离子掺杂TiO_2纳米材料的光电性质及光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiO2为基础的半导体纳米材料具有优异的氧化能力和化学稳定性,能够将太阳能转化为化学能,对于解决目前日益严重的能源危机和环境污染问题极具研究和实用价值。然而将TiO2应用于实际的生产生活中,需要克服材料本身禁带宽度大(锐钛矿3.2eV)、量子效率低的难题。大量研究结果表明离子掺杂是提高TiO2性能的有效方式之一,尤其是具有3d轨道的过渡金属离子,它们的离子半径与Ti4+(61pm)半径相近一些,更容易进入TiO2的晶格取代Ti4+。通过过渡离子掺杂一方面在TiO2禁带内可能引入杂质能级,调节其能带结构,能将TiO2的光响应拓展到可见光区,另一方面可以在TiO2晶格内形成缺陷位,捕获光生电子或空穴,起到分离载流子抑制其复合的作用,因而能在一定程度上提高TiO2的可见光催化活性。而光催化过程本质上都是基于材料光生电荷的微观动力学行为,与光生载流子的产生、分离、复合过程密切相关。因此,研究离子掺杂TiO2光催化剂中光生电荷行为与催化活性之间的关系,理解光催化活性提高的本质原因,有利于设计和制备高活性的光催化剂。
     本论文的研究重点集中在半导体TiO2光催化纳米材料微结构的调控。探索最佳的合成方法及条件,对TiO2进行变价离子修饰(Bi, Mn, C),拓展其光响应范围,通过促进光生载流子的分离,降低其复合几率,均实现了催化剂紫外和可见光催化活性的提高。利用瞬态光伏技术(TPV)、表面光电压(SPS)、场诱导表面光电压(FISPS)及其相位谱、表面光电流(SPC)技术等其它光电表征手段,研究不同变价离子,掺杂含量及其价态对TiO2材料形貌、晶体结构、热稳定性、光电性质和光催化活性的影响。探讨其光生电荷行为(产生,分离和复合)与光催化活性之间的内在关系,为以后设计、构建高活性的可见光催化剂提供理论依据。具体的工作内容包括以下几个方面:
     1.用简单、绿色的方法制备一系列单分散的、尺寸均一的Bi-TiO2纳米球,通过改变铋源的加入量,纳米球的尺寸可以从117 nm调节到87nm。XRD、EDX、XPS及UV-vis DRS结果表明样品均为锐钛矿相TiO2,Bi进入TiO2的晶格,部分取代了晶格中的Ti原子,并且以Bi3+和Bi4+的形式共存。在可见光激发下(λ>420nm)光催化降解罗丹明B (RhB)溶液时,Bi-TiO2纳米球表现出较好的光催化活性及稳定性,可以循环使用。利用表面光电压技术并结合相位角分析Bi的引入对TiO2光生电荷行为的影响,探讨其光催化反应机理,结果表明其可见光催化反应机理为RhB染料的光敏化作用,Bi4+/Bi3+在TiO2禁带内形成了杂质能级,能够捕获TiO2导带中的电子,有效地提高TiO2中光生电子-空穴对的分离程度,并抑制其复合,使更多的电子能够参与表面活性物种(O2·-)的生成,从而提高了TiO2的可见光催化氧化能力。
     2.以四水合氯化锰为锰源,制备Mn3+和Mn4+共存的Mn掺杂Ti02纳米球,通过改变锰源的加入量,纳米球的尺寸在200-300/nm之间可调。利用FESEM、TEM、EDX、XRD、XPS、UV-vis DRS、SPS及SPC技术来研究Mn掺杂量和热处理温度对TiO2催化剂晶体结构、形貌、热稳定性、光生电荷行为及光催化活性的影响。结果表明样品均为锐钛矿相,每个纳米球都是由成百上千个15-20nm的小纳米粒子组成,因而比表面积变化不大。Mn进入了TiO2的晶格,取代了晶格中的部分Ti原子,并且与Ti原子之间有强相互作用,提高了TiO2的相转变温度。虽然将TiO2的光吸收能力拓展到700nm的可见光区,但是SPS及SPC结果表明样品在可见光区并无亚带隙跃迁过程,而且光伏响应强度随着Mn掺杂量的提高不断减弱,这说明Mn的引入并没有在TiO2的禁带内形成杂质能级,而是在TiO2晶格中引入了缺陷位,成为电子的捕获中心,捕获电子的同时降低了载流子的复合几率,提高光生电子-空穴对的分离程度,因而在对罗丹明B的降解过程中样品都表现出较好的光催化活性,但是Mn的掺杂量存在最佳值(摩尔比率,Mn/Ti=0.25%),最佳煅烧温度为500℃。掺杂量过高时,Mn4+/Mn3+位反而会成为光生电子-空穴对的复合中心,从而降低其光催化效率。
     3.在不引入额外碳源的情况下,通过水热法制备了高度结晶的C掺杂的锐钛矿TiO2纳米粒子,其尺寸约为5-8nm,因而受量子尺寸作用的影响,C-TiO2样品的禁带宽度在3.3eV左右。C的引入成功地将TiO2的光响应拓展到700nm的可见光区,并且在对甲基橙(MO)的降解过程中C-TiO2样品表现出优异的光催化活性。在紫外光激发下,C-TiO2纳米粒子只需要4min就能完全降解MO,其降解效率是商品P25的11倍。XPS及UV-vis DRS结果表明C原子进入了TiO2晶格的间隙位置,以碳酸盐的形式存在,并且与Ti原子形成了强相互作用。利用表面光电压并结合场诱导表面光电压和瞬态光伏技术研究发现:除了在300-380nm的带-带跃迁以外,样品在400-550nm出现了亚带隙跃迁,并且光生电子-空穴对完全复合的时间延长到32ms,而商品P25仅为5.1ms,这说明间隙C原子在TiO2的禁带内引入了一些局域化的杂质能级,杂质能级一方面能够接受TiO2价带中的电子,发生亚带隙跃迁过程,使TiO2的光吸收能力拓展到可见光区;另一方面能接受TiO2导带中的电子,有效提高光生电子-空穴对的分离程度,降低其复合速率,将载流子的寿命延长到32ms,使更多的电子和空穴扩散到样品表面参加光催化反应。
TiO2-based nanomaterial which can convert solar energy into chemical energy is considered to be an effective, environmentally friendly means of solving the increasingly serious energy shortages and environmental crises because of their excellent oxidative capacity and chemical stability. However, the high recombination probability of photocarriers and poor solar efficiency have hindered their practical application. To solve these shortcomings, much effort has been directed towards the modification of TiO2 by incorporating ions, especially the transition metal ions with 3d orbital. As the ionic radius of transition metal ions is similar to that of titanium ion (61 pm), they can access the TiO2 lattice and substitute some of the lattice titanium atoms. On the one hand, the introduction of transition metal ions may induce several localized occupied states in the gap, result in modest variations of the band gap, which may account for the experimentally observed red shift of the absorption edge of TiO2 toward the visible region. On the other hand, it may favor the formation of lattice defects which enable to trap photogenerated electron or hole, enhance the separation extent and restrain the recombination of the photogenerated electron and hole carriers in TiO2, this has been reported to improve its catalytic activity to a certain extent. It is now commonly recognized that visible-light absorption does not always result in visible-light photocatalytic activity, and the key factor to enhancing the photocatalytic activity lies in effectively combining the photon absorption, bulk diffusion, and surface transfer of photogenerated charge-carriers in the photocatalyst. A detailed explanation of the photovoltaic properties of the charge carriers (including generation, separation and recombination) in photocatalyst is meaningful, and may provide useful information for understanding the catalytic mechanism, the information is important for designing new photocatalyst active under visible light.
