的M-T曲线的变化趋势虽然也分为两部分,但和Mn离子注入非故意掺杂GaN样品比较这两部分曲线斜率的变化明显变小。分析认为这主要是由于Mg掺杂GaN样品的高空穴浓度确保了(Ga,Mn)N对样品铁磁特性的主导作用。由于使用的Mg掺杂GaN外延片只是在700℃进行了弱激活处理,所以进行退火处理时会对掺杂的Mg离子产生二次激活,因此样品经过800℃、900℃退火处理后,载流子浓度有了一定程度的增加,但当退火温度高于900℃后,样品表面分解产生的N空位引入的电子,使得空穴的浓度有所降低。电学测试数据的变化趋势也基本反映了Mn离子注入Mg掺杂GaN样品的这一特点。
As good alternative materials for spintronics, Dilute Magnetic Semiconductors (DMSs) has become a hot point for spintronic material research. DMSs have a band structure of semiconductors and also a similar lattice constant to the host material. In addition they can be well compatible with existing semiconductor manufacture technologies. DMSs also have the characteristics of magnetic materials.
     The major obstacles for DMSs research are to obtain the low Curie temperature and the limitation of solubility of magnetic elements. In 2000, T. Dietl and his colleague predicted the Curie temperatures (TC) for Mn doped GaN can be above the room temperature using the Zener’s model. These predictions for GaN have led to the great experimental efforts. GaN-based DMSs can be synthesized by the diffusion method, molecular beam epitaxy(MBE), metal organic chemical vapor deposition (MOCVD) and ion implantation. The diffusion of magnetic elements into GaN is hampered by their solubility and also requires high temperature and long processing time, making it impractical. For the MBE and MOCVD, doping solubility of magnetic elements is always limited in GaN. It is well known that ion implantation has many advantages including independent control of the doping level, selective area doping, and the ability to fabricate planar devices and self aligned structures without any limitation of dopant solubility. Ion implantation is a very effective method for the formation of DMSs. At present, although some experimental studies on the magnetic characteristics of GaN-based DMSs prepared by ion implantation have been reported, little is known about unintentionally doped GaN epilayers implanted with Mn ions.
     The magnetic ion related properties and the effect of microstructure change on both magnetic and optical properties of Mn-implanted GaN are still not clear and required to be investigated further.
     Under this background, the electronic structure and optical properties of Mn-doped GaN have been calculated and analyzed using the first-principles plane-wave pseudo-potential approach based on density functional theory. The microstructure, optical, magnetic and electrical properties of GaN based DMSs prepared by Mn ion implantation have been studied systematically. The main results and contributions of this dissertation are as follows:
     1) The band structure, the density of states, and the optical properties of Mn-doped GaN were calculated and analyzed using the first-principles plane-wave pseudo-potential approach based on density functional theory. It has shown that Mn-doping changes the properties of the films. The calculated results also reveal a spin polarized impurity band in the band structure of GaMnN due to hybridization of Mn 3d and N 2p orbitals. This band renders the material half metallic. Carriers injected from the GaMnN layer will have high spin-polarization if charge carries within it are sufficiently mobile. The dopants can provide large numbers of carriers near the Fermi energy and change the properties of the interband transition of electrons. This unique feature, together with the previously suggested high Curie temperature and inherent compatibility with GaN technology, makes GaMnN a potentially ideal material for spin injection applications.
     2) Based on the analysis of ion-implantation, the ion implantation range, location of peak concentration and longitudinal straggling of Mn are calculated with the Monte Carlo simulator TRIM. The process to form GaN based DMSs with Mn ion implantation has been proposed, including the implantation energy and dose, annealing conditions.
     3) The structural and optical properties of Mn-Ion implanted GaN have been investigated. First, the properties of Mn-Ion implanted unintentionally doped GaN have been studied. From XRD measurements, the samples display the characters of Mn-Ion implanted GaN with a contribution of the Mn occupying the Ga sites or the Ga-Mn phases and the Mn-N compounds. Micro-Raman spectra have demonstrated that in addition to GaN like phonon modes, the most significant features of Raman scattering from the present Mn doped GaN layers are new phonon modes and the appearance of left and right shoulders (SL, SR) around E 2high. The new phonon modes have been analyzed firstly by applying the Lorentzian formula to be useful for multi-peaks cases, and it can be seen that there are at least two peaks constituting each shoulder SL and SR respectively. Using the reduced mass model, the phonon modes constituting each shoulder are attributed to the LVM of different MnxNy localized structures and the LVM of Mn atoms in the (Ga,Mn)N. The results of photoluminescence(PL) measurement showed that optical transitions related to ion-implantation appear at 2.53eV and 2.92eV. It can be obtained from the analysis that the peak at 2.92eV is ascribed to a conduction band to deep acceptor transition or a shallow donor to deep acceptor transition, where the deep acceptor level is located about at Ev+0.4eV. It is also believed that the peak at 2.53eV is a transition between a shallow dopant level and a deep acceptor level.
     The properties of Mn-Ion implanted Mg doped GaN have also been investigated. Micro-Raman spectra showed the similar results as Mn-Ion implanted unintentionally doped GaN. The results of PL measurement showed that a new emission peaking at 1.69eV besides the transitions at 2.54eV and 2.9eV. Considering the characteristics of Mg-doped GaN, the peak at 2.9eV is ascribed to a MgGa-VN complex related deep donor(Dd) to Mg related shallow acceptor transition. It is believed that the peak at 1.69 eV is a transition between the a MgGa-VN complex related deep donor(Dd) level and a VGa related deep acceptor (Ad)level.
     4) The surface damage induced by ion implantation and damage repaired by annealing were studied. The results showed that the thermal decomposition of GaN surface at high temperatures limits the application of a higher annealing temperature for repairing the damage of the ion-implanted samples. The study also showed that Hot Target in ion implantation process is an effective manner to reduce ion implantation damage.
     Using different annealing temperatures we have observed the gradual recovery of the crystalline features based on the Raman spectra of Mn-implanted GaN samples. The evolution of the Raman spectra with annealing temperature(TA) suggests the existence of three stages in the lattice recovery process. Firstly, for TA below 800°C, the implanted sample starts its recrystallization and restores the crystalline quality. Then, for TA from 800°C to 900°C, there is better recovery of the crystalline quality and the decrease of some lattice imperfections in Mn-implanted samples after annealing. Finally, for TA above 900°C, the surface of GaN epilayers begins to decompose.Our results suggest that the optimal lattices recovery and ferromagnetic properties are achieved by RTA at 800°C~900°C.
     5) The magnetic and electrical properties of unintentionally doped GaN have been studied. The room-temperature FM in unintentionally doped GaN epilayers implanted with Mn ions was achieved after being annealed at 700°C, 800°C and 900°C. The highest magnetization was obtained in the samples annealed at 800°C. We believe that the (Ga,Mn)N can be mainly responsible for the observed FM behavior of Mn-implanted unintentionally doped GaN epilayers. The GaxMny phases produced after annealing Mn-implanted unintentionally doped GaN epilayers at 700°C and 800°C provide holes and also enhance the FM. It is further confirmed by the temperature dependency of the Magnetization that Curie temperature of the material is higher than the room temperature. The tests showed that the trends of temperature dependency of the Magnetization has been divided into two parts, which also approved the deduction of the contribution of (Ga,Mn)N and GaxMny phases for the observed FM. The results of C-V and Hall tests showed that the defects introduced by ion implantation have an impact on the concentration of carrier on one hand, and also reduce the carrier's mobility on the other hand. All of these have a significant impact on the properties of DMSs prepared by ion implantation, so should be considered in order to obtain good properties of the materials.
     6) The magnetic and electrical properties of Mn-Ion implanted Mg doped GaN have also been studied. The characteristics of the magnetic test showed similar results to Mn-Ion implanted unintentionally doped GaN. The room-temperature FM in the sample was achieved after annealing. The highest magnetization was also obtained after annealing at 800°C. The results show that the magnetizations are significantly higher than Mn ion implantation unintentionally doped GaN. Although the trend of M-T curves of the samples is divided into two parts, the change is much smaller. It is believed that the difference between the Mn-ion implanted Mg-doped GaN and the Mn-ion implanted undoped GaN was mainly due to the high concentration of holes in Mn-implanted Mg-doped GaN epilayers, which ensures that the (Ga,Mn)N can be mostly responsible for the observed FM behavior. A weak activation of Mg-doped GaN epitaxial films was carried out at 700℃. When the samples were annealed after ion implantation, there will be a second activation of the Mg ions. So after being annealed at 800℃and 900℃, the concentration of carriers has increased to some extent. As the annealing temperature above 900°C, the surface of GaN begins to decompose, leading to the formation of N vacancies. Thus, some parts of the holes compensate with electrons generated from N vacancies, resulting in the reduction of the hole concentration. This characteristic is also confirmed by the electrical test.
引文
[1.1] S. A.Wolf, D. D.Awschalom, R. A.Buhrman, J. M.Daughton, S.von Molnar, M. L.Roukes, A. Y.Chtchelkanova, and D. M.Treger, Spintronics: A Spin-Based Electronics Vision for the Future. Science.2001,294(16): 1488-1495.
    [1.2] S.J. Pearton, C.R. Abernathy, M.E. Overberg, et al., Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93 (2003) 1.; S.J. Pearton, C.R. Abernathy, D. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner. J.D. Budai, Mater. Sci. Eng. 2003,R40:137.
    [1.3]刘宜华,张连生.物理学进展.1994,14(1):82-120
    [1.4]H.Ohno, Making Nonmagnetic Semiconductors Ferromagnetic. Science. 1998, 281: 951-956
    [1.5] H.Munekata, H. Ohno, S. von Moln′ar, A. Segm¨uller, L. L.Chang, and L. Esaki., Diluted magnetic III-V semiconductors. Phys. Rev. Lett. 1989, 63:1849-1852.
    [1.6] H.Munekata, H. Ohno, R. R. Ruf, R. J. Gambino, and L. L.Chang, P-type diluted magnetic III-V semiconductors. J. Cryst. Growth. 1991, 111, 1011–1015.
    [1.7] H.Ohno, , H. Munekata, T. Penney, S. von Moln′ar, and L. L. Chang, 1992, Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys.Rev. Lett. 68, 2664–2667.