     In this thesis, we study focused on the control of semiconductor TiO2 microstructure, developed the best synthetic method and conditions. The modification of TiO2 by incorporating ions to extend photoresponding range to the visible region, promote the separation of charge and inhibite their recombination. Using transient photovoltaic technology (TPV), surface photovoltage (SPS), field induced surface photovoltage (FISPS) and its phase spectrum, the surface photocurrent (SPC) technology to study the influence of different ions, doping content and valence on morphology, crystal structure, thermal stability, photoelectric properties and photocatalytic activity of TiO2 nanomaterial. The relationship between behavior of photogenerated charges (including separation, transport and recombination) and photocatalytic reactions is also discussed. Specific work includes the following aspects:
     1. Near-monodisperse Bi-doped anatase TiO2 nanospheres with almost uniform diameters in the range of 117 to 87 nm were prepared simply by introducing different amounts of bismuth nitrate pentahydrate into the reaction system and subsequent calcinations. X-ray diffraction, UV-visible diffuse reflectance spectra, and X-ray photoelectron spectroscopy confirm that the doped ions substitute some of the lattice titanium atoms, and furthermore, Bi3+ and Bi4+ ions coexist. All the Bi-doped TiO2 samples show much better photocatalytic activity than pure TiO2 in the degradation of rhodamine B (RhB) under the irradiation of visible light (λ>420 nm), after detailed studies of the results of surface photovoltage spectroscopy (SPS), and UV-visible diffuse reflectance spectroscopy, we propose that two aspects respond to the visible photocatalytic activity of Bi-doped anatase TiO2 nanospheres. One is the photosensitization of the dye with a compatible energy band, the other is the increase of the separation probability of the electrons transferred from dye in the samples by introducing bismuth atoms.
     2. Multivalent Mn-TiO2 nanospheres with controllable sizes were prepared with manganous chloride as manganese sources, the diameter of nanospehers can be controlled in the range of 200-300 nm by simply varying the amout of manganous chloride. The samples are further characterized by FESEM, TEM, EDX, XRD, XPS, UV-vis DRS, SPS and SPC techniques to study the influence of Mn doping content and annealing temperature on crystal structure, morphology, thermal stability of the photoinduced charge behavior and photocatalytic activity of TiO2. The results indicate that all the samples exhibit similar XRD patterns that can be indexed to anatase, each Mn-TiO2 nanosphere is assembled by hundreds of nanoparticles, and the average crystallites size is about 15-20 nm, This is why there is no significant change in the BET surface area (SBET) with an increase of Mn/Ti molar ratio. The manganese exists in multivalency (Mn4+/Mn3+) and substitutes for some Ti4+ in the anatase TiO2 lattice, enhance the thermal stability of TiO2 against the structural transformation. Although the absorption edge is extended to the visible-light region up to 700 nm for all the Mn-TiO2 materials, SPS and SPC measurements reveal that the sub-band-gap transition of Mn-TiO2 is not observed, moreover, the intensity of SPV gradually decreased with a increase of Mn contet, which indicate that the presence of Mn formed lattice defects in TiO2, Mn served as electron acceptors and effectively inhibited the charge recombination in TiO2, resulting in a high efficient photocatalytic activity in the degradation of rhodamine B (RhB) under visible-light irradiation (λ>420 nm). There is an optimal doping amout and calcination temperature(Mn/Ti=0.25%,500℃), while an excessive amount of Mn will act as recombination center of electron-hole pair, reducing the photocatalytic efficiency.
     3. Carbon-doped anatase TiO2 nanoparticle was prepared by a facile hydrothermal process without adding additional carbon source, the average grain size is 5-8 nm, thus give a wider band gap (3.3 eV) than TiO2 bulk due to quantum size effects. The as-prepared sample shows highly efficient photocatalytic activity, which only requires 4 minutes and is about 11 times higher than that of Degussa P25 TiO2 in degradation of methyl orange (MO) dye under UV light irradiation. Moreover, a highly visible-light activity is also observed. UV-visible diffuse reflectance spectra and X-ray photoelectron spectroscopy confirm that the carbon atoms are incorporated into the interstitial positions of TiO2 lattice and form a strong interaction with titanium atoms and extend photoresponding range to 700 nm. According to surface photovoltage spectra (SPS) and transient photovoltage (TPV) results, the photovoltaic responses of C-TiO2 in the range of 400-500 nm which correspond to the sub-band-gap transition are observed, and TPV response peaks move towards the longer timescale for C-TiO2 (32 ms), while the response time of P25 TiO2 is only 5.1 ms. The above results suggest that the presence of interstitial carbons induce several localized occupied states in the gap, which can accept electron from the TiO2 valence and occur the sub-band-gap transition, thus extend the photoresponding range. On the other hand, the localized occupied states can trap electrons in TiO2 conduction, enhance the separation extent and restrain the recombination of the photo-induced electron and hole carriers in TiO2, thus more electrons and holes can spread to the TiO2 surface to participate in the photocatalytic reaction.
引文
[1]FRANK S N. BARD A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder [J]. Journal of the American Chemical Society,1977,99 (1):303-304.
    [2]MATTHEWS R.W. Photo-oxidation of organic material in aqueous suspensions of titanium dioxide [J]. Water Research,1986,20 (86):569-578.
    [3]MATTHEWS R.W. Photooxidation of organic impurities in water using thin films of titanium dioxide [J]. The Journal of Physical Chemistry,1987,91 (12): 3328-3333.
    [4]MATTHEWS R W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide [J]. Journal of Catalysis,1988,111 (2):264-272.
    [5]MATTHEWS R.W. An adsorption water purifier with in situ photocatalytic regeneration [J]. Journal of Catalysis,1988,113 (2):549-555.
    [6]OLLIS D F. PELLIZZETTI E. SERPONE N. Destruction of water contaminants [J]. Environmental Science and Technology,1991,25 (9):1522-1529.
    [7]ANPO M. Proceedings of International Symposium on Photoelectrochemistry. Paris,1997,331.
    [8]ANPO M. Utilization of TiO2 photocatalysts in green chemistry [J]. Pure and Applied Chemistry,2000,72 (7):1265-1270.