    [1.8] H.Ohno, A. Shen, F. Matsukura, A. Oiwa, A. End, S. Katsumoto, and Y. Iye, (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett. 1996, 69:363–365.
    [1.9] H.Ohno, Making Nonmagnetic Semiconductors Ferromagnetic. Science. 1998, 281: 951-956.
    [1.10] H. Ohno, Properties of ferromagnetic III–V semiconductors. J. Magnetism and Magnetic Materials. 1999, 200:110-129.
    [1.11] K.W. Edmonds, K.Y. Wang, R.P. Campion, A.C. Neumann, N.R.S. Farley, B.L.Gallagher, and C.T. Foxton, High Curie temperature Ga1-xMnxAs obtained by resistance-monitored annealing arxiv.org, Condensed Matter, 2002, 0209554, http://arxiv.org/pdf/cond-mat/0209554.
    [1.12]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener Model Descriptionof Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science. 2000,287: 1019-1022.
    [1.13] N. Theodoropoulou, A.F.Hebard, M. E. Overberg, C. R. Abernathy, S. J.Pearton, S.N.G.Chu, and R.G.Wilson, Unconventional Carrier-Mediated Ferromagnetism above Room Temperature in Ion-Implanted (Ga, Mn)P:C. Phys. Rev. Lett. 2002, 89:107203
    [1.14]M. E. Overberg et al., Materials Research Society Fall Meeting, Boston, 2001; Room temperature magnetism in GaMnP produced by both ion implantation and molecular-beam epitaxy. J. Vac. Sci. Technol. B.2002, 20: 969.
    [1.15] M. E. Overberg, B. P. Gila, C. R. Abernathy, S. J. Pearton, M. A. Theodoropoulou, K. T. McCarthy, S. B. Arnason, and A. F. Hebard, Magnetic properties of P-type GaMnP grown by molecular-beam epitaxy. Appl.Phys. Lett. 2001,79: 3128 .
    [1.16] K. Sato, H. Katayama-Yoshida, Stabilization of Ferromagnetic States by Electron Doping in Fe-, Co- or Ni-Doped ZnO. Jpn. J. Appl. Phys. 2001,40: L334.
    [1.17]K. Sato, H. Katayama-Yoshida, Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors. Jpn. J. Appl. Phys. 2000,39 :L555.
    [1.18] K. Sato, H. Katayama-Yoshida, Ferromagnetism in a transition metal atom doped ZnO. Physica E 2001,10:251.
    [1.19] T. Yamamoto, H. Katayama-Yoshida, Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO. Jpn. J. Appl. Phys. 1999,38:L166.
    [1.20] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshikara, S. Koshihara, H. Koinuma, Magnetic properties of Mn-doped ZnO. Appl. Phys.Lett. 2001,78: 958.
    [1.22] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Magnetic and magneto-transport properties of ZnO:Ni films. Physica E. 2001,10:260.
    [1.23] Z. Jin, K. Hasegawa, T. Fukumura, Y.Z. Yoo, T. Hasegawa, H. Koinuma, M. Kawasaki, Magnetoresistance of 3d transition-metal-doped epitaxial ZnO thin films. Physica E. 2001,10:256.
    [1.24] S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee, S. Cho, Ferromagnetic properties of Zn1–xMnxO epitaxial thin films. Appl. Phys. Lett. 2002,80:4561.
    [1.25] K. Ueda, H. Tabota, T. Kamai, Magnetic and electric properties of transition- metal-doped ZnO films. Appl. Phys. Lett. 2001,79:988.
    [1.26] S.A. Chambers, S. Thevuthascan, R.F.C. Farrow, R.G. Marks, J.U. Thiele, L. Folks, M.G. Sammant, A.T. Kellock, N. Ruzycki, D.L. Ederer, U. Diebold,Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase. Appl. Phys. Lett. 2001,79:3467.
    [1.27] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.Koshikara, H. Koinuma, Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science, 2001,291:854.
    [1.28] Strite and H. Morkoc, GaN, AlN and InN: A review, J. Vac. Sci. Technol., B no. 1992,10:p.1237-1239.
    [1.29] D. Angelescu and R. N.Bhatt, Effective interaction Hamiltonian of polaron pairs in diluted magnetic semiconductors, Phys. Rev. B. 2002,65:075211.
    [1.30] M.Berciu and R. N.Bhatt, Mean-field approach to ferromagnetism in (III,Mn)V diluted magnetic semiconductors at low carrier densities, http://arXiv.org/pdf/cond-mat/0111045v1.
    [1.31] M. Berciu and R. Bhatt, Effects of Disorder on Ferromagnetism in Diluted Magnetic Semiconductors. Phys. Rev. Lett., 2001, 87 (10):107203 .
    [1.32] M. van Schilfgaarde and O.N. Mryasov, Anomalous exchange interactions in III-V dilute magnetic semiconductors. Phys. Rev B. 2001,63:233205.
    [1.33] M.R. Pederson, F. Reuse, S.N. Khanna, Magnetic transition in Mnn(n=2-8) clusters. Phys. Rev. B.1998, 58:5632. [1.34] S.K. Hayak, B.K. Rao, P. Jenna, Equilibrium geometries, electronic structure and magnetic properties of small manganese clusters. J.Phys:Cond.Matter, 1998, 10(48):10863.
    [1.35] C.A. Baumann, R.J. van Zee, S.V. Bhat, and W. Weltner Jr., ESR of Mn2 and Mn5 molecules in rare-gas matrices. J.Chem.Phys. 1983,78:190.
    [1.36] K. Sato and H. Katayama-Yoshida, Material Design of GaN-Based Ferromagnetic Diluted Magnetic Semiconductors. Jpn. J. Appl. Phys. 2001, 40: L485.
    [1.37] Lee Seung-Cheol,Lee Kwang-Ryeol,and Lee Kyu-Hwan.Electronic structures and valence band splittings of transition metals doped GaN. J Magn Magn Mater, 2007, 310(2):e732-e734.
    [1.38] Wu R Q,Peng G W, L. Liu, Y. P. Feng ,Z. G. Huang and Q. Y. Wu, Cu-doped GaN:A dilute magnetic semiconductor from first-principles study. Appl Phys Lett, 2006, 89(6):062505.
    [1.39] E. Kulatov, H. Nakayama, H. Mariette, H. Ohta, Yu.A. Uspenskii, Electronic structure, magnetic ordering, and optical properties of GaN and GaAs doped withMn. Phys. Rev. B.2002, 66:045203.
    [1.40] Reed M L,Riturms M K,Stadelmaier H H,et al. Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices. Mater Lett, 2001, 51(6): 500-503.
    [1.41] H. Hori, S. Sonoda, T. Sasaki, et al. High-TC ferromagnetism in diluted magneticsemiconducting GaN:Mn films. Physica B, 2002, 324(1-4):142-150.
    [1.42] S.Sonoda, S. Shimizu, T. Sasaki, et al., Molecular beam epitaxy of wurtzite (Ga,Mn)N films on sapphire(0 0 0 1) showing the ferromagnetic behaviour at room temperature. J. Cryst. Growth 2002, 237-239: 1358
    [1.43] T.Sasaki, S.Sonoda, Y.Yamamoto,et al., Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J.Appl.Phys. 2002, 91:7911.
    [1.44] K. H. Ploog, S. Dhar, and A. Trampert, Structural and magnetic properties of (Ga,Mn)N layers grown on SiC by reactive molecular beam epitaxy. J.Vac.Sei.Teehnol.B. 2003, 21:1756.
    [1.45] M. Zajac, J. Gosk, M. Kami ska et al.,Paramagnetism and antiferromagnetic d–d coupling in GaMnN magnetic semiconductor. Appl.Phys.Lett. 2001,79:2432.
    [1.46] X. G. Cui, Z. K. Tao, R. Zhang, X. Li, X. Q. Xiu, Z. L. Xie, S. L. Gu, P. Han, Y. Shi, and Y. D. Zheng, Structural and magnetic properties in Mn-doped GaN grown by metal organic chemical vapor deposition. Appl Phys Lett, 2008, 92: 152116.
    [1.47] Lee J S, Lim J D, Khim Z G, et al. Magnetic and structural properties of Co,Cr,V ion-implanted GaN. J Appl Phys, 2003, 93(8):4512-4516.
    [1.48] Park S E, Lee H J, Cho Y C,et al. Room-temperature ferromagnetism in Cr-doped GaN single crystals. Appl Phys Lett, 2002,80(22):4187-4189.
    [1.49] Zhou Y K,Hashimoto M,Kanamura M,et al.Room Temperature Ferromagnetism in III–V-Based Diluted Magnetic Semiconductor GaCrN grown by ECR Molecular-Beam Epitaxy. J Supercond: Incorporating Novel Magnetism, 2003, 16(1):37.
    [1.50] Huang Rong-Tan, Hsu Chen-Feng,Kai Ji-Jung,et al. Room-temperature diluted magnetic semiconductors p-(Ga,Ni)N. Appl Phys Lett, 2005, 87(20):202507.
    [1.51] Lee Jong-Han, Choi In-Hoon, Shin Sangwon, et al. Room-temperature ferromagnetism of Cu-implanted GaN. Appl Phys Lett, 2007, 90(3):032504.
    [1.52] H.Akinaga, S.Nemeth, J.De Boeck, et al. Growth and characterization of low-temperature grown GaN with high Fe doping. Appl Phys Lett, 2000, 77 (26):4377-4379.
    [1.53] Alberta Bonanni, Micha Kiecana, Clemens Simbrunner, Tian Li, Maciej Sawicki, Matthias Wegscheider, Martin Quast, Hanka Przybylińska, Andrea Navarro-Quezada, Rafa Jakie a, Agnieszka Wolos, Wolfgang Jantsch, and Tomasz Dietl, Paramagnetic GaN:Fe and ferromagnetic (Ga,Fe)N: The relationship between structural, electronic, and magnetic properties. Phys Rev B, 2007, 75(12):125210.
    [1.54] P. G. Baranov, I. V. Ilyin, E. N. Mokov, and A. D. Roenkov, Identification of manganese trace impurity in GaN crystals by electron paramagnetic resonance. Semicond.Sci. Technol. 1996, 11:1843.