    [9]ANPO M. Photocatalysis on titanium oxide catalysts:Approaches in achieving highly efficient reactions and realizing the use of visible light [J]. Catalysis Surveys from Japan,1997,1 (2):169-179.
    [10]YAMASHITA H. HARADA M. J. MISAKA M. TAKEUCHI Y. ICHIHASHI F. GOTO M. ISHIDA T. SAEKI M. ANPO, Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation:metal ion-implantation and ionized cluster beam method [J]. Journal of Synchrotron Radiation 2001,8 (2):569-571.
    [11]ANPO M. TAKEUCHI M. IKEUE K. DOHSHI S. Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation: the applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts [J]. Current Opinion in Solid State and Materials Science, 2002,6 (5):381-388.
    [12]ANPO M. TAKEUCHI M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. Journal of Catalysis,2003,216 (40216):505-516.
    [13]PENGFEI JI. MASATO TAKEUCHI. TRAN-MANH CUONG. JINLONG ZHANG. MASAYA MATSUOKA. MASAKAZU ANPO. Recent advances in visible light-responsive titanium oxide-based photocatalysts [J]. Research on Chemical Intermediates,2010,36:327-347.
    [14]DIEBOLD U. The surface science of titanium dioxide [J]. Surface Science Reports,2003,48 (5-8):53-229.
    [15]KHATAEEA A R. KASIRI M B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide:Influence of the chemical structure of dyes [J]. Journal of Molecular Catalysis A:Chemical,2010,328: 8-26.
    [16]ZHANG H. BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:Insights from TiO2 [J]. Journal of Physical Chemistry B,2000,104 (15):3481-3487.
    [17]RANADE M R. NAVROTSKY A. ZHANG H Z. BANFIELD J F. ELDER S H. ZABAN A. BORSE P H. KULKARNI S K. DORAN G. S. WHITFIELD H J. Energetics of nanocrystalline TiO2 [J]. The Proceedings of the National Academy of Sciences USA,2002,99 (2):6476-6481.
    [18]RAMAMOORTHY M. VANDERBILT D. KING-SMITH R D. First-principles calculations of the energetics of stoichiometric TiO2 surfaces [J]. Physical Review B:Condensed Matter,1994,49 (23):16721-16727.
    [19]BURNSIDE S D. SHKLOVER V. BARBE C. COMTE P. ARENDSE F. BROOKS K. GRATZEL M. Self-Organization of TiO2 Nanoparticles in Thin Films [J]. Chemistry of Materials,1998,10(9):2419-2425.
    [20]HENGERER R. BOLLIGER B. ERBUDAK M. GRATZEL M. Structure and stability of the anatase TiO2 (101) and (001) surfaces [J]. Surface Science,2000, 460 (1-3):162-169.
    [21]BELTRAN A. GRACIA L. ANDRES J. Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs [J]. The Journal of Physical Chemistry B,2006,110 (46):23417-23423.
    [22]WATANABE T. HASHIMOTO K. FUJISHIMA A.1st International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air,1992.
    [23]FUJISHIMA A. HASHIMOTO K. WATANABE T. TiO2 Photocatalysis: Fundamentals and Applications, BKC, Inc., Tokyo,1999.
    [24]NAKASHIMA T. OHKO Y. KUBOTA Y. FUJISHIMA A. Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,160 (1-2):115-120.
    [25]SAITO T. IWASE T. HORIE J. MORIOKA T. Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci [J]. Journal of Photochemistry and Photobiology B:Biology,1992,14 (4):369-379.
    [26]RINCON A G. PULGARIN C. Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photo catalytic inactivation by TiO2-Implications in solar water disinfection [J]. Applied Catalysis B:Environmental,2004,51 (4): 283-302.
    [27]DUFFY E F. AL TOUATI F. KEHOE S C. MCLOUGHLIN O A. GILL L. GERNJAK W. OLLER I. MALDONADO M I. MALATO S. CASSIDY J. REED R H. MCGUIGAN K G A novel TiO2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries [J]. Solar Energy,2004,77 (5): 649-655.
    [28]LITTER M I. Heterogeneous photocatalysis:Transition metal ions in photocatalytic systems [J]. Applied Catalysis B:Environmental,1999,23 (2-3): 89-114.
    [29]PRAIRIE M R. EVENS L R. STANGE B M. MARTINEZ S L. An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals [J]. Environmental Science and Technology,1993, 27(9):1776-1782.
    [30]FERGUSON M A. HOFFMANN M R. HERING J G. TiO2-photocatalyzed as (Ⅲ) oxidation in aqueous suspensions:reaction kinetics and effects of adsorption [J]. Environmental Science and Technology,2005,39 (6):1880-1886.
    [31]FUJISHIMA A. HASHIMOTO K. WATANABE T. TiO2 Photocatalysis: Fundamentals and Applications, BKC, Inc., Tokyo,1999.
    [32]WATANABE T. NAKAJIMA A. WANG R. MINABE M. KOIZUMI S. FUJISHIMA A. HASHIMOTO K. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass [J]. Thin Solid Films,1999,351 (1-2):260-263.
    [33]TATSUMA T. KUBO W. FUJISHIMA A. Patterning of solid surfaces by photocatalytic lithography based on the remote oxidation effect of TiO2 [J]. Langmuir,2002,18 (25):9632-9634.
    [34]OHKO Y. TATSUMA T. FUJII T. NAOI K. NIWA C. KUBOTA Y. FUJISHIMA A. Multicolour photochromism of TiO2 films loaded with silver nanoparticles [J]. Nature Materials,2003,2:29-31.
    [35]NAOI K. OHKO Y. TATSUMA T. TiO2 Films Loaded with Silver Nanoparticles: Control of Multicolor Photochromic Behavior [J]. Journal of American Chemical Society,2004,126 (11):3664-3668.
    [36]HOUAS A. LACHHEB H. KSIBI M. ELALOUI E. GUILLARD C. HERMANN J M. Photocatalytic degradation pathway of methylene blue in water [J]. Applied Catalysis B:Environmental,2001,31(2):145-157.
    [37]PREVOT A B. BAIOCCHI C. BRUSSINO M C. PRAMAURO E. SAVARINO P. AUGUGLIARO V. MARCI G. PALMISANO L. Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO2 Suspensions [J]. Environmental Science & Technology,2001,35 (5):971-976.
    [38]TANAKA K. PADERMPOLE K. HISANAGA T. Photocatalytic Degradation of commercial azo dyes [J]. Water Research,2000,34 (1):327-333.
    [39]ZHAN H. TIAN H. Photocatalytic degradation of acid azo dyes in aqueous TiO2 suspension I. the effect of substituents [J]. Dyes Pigments,1998,37 (3):231-239.
    [40]BANDARA J. MIELCZARSKI J A. KIWI J.1. Molecular Mechanism of Surface Recognition. Azo dyes degradation on Fe, Ti, and Al oxides through metal sulfonate complexes [J]. Langmuir,1999,15 (22):7670-7679.