    [1.55] M. Zaja?c, R. Doradzin′ski, J. Gosk, et al. Magnetic and optical properties of GaMnN magnetic semiconductor. Appl. Phys. Lett., 2001,78:1276-1278.
    [1.56] T. Graf,* M. Gjukic, M. Hermann, M. S. Brandt, and M. Stutzmann, Spin resonance investigations of Mn2+in wurtzite GaN and AlN films. Phys Rev B, 2003, 67, 165215.
    [1.57] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann and O. Ambacher , The Mn3+/2+ acceptor level in group III nitrides. Appl. Phys. Lett., 2002,81(27):5159.
    [1.58] T. Graf, M. Gjukic, M. Hermann, et al. Growth and characterization of GaN:Mn epitaxial films. J. Appl. Phys. 2003,93:9697-9701.
    [1.59] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, Optical properties of the deep Mn acceptor in GaN:Mn. Appl. Phys. Lett., 2002,80:1731-1733.
    [1.60] Yoon Shon, Young Hae Kwon, Sh. U. Yuldashev, et al. Diluted magnetic semiconductor of p-type GaN epilayers implanted with Mn+ ions. J.Appl. Phys. 2003, 93:1546-1549.
    [1.61] Yoon Shon, Sejoon Lee, H.C. Jeon, C.S. Park, et al.The study of structural, optical, and magnetic properties of undoped and p-type GaN implanted with Mn+ (10 at.%). MaterialsScience and Engineering B, 2008,146:196-199.
    [1.62] M. Zajac, R. Doradzinski, J. Gosk, J. Szczytko, M. Lefeld-Sosnowska, M.Kaminska, A. Twardowski, M. Palczewska, E. Grzanka, and W. Gebicki, Magnetic and optical properties of GaMnN magnetic semiconductor. Appl Phys Lett, 2001, 78, (9):1276.
    [1.63] W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiadlo, Raman scattering study of Ga1–xMnxN crystals. Appl Phys Lett, 2000,76(26):3870.
    [1.64] Jeon H C,Kang T W,Kim T W,et al. Enhancement of the magnetic properties in (Ga1-xMnx)N thin films due to Mn-delta doping. Appl Phys Lett, 2005, 87(9):092501.
    [1.65] N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G.Chu, and R.G.Wilson, Magnetic and structural properties of Mn- implanted GaN. Appl Phys Lett, 2001, 78(22):p.3475.
    [1.66] M.E. Overberg, C.R. Abernathy, S.J. Pearton, N.Theodoropoulou, K.T. McCarthy, and A. F. Hebard, Indication of ferromagnetism in molecular-beam-epitaxy- derived N-type GaMnN. Appl Phys Lett, 2001, 79(9):1312.
    [1.67] Jeon H C, Kang T W, Kim T W. Optical and magnetic properties of (Ga1-xMnx)N/GaN digital ferromagnetic heterostructures. Solid State Commun, 2004, 132(1):63-65.
    [1.68] Shi Ying, Zhang Yong-xing, Jiang Chang-zhong, et al. The influence of implantation temperature on the magnetism and structure of Mn implanted p-GaN films. Phys B, 2007, 388(1-2):82-86. 第二章
    [2.1] M D Segall, Philip J D Lindan, M J Probert, C J Pickard, P J Hasnip, S J Clark and M C Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter, 2002, 14:2717-2744.
    [2.2] R.S.Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions in the Theory of Molecules and Crystals. J.Chem.Phys. 1955, 23:1833- 1846
    [2.3] F.D.Murnaghan, Finite Deformations of Elastic Solid. Am.J.Math. 1937, 49:235-260
    [2.4] F.Birch, Finite Elastic Strain of Cubic Crystals.Phy.Rev. 1974,71:809-824
    [2.5] R.Grover, I.C.Getting, and G..C.Kennedy, Simple Compressibility Relation for Solids. Phy.Rev.B. 1973,7:567
    [2.6] P.Vinet, J.Ferrante, J.R.Smith, and J.H.Rose, A Universal Equation of State for Solids. J. Phys.: Condens. Matter, 1986, 19:L467
    [2.7] Pascal Vinet,John R. Smith,John Ferrante, and James H. Rose, Temperature effects on the universal equation of state of solids. Phys. Rev. B. 1987, 35:1945-1953
    [2.8] Raymond Jeanloz, Universal equation of state. Phys. Rev. B. 1988, 38: 805 - 807
    [2.9] M. C. Payne,M. P. Teter,D. C. Allan,T. A. Arias and J. D. Joannopoulos Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 - 1097 (1992)
    [2.10] G.J.Ackland, Embrittlement and the bistable Crystal Structure of Zirconium Hydride. Phy.Rev.lett. 1998, 80:2233-2236
    [2.11]黄昆,韩汝奇,固体物理学,高等教育出版社,1988;
    [2.12]沈学础,半导体光谱和光学性质北京,科学出版社(第二版),2002
    [2.13] H. Ehrenreich and M. H. Cohen, Self-Consistent Field Approach to the Many- Electron Problem. Phys. Rev. 1959,115, 786-790.
    [2.14] Perdew, J.; Burke, K.; Ernzerhof, M.; Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
    [2.15] Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188.