    [41]ZHANG F L. ZHAO J C. SHEN T. HIDAKA H. PELIZZETTI E. SERPONE N. TiO2-assisted photodegradation of dye pollutants II. adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation [J]. Applied Catalysis B:Environmental,1998,15 (1-2):147-156.
    [42]LIU G M. WU T X. ZHAO J C. HIDAKA H. SERPONE N. Photoassisted Degradation of dye pollutants.8. irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions [J]. Environmental Science & Technology,1999,33 (12):2081-2087.
    [43]VINODGOPAL K. BEDJA I. HOTCHANDANI S. KAMAT P V. A Photocatalytic Approach for the Reductive Decolorization of Textile Azo Dyes in Colloidal Semiconductor Suspensions [J]. Langmuir,1994,10 (6):1767-1771.
    [44]VINODGOPAL K. WYNKOOP D. KAMAT P. Environmental Photochemistry on Semiconductor Surfaces:Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light [J]. Environmental Science & Technology,1996,30:1660-1666.
    [45]NI M. LEUNG M K H. LEUNG D Y C. SUMATHY K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renewable and Sustainable Energy Reviews,2007,11 (3): 401-425.
    [46]SOKMEN M. ALLEN D W. AKKAS F. KARTAL N. ACAR F. Photo-Degradation of Some Dyes using Ag-Loaded Titanium dioxide [J]. Water Air and Soil Pollution,2001,132(1-2):153-163.
    [47]SUNG-SUH H M. CHOI J R. HAH H J. KOO S M. BAE Y C. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163 (1-2):37-44.
    [48]LI X Z. LI F B. Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment [J]. Environmental Science & Technology,2001,35 (11):2381-2387.
    [49]HU C. LAN Y. QU J. HU X. WANG A. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria [J]. The Journal of Physical Chemistry B,2006,110 (9):4066-4072.
    [50]GUPTA A K. PAL A. SAHOO C. Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2 [J]. Dyes Pigments,2006,69 (3):224-232.
    [51]KOWALSKA E. REMITA H. COLBEAU-JUSTIN C. HUPKA J. BELLONI J. Modification of Titanium Dioxide with Platinum Ions and Clusters:Application in Photocatalysis [J]. The Journal of Physical Chemistry C,2008,112 (4): 1124-1131.
    [52]YANG X. XU L. YU X. GUO Y. One-step preparation of silver and indium oxide co-doped TiO2 photocatalyst for the degradation of rhodamine B [J]. Catalysis Communications,2008,9 (6):1224-1229.
    [53]OZKAN A. OZKAN M H. GURKAN R. AKCAY M. SOKMEN M. Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation:the effects of some inorganic anions on the photocatalysis Journal of Photochemistry and Photobiology A:Chemistry,2004,163 (1-2):29-35.
    [54]PARAMASIVAM I. MACAK J M. SCHMUKI P. Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles [J]. Electrochemistry Communications,2008,10 (1):71-75.
    [55]KRYUKOVA G N. ZENKOVETS G A. SHUTILOV AA. WILDE M. GUNTHER K. FASSLER D. RICHTER K. Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of acid orange 7 dye upon ultraviolet light [J]. Applied Catalysis B:Environmental,2007, 71 (3-4):169-176.
    [56]WONG R S K. FENG J. HU X. YUE P L. Discoloration and mineralization of non-biodegradable azo dye orange II by copper-doped TiO2 nanocatalysts [J]. Journal of Environmental Science and Health, Part A,2005,39 (10):2583-2595.
    [57]BETTINELLI M. DALLACASA V. FALCOMER D. FORNASIERO P. GOMBAC V. MONTINI T. ROMAN L. SPEGHINI A. Photocatalytic activity of TiO2 doped with boron and vanadium [J]. Journal of Hazardous Materials,2007, 146 (3):529-534.
    [58]WANG N. LI J. ZHU L. DONG Y. TANG H. Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticles prepared via a modified wet precipitation process [J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,198 (2-3):282-287.
    [59]ZHU J. CHEN F. ZHANG J. CHEN H. ANPO M. Fe3+-Ti02 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization, Journal of Photochemistry and Photobiology A:Chemistry,2006, 180(1-2):196-204.
    [60]QI X H. WANG Z H. ZHUANG Y Y. YU Y. LI J L. Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide, Journal of Hazardous Materials,2005,118 (1-3):219-225.
    [61]LV Y. SHI K. ZHANG Y. HE S. GUO X. DU Z. CHEN H. ZHANG C. ZHANG B. The characterization of Sr-doped nanocrystal grain microspheres and photodegradation of KN-R dye [J]. Catalysis Communications,2008,9 (5): 557-562.
    [62]YU J. LIU S. XIU Z. YU W. FENG G. Combustion synthesis and photocatalytic activities of Bi3+-doped TiO2 nanocrystals [J]. Journal of Alloys Compounds, 2008,461 (1-2):L17-L19.
    [63]WANG Y. WANG Y. MENG Y. DING H. SHAN Y. ZHAO X. TANG X. A highly efficient visible-light-activated photocatalyst based on bismuth-and sulfur-codoped TiO2 [J]. The Journal of Physical Chemistry C,2008,112 (17): 6620-6626.
    [64]KUMBHAR A. CHUMANOV G. Synthesis of iron (Ⅲ)-doped titania nanoparticles and its application for photodegradation of sulforhodamine-B pollutant [J]. Journal of Nanoparticle Research,2005,7 (4-5):489-498.
    [65]CONG Y. ZHANG J. CHEN F. ANPO M. HE D. Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (Ⅲ) [J]. The Journal of Physical Chemistry C,2007,111 (28):10618-10623.
    [66]SAUPE G B. ZHAO Y. BANG J. YESU N R. CARBALLO G A. ORDONEZ R. BUBPHAMALA T. Evaluation of a new porous titanium-niobium mixed oxide for photocatalytic water decontamination [J]. Microchemical Journal,2005,81 (1):156-162.
    [67]H.B. LI, X.C. DUAN, G.C. LIU, L.L. LI, Synthesis and characterization of copper ions surface-doped titanium dioxide nanotubes [J]. Materials Research Bulletin,2008,43 (8-9):1971-1981.
    [68]LUAN Y. FU P F. DAI X G. Improwement of photocatalytic activity of TiO2 via combined route of metal doping and surface acidification [J]. Surface Review and Letters,2006,13 (4):429-438.
    [69]ZHANG S. CHEN Y. YU Y. WU H. WANG S. ZHU B. HUANG W. WU S. Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity [J]. Journal of Nanoparticle Research,2008,10 (5):871-875.
    [70]SATO S. Photocatalytic activity of NOx-doped TiO2 in the visible light region [J]. Chemical Physics Letters,1986,123 (1-2),126-128.
    [71]ASAHI R. MORIKAWA T. OHWAKI T. AOKI K. TAGA Y. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293 (13): 269-271.
    [72]PARK H. CHOI W. Effects of TiO2 Surface fluorination on photocatalytic reactions and photoelectrochemical behaviors [J]. The Journal of Physical Chemistry B,2004,108 (13):4086-4093.