    [2.16] A. J. Read and R. J. Needs,Calculation of optical matrix elements with nonlocal pseudopotentials, Phys. Rev. B. 1991, 44, 13071-13073
    [2.17] R. Juza, H. Hahn.über die Kristallstrukturen von Cu3N, GaN und InN. Zeitschr. Anorgan. Allgem. Chem. 1938, 239:282-287.
    [2.18]See, e.g., J.R. Chelikowsky and M.L. Cohen, in Handbook on Semiconductors. edited by T.S. Moss, 2nd ed. ~Elsevier, Amsterdam,1992
    [2.19]W.E. Pickett, Pseudopotential methods in condensed matter applications Comput. Phys. Rep. 1989, 9(3):115-197
    [2.20] Boguslawski P ,Bernhole J,Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N. Phys . Rev. B. 2005, 72:115208
    [2.21] Gerstmann U ,Blumenau A T,Overhof H, Transition metal defects in group-III nitrides: An ab initio calculation of hyperfine interactions and optical transitions. Phys.Rev. B., 2001, 63:075204 第三章
    [3.1] H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic. Science. 1998, 281: 951.
    [3.2] H. Holmberg, N. Lebedeva, S. Novikov, P. Kuivalainen, M. Malfait, V. V. Moshchalkov, and P. Kostamo,Magnetotransport Properties of a Room-Temperature Ferromagnet (Ga, Mn)N. IEEE Transactions on Magnetics,2005,41(10):2736-2738.
    [3.3]王广厚,粒子同固体相互作用物理学(下册) ,科学出版社,1991,P626.
    [3.4] J.Stark, Phys.Z., 1912,13:973; J.A.Davies, J.Friesen, and J.D.McIntyre, A radiochemical technique for studying range-energy relationships for heavy ions of keV energies in aluminum. Can.J.Chem. 1960,38:1526.
    [3.5]北京市辐射中心、北京师范大学低能核物理研究所离子注入研究室,离子注入原理与技术,1982年10月第1版,北京出版社,P113.
    [3.6] F. F. Morehead Jr and B. L. Crowder, A model for the formation of amorphous Si by ion bombardment. Radiation Effects and Defects in Solids. 1970, 6:27-32.
    [3.7] J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Ranges of Ions in Solids. Pergamon, New York, 1985.
    [3.8] J.M. Zavada, R.G. Wilson, C.R. Abernathy, S.J. Pearton, Hydrogenation of GaN, AlN, and InN. Appl. Phys. Lett. 1994, 64:2724.
    [3.9] R.G. Wilson, S.J. Pearton, C.R. Abernathy, J.M. Zavada, Thermal stability of implanted dopants in GaN. Appl. Phys. Lett. 1995, 66:2238.
    [3.10] R.G. Wilson, C.B. Vartuli, C.R. Abernathy, S.J. Pearton, J.M. Zavada, Implantation and redistribution of dopants and isolation species in GaN and related compounds. Solid State Electron. 1995, 38:1329.
    [3.11] R.G. Wilson, S.J. Pearton, C.R. Abernathy, J.M. Zavada, Out diffusion of deuterium from GaN, AlN, and InN. J. Vac. Sci. Technol. A 1995, 13:719.
    [3.12] J.C. Zolper, R.G. Wilson, S.J. Pearton, R.A. Stall, Ca and O ion implantation doping of GaN. Appl. Phys. Lett. 1996, 68:1945.
    [3.13] X.A. Cao, C.R. Abernathy, R.K. Singh, S.J. Pearton, M. Fu, V. Scarvepalli, J.A. Sekhar, J.C. Zolper, D.J. Rieger, J. Han, T.J. Drummond, R.J. Shul, R.G. Wilson, Ultrahigh Si + implant activation efficiency in GaN using a high-temperature rapid thermal process system. Appl. Phys. Lett. 1998, 73:229.
    [3.14] S.J. Pearton, R.G. Wilson, J.M. Zavada, J. Han, R.J. Shul, Thermal stability of 2H-implanted n- and p-type GaN. Appl. Phys. Lett. 1998, 73:1877. [3.15] X.A. Cao, R.G. Wilson, J.C. Zoper, S.J. Pearton, J. Han, R.J. Shul, D.J. Rieger, R.K. Singh, M. Fu, V. Scarvepalli, J.A. Sekhar, J.M. Zavada, Redistribution of implanted dopants in GaN. J. Electron. Mater. 1999, 28:261.
    [3.16]S.W. King, J.P. Barnak, M.D. Bremser, K.M. Tracy, C. Ronning, R.F. Davis, R.J. Nemanich, Cleaning of AlN and GaN surfaces. J. Appl. Phys. 1998, 84:5248. 第四章
    [4.1]夏建白主编半导体的检测与分析,科学出版社,2007年
    [4.2] B.Marcos, J.Ibanez, R.Cusco, F.L.Martinez, G.Gonzalez-Diaz, L.Artus, Lattice recovery by rapid thermal annealing in Mg+-implanted InP assessed by Raman spectroscopy. Nuclear Instruments and Methods in Physics Research B 2001, 175:252.