    [73]MROWETZ M. SELLI E. H2O2 evolution during the photocatalytic degradation of organic molecules on fluorinated TiO2 [J]. New Journal of Chemistry,2006,30 (1):108-114.
    [74]OHNO T. AKIYOSHI M. UMEBAYASHI T. ASAI K. MITSUI T. MATSUMURA M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Applied Catalysis A,2004,265 (1): 115-121.
    [75]WANG Q. CHEN C C. ZHAO D. MA W H. ZHAO J C. Change of Adsorption Modes of Dyes on Fluorinated TiO2 and Its Effect on Photocatalytic Degradation of Dyes under Visible Irradiation [J]. Langmuir,2008,24 (14):7338-7345.
    [76]PERIYAT P. PILLAI S C. MCCORMACK D E. COLREAVY J. HINDER S J. Improved high-temperature stability and sun-light-driven pPhotocatalytic activity of sulfur-doped anatase TiO2[J]. The Journal of Physical Chemistry C,2008,112 (20):7644-7652.
    [77]LI M. ZHOU S. ZHANG Y. CHEN G. HONG Z. One-step solvothermal preparation of TiO2/C composites and their visible-light photocatalytic activities [J]. Applied Surface Science,2008,254 (13):3762-3766.
    [78]GENG J. JIANG Z. WANG Y. YANG D. Carbon-modified TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method [J]. Scripta Materialia,2008,59 (3):352-355.
    [79]IRIE H. WATANABE Y. HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders [J]. The Journal of Physical Chemistry B,2003,107 (23):5483-5486.
    [80]BATZILL M. MORALES E H. DIEBOLD U. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase [J]. Physical Review Letters,2006,96 (2):026103-4.
    [81]DI VALENTIN C. PACCHIONI G. SELLONI A. LIVRAGHI S. GIAMELLO E. Characterization of paramagnetic species in N-Doped TiO2 powders by EPR spectroscopy and DFT calculations [J]. The Journal of Physical Chemistry B, 2005,109(23):11414-11419.
    [82]SERPONE N. MARUTHAMUTHU P. PICHAT P. PELIZZETTI E. HIDAKA H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors [J]. Journal of Photochemistry and Photobiology A:Chemistry,1995,85 (3):247-255.
    [83]SHIYANOVSKAYA I. HEPEL M. Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine [J]. Journal of the Electrochemical Society,1998,145 (11):3981-3985.
    [84]SONG K Y. PARK M K. KWON Y T. LEE H W. CHUNG W J. LEE W I. Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties [J]. Chemistry of Materials,2001,13(7):2349-2355.
    [85]YU J C. LIN J. KWOK R W. M. Ti1-xZrxO2 Solid solutions for the photocatalytic degradation of acetone in air [J]. The Journal of Physical Chemistry B,1998,102 (26):5094-5098.
    [86]PAL B. SHARON M. NOGAMI G Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties [J]. Materials Chemistry Physics,1999,59 (3):254-261.
    [87]PAL B. HATA T. GOTO K. NOGAMI G. Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts [J]. Journal of Molecular Catalysis A:Chemical,2001,169 (1-2):147-155.
    [88]MARCI G. AUGUGLIARO V. LOPEZ-MUNOZ M. J. MARTIN C. PALMISANO L. RIVES V. SCHIAVELLO M. TILLEY R J D. VENEZIA A M. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.1. surface and bulk characterization [J]. The Journal of Physical Chemistry B,2001,105 (5):1026-1032.
    [89]CHONG M N. LEI S. JIN B. SAINT C. CHOW C W K. Optimisation of an annular photoreactor process for degradation of congo red using a newly synthesized titania impregnated kaolinite nano-photocatalyst [J]. Separation and Purification Technology,2009b,67:355-363.
    [90]CHAN A H C. CHAN C K. BARFORD J P. PORTER J F. Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater [J]. Water Research,2003,37:1125-1135.
    [91]OCHUMA I J. FISHWICK R P. WOOD J. WINTERBOTTOM J M. Optimisation of degradation conditions of 1,8-diazabicyclo[5.4.0]undec-7-ene in water and reaction kinetics analysis using a cocurrent downflow contactor photocatalytic reactor [J]. Applied Catalysis B:Environmental,2007,73:259-268.
    [92]POZZO R L. GIOMBI J L. BALTANAS M A. CASSANO A E. The performance in a fluidized bed reactor of photocatalysts immobilized onto inert supports [J]. Catalysis Today,2000,62:175-187.
    [93]PAREEK V. CHONG S. TADE M. ADESINA A A. Light intensity distribution in heterogeneous photocatalytic reactors [J]. Asia-Pacific Journal of Chemical Engineering,2008,3:171-201.
    [94]BAHNEMANN D. Photocatalytic water treatment:solar energy applications [J]. Solar Energy,2004,77 (5):445-459.
    [95]KONSTANTINOU I K. ALBANIS T A. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways [J]. Applied Catalysis B:Environmental, 2003,42 (4):319-335.
    [96]OLLIS D. F. PELIZZETTI E. SERPONE N. Destruction of water contaminants [J]. Environmental Science & Technology,1991,25 (9):1523-1529.
    [97]DOLL T E. FRIMMEL F H. Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents [J]. Water Research,2005,39 (5):847-854.
    [98]KAMBLE S P. SAWANT S B. PANGARKAR V G Batch and continuous photocatalytic degradation of benzenesulfonic acid using concentrated solar radiation [J]. Industrial & Engineering Chemistry Research,2003,42 (26): 6705-6713.
    [99]KANECO S. ARIFUR RAHMANA M. SUZUKI T. KATSUMATA H. OHTA K. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide [J]. Journal of Photochemistry and Photobiology. A: Chemistry,2004,163 (3):419-424.
    [100]KONSTANTINOU I K. ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations [J]. Applied Catalysis B:Environmental,2004,49 (1):1-14.
    [101]HERRMANN J M. Heterogeneous photocatalysis:state of the art and present applications [J]. Topics in Catalysis,2005,34 (1-4):49-65.
    [102]HONG S S. LEE M S. HWANG H S. LIM K T. PARK S S. JU C S. LEE G. D. Preparation of titanium dioxides in the W/C microemulsions and their photocatalytic activity [J]. Solar Energy Materials and Solar Cells,2003,80 (3): 273-282.
    [103]VALENTE J P S. PADILHA P M. FLORENTINO A O. Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2. Chemosphere,2006,64 (7):1128-1133.
    [104]GOGATE P R. PANDIT A B. A Review of imperative technologies for wastewater treatment I:oxidation technologies at ambient conditions [J]. Advances Environmental Reseearch,2004,8 (3-4):501-551.
    [105]HERRMANN J M. Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants [J]. Catalysis Today,1999,53 (1):115-129.
    [106]THIRUVENKATACHARI R. VIGNESWARAN S. MOON I S. A review on UV/TiO2 photocatalytic oxidation process [J]. Korean Journal of Chemical Engineering,2008,25 (1):64-72.
    [107]CHEN D. RAY A K. Photodegradation Kinetics of 4-nitrophenol in TiO2 suspension [J]. Water Research,1998,32 (11):3223-3234.
    [108]MOZIA S. TOMASZEWSKA M. MORAWSKI A W. Photocatalytic degradation of azo-dye acid red 18 [J]. Desalination,2005,185 (1-3):449-456.
    [109]KONSTANTINOU I K. ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations [J]. Applied Catalysis B:Environmental,2004,49 (1):1-14.
    [110]CHONG M N. LEI S. JIN B. SAINT C. CHOW C W K. Optimisation of an annular photoreactor process for degradation of congo red using a newly synthesized titania impregnated kaolinite nano-photocatalyst [J]. Separation and Purification Technology,2009,67 (3):355-363.
    [111]CHONG M N. JIN B. ZHU H Y. CHOW C W K. SAINT C. Application of H-titanate nanofibers for degradation of congo red in an annular slurry photoreactor [J]. Chemical Engineering Journal,2009,150 (1):49-54.
    [112]KABRA K. CHAUDHARY R. SAWHNEY R L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis:a review [J]. Industral & Engineering Chemistry Research,2004,43 (24): 7683-7696.
    [113]SHIRAYAMA H. TOHEZO Y. TAGUCHI S. Photodegradation of chlorinated hydrocarbons in the presence and absence of dissolved oxygen in water. Water Research,2001,35 (8):1941-1950.
    [1]WANG P. ZAKEERUDDIN S M. MOSER J E. NAZEERUDDIN M K. SEKIGUCHI T. GRATZEL M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J]. Nature Materials,2003,2:402-407.
    [2]CHAE S Y. PARK M K. LEE S K. KIM T Y. KIM S K. LEE W I. Preparation of Size-Controlled TiO2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films [J]. Chemistry of Materials,2003,15 (17):3326-3331.
    [3]WU N. WANG S. RUSAKOVA I A. Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides [J]. Science,1999,285 (5432): 1375-1377.
    [4]ZHU H Y. LAN Y. GAO X P. RINGER S P. ZHENG Z F. SONG D Y. ZHAO J C. Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions [J]. Journal of the American Chemical Society,2005,127 (18):6730-6736.
    [5]MAEDA K. DOMEN K. New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light [J]. The Journal of Physical Chemistry C, 2007,111 (22):7851-7861.
    [6]KARKMAZ M. PUZENAT E. GUILLARD C. HERRMANN J M. Photocatalytic degradation of the alimentary azo dye amaranth-Mineralization of the azo group to nitrogen [J]. Applied Catalysis. B, Environmental,2004,51 (3):183-194.
    [7]SAUPE G B. ZHAO Y. BANG J. YESU N R. CARBALLO G A. ORDONEZ R. BUBPHAMALA T. Evaluation of a new porous titanium-niobium mixed oxide for photocatalytic water decontamination [J]. Microchemical Journal,2005,81 (1):156-162.
    [8]LI H B. DUAN X C. LIU G C. LI L L. Synthesis and characterization of copper ions surface-doped titanium dioxide nanotubes [J]. Materials Research Bulletin, 2008,43(8-9):1971-1981.
    [9]QI X H. WANG Z H. ZHUANG Y Y. YU Y. LI J L. Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide [J]. Journal of Hazardous Materials,2005,118 (1-3),219-225.
    [10]LV Y. SHI K. ZHANG Y. HE S. GUO X. DU Z. CHEN H. ZHANG C. ZHANG B. The characterization of Sr-doped nanocrystal grain microspheres and photodegradation of KN-R dye [J]. Catalysis Communications 2008,9 (5): 557-562.
    [11]BIAN Z F. ZHU J. WANG S H. CAO Y. QIAN X. F. LI H. X. Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase [J]. The Journal of Physical Chemistry C,2008,112 (16):6258-6262.
    [12]RENGARAJ S. LI X Z. TANNER P A. PAN Z F. PANG G K H. Photocatalytic degradation of methylparathion-An endocrine disruptor by Bi3+-doped TiO2 [J]. Journal of Molecular Catalysis A:Chemical,2006,247 (1-2):36-43.
    [13]DONCHEV V. KIRILOV K. IVANOV Ts. GERMANOVA K. Surface photovoltage phase spectroscopy-a handy tool for characterisation of bulk semiconductors and nanostructures [J]. Materials Science and Engineering B, 2006,129(1-3):186-192.
    [14]WANG P. XIE T F. LI H Y. PENG L. ZHANG Y. WU T S. PANG S. ZHAO Y F. WANG D J. Synthesis and plasmon-induced charge-transfer properties of monodisperse gold-doped titania microspheres [J]. Chemistry-A European Journal,2009,15 (17):4366-4372.
    [15]REDDY B. GANESH I. KHAN A. Stabilization of nanosized titania-anatase for high temperature catalytic applications [J]. Journal of Molecular Catalysis A: Chemical,2004,223 (1-2):295-304.
    [16]DAI Y S. WANG Y. YAO J. WANG Q Y. LIU L M. Phosgene-free synthesis of phenyl isocyanate by catalytic decomposition of methyl N-phenyl carbamate over Bi2O3 catalyst [J]. Catalysis Letters,2008,123 (3-4):307-316.
    [17]HONG W J. KANG M. The super-hydrophilicities of Bi-TiO2, V-TiO2, and Bi-V-TiO2 nano-sized particles and their benzene photodecompositions with H2O addition [J]. Materials Letters,2006,60 (9-10):1296-1305.
    [18]BARRECA D. MORAZZONIM F. RIZZI G A. SCOTTI R. TONDELLO E. Molecular oxygen interaction with Bi2O3:a spectroscopic and spectromagnetic investigation [J]. Physical Chemistry Chemical Physics,2001,3 (9):1743-1749.
    [19]MORGAN W E. STEC W J. VAN WAZER J R. Inner-orbital binding-energy shifts of antimony and bismuth compounds [J]. Inorganic Chemistry,1973,12 (4): 953-955.
    [20]PROKES S M. GOLE J L. CHEN X B. BURDA C. CARLOS W E. Defect-related optical behavior in surface-modified TiO2 nanostructures [J]. Advanced Functional Materials,2005,15 (1):161-167.
    [21]KUZNETSOV V N. SERPONE N. Visible light absorption by various titanium dioxide specimens [J]. The Journal of Physical Chemistry B,2006,110 (50): 25203-25209.
    [22]KRONIK L. SHAPIRA Y. Surface photovoltage phenomena:Theory, experiment and applications [J]. Surface Science Reports,1999,37:1-206.
    [23]ZHAO Q D. XIE T F. PENG L. LIN Y H. WANG P. PENG L L. WANG D J. Size-and orientation-dependent photovoltaic properties of ZnO nanorods [J]. The Journal of Physical Chemistry C,2007,111 (45):17136-17145.