    [4.3] J. M. Zhang, T. Ruf, and M. Cardona,O. Ambacher and M. Stutzmann,J.-M. Wagner and F. Bechstedt. Raman spectra of isotopic GaN. Phys. Rev. B 1997, 56:14399.
    [4.4]H. Harima, Properties of GaN and related compounds studied by means of Raman scattering. J . Phys.: Condens. Matter, 2002, 14:R967.
    [4.5] S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, and G. Li. Damage buildup in GaN under ion bombardment. Phys. Rev.B 2000, 62:7510.
    [4.6] M. Katsikini, J. Arvanitidis, E.C. Paloura, S. Ves, E. Wendler, W. Wesch. Raman and X-ray absorption near-edge structure characterization of GaN implanted with O, Ar, Xe, Te and Au. Optical Materials 2007, 29:1856-1860.
    [4.7] A. Kaschner, H. Siegle, G. Kaczmarczyk, M. Stra?burg, A. Hoffmann, and C. Thomsen,U. Birkle, S. Einfeldt, and D. Hommel. Local vibrational modes in Mg- doped GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 1999, 74:3281.
    [4.8] A. Cros, H. Angerer, R. Handschuh, O. Ambacher, M. Stutzmann, Raman characterization of the optical phonons in AlxGa1-xN layers grown by MBE and MOCVD. MRS Internet J. Nitride Semicond. Res. 1997, 2: Article 43.
    [4.9] N Hasuike, H Fukumura, H Harima, K Kisoda, M Hashimoto, Y K Zhou and H Asahi, Optical studies on GaN-based spintronics materials. J. Phys.: Condens. Matter 2004, 16:S5811
    [4.10] H Harima, Raman studies on spintronics materials based on wide bandgap semiconductors. J. Phys.: Condens. Matter 16 (2004) S5653
    [4.11] R. S. Berg. P. Y. Yu, and E. R. Weber, Raman spectroscopy of intrinsic defects in electron and neutron irradiated GaAs. Appl. Phys. Lett. 1985, 47:515.
    [4.12] Y. Y. Yu, R. Zhang, X. Q. Xiu, Z. L. Xie, H. Q. Yu, Y. Shi, B. Shen, S. L.Gu, and Y. D. Zheng, Preparation GaxMn1?xN DMS materials using HVPE method. J. Cryst. Growth 2004, 269:270.
    [4.13] M. Katsikini, K. Papageli, E. C. Paloura, and S. Ves, Raman study of Mg, Si, O, and N implanted GaN. J. Appl. Phys. 2003,94: 4389.
    [4.14] W. Limmer, W. Ritter, R. Sauer, B. Mensching, C. Liu, and B. Rauschenbach, Raman scattering in ion-implanted GaN. Appl. Phys. Lett. 1998,72:2589.
    [4.15] Song S F, Chen W D, Xu Z J, Xu X R, Study on optical properties of Er/Er+Odoped GaN thin films, ACTA PHYSICA SINICA 2007,56: 1621.
    [4.16] A. Kaschner, H. Siegle, G. Kaczmarczyk, M. Straburg, A. Hoffmann, and C. Thomsen, Appl. Phys. Lett. 1999, 74:3281.
    [4.17] James A.Fellows,Electrical Activation Studies of Ion ImPlanted Gallium Nitride. Department of AirForce, AirUniversity, Wright-Patterson Air Foree Base, Ohio,USA.
    [4.18] S.O.Kueheyev, M.Toth, M.R.PhilliPs, J.S.Williams, C.Jagadish, and G. Li. Chemical, Origin of the yellow luminescence in GaN. J. Appl. Phys. 2002, 91: 5867-5874.
    [4.19] E.Calleja, F.J.Sáehez,D.Basak, M.A.Sánchez-García, E.Muňoz, I.IZPura, F.Calle, J.M.G.Tijero, J.L.Sánchez-Rojas, B.Beaumont, P.Lorenzini,and P. Gibart, Yellow luminescence and related deep states in undoped GaN. Phys.Rev.B 1997, 55: 4689-4694.
    [4.20] Hess, R.A,Taylor, J.F.Ryan, N.J.Cain, V.Roberts, and J.Roberts. Photoluminescence Studies of Mg-Doped and Si-Doped Gallium Nitride Epilayers. Phys. Status. Solidi. B 1998,210:465-470.
    [4.21] L.Eckey, U.von Gfug, J.Holst, A.Hoffmann, A.Kaschner, H.Siegle,and C.Thomsen, B.Sehineller, K.Heime, M.Heuken, O.Seh?n, and R.Beccard. Photoluminescence and Raman Study of compensation effects in Mg-doped GaN epilayers. J.Appl.Phys. 1998,84:5828.
    [4.22] BZ Qu, QS Zhu, XH Sun, SK Wan, ZG Wang, H.Nagai, Y.Kawaguehi, K.Hiramatsu and N.Sawaki. Photoluminescence of Mg-doped GaN grown by metalorganic chemical vopor deposition. J. Vac. Sci. Techool. A 2003, 21: 838- 841.
    [4.23] M.A.Reshchikov, M.Zafar Iqbal, H.Morkoc, S.S.Park,and K.Y .Lee. Long- lasting Photoluminescence infreestanding GaN templates. Appl.Phys.Lett. 2003, 83:266.