    [24]YANG J. CHEN C C. JI H W. MA W H. ZHAO J C. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes [J]. The Journal of Physical Chemistry B,2005,109(46):21900-21907.
    [25]FU H B. PAN C S. YAO W Q. ZHU Y F. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6 [J]. The Journal of Physical Chemistry B, 2005,109 (47):22432-22439.
    [26]KONSTANTINOU I K. ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:Kinetic and mechanistic investigations [J]. Applied Catalysis. B, Environmental,2004,49 (1):1-14.
    [27]WANG Y. WANG Y. MENG Y. DING H. M. SHAN Y. K. A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2 [J]. The Journal of Physical Chemistry A,2008,112 (17):6620-6626.
    [28]VINODGOPAL K. BEDJA I. HOTCHANDANI S. KAMAT P V. A photocatalytic approach for the reductive decolorization of textile azo dyes in colloidal semiconductor suspensions [J]. Langmuir,1994,10 (6):1767-1771.
    [29]LIU G. WU T X. ZHAO J C. Photoassisted degradation of dye pollutants.8. irreversible degradation of Alizarin Red under visible light radiation in air-equilibrated aqueous TiO2 dispersions [J]. Environmental Science & Technology,1999,33 (12):2081-2087.
    [30]HU X F. MOHAMOOD T. MA W H. CHEN C C. ZHAO J C. Oxidative decomposition of rhodamine B dye in the presence of VO2+ and/or Pt(IV) under visible light irradiation:N-deethylation, chromophore cleavage, and mineralization [J]. The Journal of Physical Chemistry B,2006,110 (51): 26012-26018.
    [1]BLAKE D M. WBB J. TURCHI C. Kinetic and mechanistic overview of TiO2-Photocatalyzed oxidation reactions in aqueous solution [J]. Solar Energy Materials, 1991,24:584-593.
    [2]KELLER V. BERNHARDT P. GARIN F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts [J]. Journal of Catalysis,2003,215 (1):219-222.
    [3]KWON Y T. SONG K Y. LEE W L. CHOI G J. DO Y R. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation process [J]. Journal of Catalysis,2000,191 (1):192-199.
    [4]MIYAUCHI M. NAKAJIMA A. HASHIMOTO K. WATANABE T. A highly hydrophilic thin film under 1 mu.W/cm2 UV illumination [J]. Advanced Materials, 2000,12:1923-1927.
    [5]TADE H. KOKUBU A. IWASAKI M. ITO S. Deactivation of TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3 [J]. Langmuir,2004,20 (1):4665-4670.
    [6]MARCI G. PALMISANO L. SCLAFANI A. VENEZIA A M. CAMPOSTRINI R. CARTURAN G. MARTIN C. RIVES V. SOLANA G. Influence of tungsten oxide on structural and surface properties of sol-gel prepared TiO2 employed for 4-nitrophenol photodegradation [J]. Journal of the Chemical Society, Faraday Transactions,1996,92 (5):819-821.
    [7]LI J X. XU J H. DAI W L. LI H X. FAN K N. One-pot synthesis of twist-like helix tungsten-nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol [J]. Applied Catalysis B: Environmental,2008,82 (3-4):233-243.
    [8]BHATTACHARYYA K. VARMA S. TRIPATHI A K. BHARADWAJ S R. TYAGI A K. Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethane [J]. Journal of Physical Chemistry C,2008,112(48):19102-19112.
    [9]XUE M. HUANG L. WANG J Q. WANG Y. GAO L. ZHU J H. ZOU Z G. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite:a novel visible-light active photocatalyst with large pore size [J]. Nanotechnology,2008, 19(18):185604-185611.
    [10]ZOU X X. LI G D. GUO M Y. LI X H. LIU D P. SU J. CHEN J S. Heterometal alkoxides as precursors for the preparation of porous Fe-and Mn-TiO2 photocatalysts with high efficiencies [J]. Chemistry-A European Journal,2008, 14(35):11123-11131.
    [11]MATSUMOTO Y. MURAKAMI M. SHONO T. HASEGAWA T. FUKUMURA T. KAWASAKI M. AHMET P. CHIKYOW T. KOSHIHARA S. KOINUMA H. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide [J]. Science,2001,291 (5505):854-856.
    [12]PADMANABHAN S C. PILLAI S C. COLREAVY J. BALAKRISHNAN S. MCCORMACK D E. PEROVA T S. YURII GUN'KO. HINDER S J. KELLY J M. A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania [J]. Chemistry of Materials,2007,19 (18): 4474-4481.
    [13]KAPTEIJN F J. VANLANGEVELD A D. MOULJIN J A. ANDREINI A. VUURMAN M A. TUREK A M. JEHNG J M. WACHS I E. Alumina-supported manganese oxide catalysts:I. characterization:effect of precursor and loading [J]. Journal of Catalysis,1994,150 (1):94-104.
    [14]PENA D A. UPHADE B S. SMIRNIOTIS P G. TiO2- supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3. I. evaluation and characterization of first row transition metals [J]. Journal of Catalysis,2004,221 (2):421-431.
    [15]ETTIREDDY P R. ETTIREDDY N. MAMEDOV S. BOOLCHAND P. SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 [J]. Applied Catalysis B:Environmental,2007,76 (1-2):123-134.
    [16]POINSIGNON C. BERTHOMEG PRELOT B. THOMAS F. VILLIERAS F. Manganese diocides surface properties studied by XPS and gas adsorption [J]. Journal of the Electrochemical Society,2004,151 (10):A1611-A1616.
    [17]CARVER J C. SCHWEITZER G K. CARLSON T A. Use of x-ray photoelectron spectroscopy to study bonding in chromium, manganese, iron, and cobalt compounds [J]. Journal of Chemical Physics,1972,57 (2):973-982.
    [18]ZHANG L H. KOKA R V. A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy [J]. Materials Chemistry and Physics,1998,57 (1):23-32.
    [19]GU D E. LIU Y. YANG B C. HU Y D. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition [J]. Chemical Communications,2008,21:2453-2455.
    [20]AKRIGE J R. KENNEDY J H. Absorption and emission spectroscopy and magnetic susceptibility of sodium β-alumina doped with Mn, Co, and Ni [J]. Journal of Solid State Chemistry,1979,29 (1):63-72.
    [21]LEGLET M. BIZI M. JORGENSEN C K. Influence de la distribution cationique et de la nature des interactions magnetiques sur I'intensite des transitions de paires de l'ion Fe3+ dans quelques spinelles mixtes [J]. Journal of Solid State Chemistry, 1990,86(1):82-87.
    [22]STUBICAN V S. GRESKOVICH C. Trivalent and divalent chromium ions in spinels [J]. Geochimica et Cosmochimica Acta,1975,39 (6-7):875-881.
    [23]LAVALILLE F. GOURIER D. LEJUS A M. VIVIEN D. Optical and ESR investigations of lanthanum aluminates LaMg1-xMnxO19 single crystals with magnetoplumbite-like structure [J]. Journal of Solid State Chemistry,1983,49 (2): 180-187.