    [4.24] C.Diaz-Guerra, J.Piqueras,and A.Cavallini. Time-resolved cathodeluminescence assessment of deep-level transitions in hydride-vapor- phase-epitaxy GaN. Appl. phys. Lett. 2003, 82:2050.
    [4.25] W.G?tZ, L.T.Romano, B.S.Krusor, N.M.Johnson, and R.J.Molnar, Electronic and Structural Properties of GaN grown by hydride vapor phase epitaxy. Appl.Phys.Lett. 1996, 69:242.
    [4.26] E.M.Goldys, M.Godlewski, T.Paskova, G.Pozina, Red Emission in Nominally Undoped hydride vapor phase epitaxy GaN, MRS Internet J.Nitride Semicond.Res. 2001,6:1.
    [4.27] J.I. Pankove, J.A.Hutehby, Photoluminescence of Zn-implanted GaN. Appl. Phys. Lett. 1974, 24:281.
    [4.28] J.I.Pankove,J.A. Hutchby, Photoluminescence of ion-implante GaN. J. Appl. Phys. 1976, 47:5387.
    [4.29] S.Nakamura.N.Iwasa,M.Senoh,and T.Mukai.Hole, Compensation Mcehanism of P-Type GaN Films. Jpn.J.phys. 1992, 31:1258.
    [4.30] T.ogino and M. Aoki. Mechanism of Yellow Luminescence in GaN. JPn. J.Appl.Phys. 1980, 19:2395.
    [4.31] M.Rummukainen,J.Oila, A.Laakso, K.Saarinen, A.J.Ptak and T.H.Myers. Vacancy Defects in O-doped GaN grown by molecular-beam epitaxy: The role of growth Polarity and stoichiometry. Appl.Phys.Lett. 2004, 84:4887-4889.
    [4.32] J?rg Neugebauer and chris G. Van de Walle. Gallium in GaN Vacancies and the yellow luminescence. Appl.Phys.Lett. 1996, 69:503-505.
    [4.33] M. A. Reshchikov and H. Morkoc? S. S. Park and K. Y. Lee Yellow and green luminescence in a freestanding GaN template. Appl. Phys. Lett., 2001, 78: 3041-3043.
    [4.34]S. Hautakangas, J. Oila, M. Alatalo,et al. Vacancy Defects as Compensating Centers in Mg-Doped GaN. Phys. Rev. Lett. 2003, 90:137402. 第五章
    [5.1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000,287: 1019-1022.
    [5.2] H.Ohno, Making Nonmagnetic Semiconductors Ferromagnetic. Science 1998, 281: 951.
    [5.3] E.Sarigiannidou, F.Wilhelm, E.Monroy, R.M.Galera, E.Bellet-Amalric, A. Rogalev, J.Goulon, J.Cibert and H.Mariette. Intrinsic ferromagnetism in wurtzite (Ga,Mn)N semiconductor. Phys. Rev. B 2006, 74: 041306(R).
    [5.4]S.J. Pearton, C.R. Abernathy, M.E. Overberg, G. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 2003,93: 1.
    [5.5] S.J. Pearton, C.R. Abernathy, D. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, J.D. Budai, Advances in wide bandgap materials for semiconductor spintronics. Mater.Sci. Eng: R: Reports. 2003, R40:137-168.
    [5.6] Z.T.Chena, Y.Y.Sua, Z.J.Yang, B.Zhang, K.Xu, X.L.Yang,Y.B.Pan, G.Y.Zhang,. Room temperature ferromagnetism of GaN:Mn thin films grown by low pressure metal-organic chemical vapor deposition by mn periodic delta-doping. J. Crystal Growth 2007, 298:254-256.
    [5.7] Jeong Min Baik,Yoon Shon,Tae Won Kang and Jong-Lam Lee, Enhancement of magnetic properties by nitrogen implantation to Mn-implanted p-type GaN. Appl. Phys. Lett. 2004, 84:1120.
    [5.8]N. Theodoropoulou and A. F. Hebard, M. E. Overberg, C. R. Abernathy, and S. J. Peartona,S. N. G. Chu, R. G. Wilson. Magnetic and structural properties of Mn-implanted GaN. Appl. Phys. Lett. 2001,78:3475.
    [5.9] S. Fisher, C. Wetzel, E. E. Haller, and B. K. Meyer, On p-type doping in GaN- acceptor binding energies. Appl. Phys. Lett. 1995, 67:1298.
    [5.10]陈治明,王建农.半导体器件的材料物理学基础.北京,科学出版社,第一版, 1999, p.282
    [5.11] Wiley J. D., Miller G. L.. Series resistance effects in semiconductor CV profiling. IEEE Trans. Electron. Dev. 1975, 22(5):265-272
    [5.12] F. E. Arkun, M. J. Reed, E. A. Berkman, N. A. El-Masry, J. M. Zavada, M. L. Reed, and S. M. Bedair, Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN:Mg interface. Appl. Phys. Lett. 2004, 85:3809-3811.
    [5.13] M. J. Reed, F. E. Arkun, E. A. Berkman, and N. A. Elmasry, et al. Effect of doping on the magnetic properties of GaMnN:Fermi level engineering. Appl. Phys. Lett. 2005, 86:102504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700