    [24]GALLARDO-AMORES J M. ARMAROLI T. RAMIS G. FINOCCHIO E. BUSCA G. A study of anatase-supported Mn oxide as catalysts for 2-propanol oxidation [J]. Applied Catalysis B:Environmental,1999,22 (4):249-259.
    [25]YANG M. WANG D J. PENG L. XIE T F. ZHAO Y. Photoelectric response mechanisms dependent on RuN3 and CuPc sensitized ZnO nanoparticles to oxygen gas [J]. Nanotechnology,2006,17:4567-4571.
    [26]DU Y. YANG M. YU J H. PAN Q H. XU R R. An unexpected photoelectronic effect from [Co(en)3]2(Zr2F12)(SiF6)·4 H2O, a compound containing an H-bonded assembly of discrete [Co(en)3]3+, (Zr2F12)4-, and (SiF6)2- Ions [J]. Angewandte Chemie International Edition,2005,44 (48):7988-7990.
    [27]JAKOB M. LEVANON H. KAMAT P V. Charge distribution between UV-irradiated TiO2 and gold nanoparticles. determination of shift in fermi level [J]. Nano Letters,2003,3 (3):353-358.
    [28]FU H B. PAN C S. YAO W Q. ZHU Y F. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6 [J]. Journal of Physical Chemistry B,2005, 109 (47):22432-22439.
    [29]KONSTANTINOU I K. ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations:A review [J]. Applied Catalysis B:Environmental,2004,49 (1):1-14.
    [30]XU Y H. LEI B. GUO L Q. ZHOU W Y. LIU Y Q. Preparation, characterization and photocatalytic activity of manganese doped TiO2 immobilized on silica gel [J]. Journal of Hazardous materials,2008,160 (1):78-82.
    [1]CHEN C. LONG M C. ZENG H. CAI W M. ZHOU B X. ZHANG J Y. WU Y H. DING D W. WU D Y. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species [J]. Journal of Molecular Catalysis A:Chemical,2009,314 (1-2):35-41.
    [2]KANG I C. ZHANG Q W. YIN S. SATO T. SAITO F. Preparation of a visible sensitive carbon doped TiO2 photocatalyst by grinding TiO2 with ethanol and heating treatment [J]. Applied Catalysis B:Environmental,2008,80 (1-2):81-87.
    [3]LETTMANN C. HILDENBRAND K. KISCH H. MACYK W. MAIER W F. Visible light photo degradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst [J]. Applied Catalysis B:Environmental,2001,32 (4): 215-227.
    [4]TSENG Y H. KUO C S. HUANG C H. LI Y Y. CHOU P W. CHENG C L. WONG M S. Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity [J]. Nanotechnology,2006,17 (10):2490-2497.
    [5]WANG X X. MENG S. ZHANG X L. WANG H T. ZHONG W. DU Q G. Multi-type carbon doping of TiO2 photocatalyst [J]. Chemical Physics Letters, 2007,444:292-296.
    [6]KHAN S U M. AL-SHAHRY M. INGLER JR W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297 (5590): 2243-2245.
    [7]IRIE H. WATANABE Y. HASHIMOTO K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst [J]. Chemistry Letters,2003,32 (8): 772-773.
    [8]PARK Y. KIM W. PARK H. TACHIKAWA T. MAJIMA T. CHOI W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity [J]. Applied Catalysis B:Environmental, 2009,91 (1-2):355-361.
    [9]WU Z B. DONG F. ZHAO W R. WANG H Q. LIU Y. GUAN B H. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity [J]. Nanotechnology,2009,20 (23):235701-235709.
    [10]BARBORINI E. CONTI A M. KHOLMANOV I. PISERI P. PODESTA A. MILANI P. CEPEK C. SAKHO O. MACOVEZ R. SANCROTTI M. Nanostructured TiO2 films with 2 eV optical gaps [J]. Advanced Materials,2005, 17(15):1842-1846.
    [11]CHEN X B. BURDA C. The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials [J]. Journal of the American Chemical Society,2008,130 (15):5018-5019.
    [12]KHAN S U M, SHAHRY M, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297:2243-2245.
    [13]REN W J. AI Z H. JIA F L. ZHANG L Z. FAN X X. ZOU Z G. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J]. Applied Catalysis B:Environmental,2007,69 (3-4): 138-144.
    [14]SAKTHIVEL S. KISCH H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angewandte Chemie International Edition,2003,42 (40): 4908-4911.
    [15]LIU G. ZHAO Y N. SUN C H. LI F. LU G Q. CHENG H M. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2 [J]. Angewandte Chemie International Edition,2008,47 (24):4516-4520.
    [16]NEUMANN B. BOGDANOFF P. TRIBUTSCH H. SAKTHIVEL S. KISCH H. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania [J]. Journal of Physical Chemistry B,2005,109(35):16579-16586.
    [17]PAPIRER E. LACROIX R. DONNET J B. NANSE G. FIOUX P. XPS study of the halogenation of carbon black—part 2. chlorination [J]. Carbon,1995,33 (1): 63-72.
    [18]WANG H Q. WU Z B. LIU Y. A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres [J]. Journal of Physical Chemistry C,2009,113 (30):13317-13324.
    [19]LI Y Z. HWANG D S. LEE N H. KIM S J. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst [J]. Chemical Physics Letters,2005,404 (1-3):25-29.
    [20]FU R. YOSHIZAWA N. DRESSELHAUS M S. DRESSELHAUS G. SATCHER JR J H. BAUMANN T F. XPS study of copper-doped carbon aerogels [J]. Langmuir,2002,18 (26):10100-10104.
    [21]GU D E. LIU Y. YANG B C. HU Y D. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition [J]. Chemical Communications,2008,21:2453-2455.
    [22]VALENTIN C D. PACCHIONI G. SELLONI A. Theory of carbon doping of titanium dioxide [J]. Chemistry of Materials,2005,17:6656-6665.
    [23]GORSKA P. ZALESKA A. KOWALSKA E. KLIMCZUK T. SOBCZAK J W. SKWAREK E. JANUSZ W. HUPKA J. TiO2 photoactivity in vis and UV light: The influence of calcination temperature and surface properties [J]. Applied Catalysis B:Environmental,2008,84 (3-4):440-447.
    [24]NAUKA K. KAMINS T I. Surface photovoltage measurement of hydrogen-treated Si surfaces [J]. Journal of the Electrochemical Society,1999, 146 (1):292-295.
    [25]HOFFMANN M R. MARTIN S T. CHOI W. BAHNEMANN D W. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews,1995,95 (1):69-96.
    [26]SAUPE G B. ZHAO T Y. BANG J. DESU N R. CARBALLO G A. ORDONEM R. BUBPHAMALA T. Evaluation of a new porous titanium-niobium mixed oxide for photocatalytic water decontamination [J]. Microchemical Journal,2005,81 (1):156-162.
    [27]ZHAO Q D. XIE T F. PENG L L. LIN Y H. WANG P. PENG L. WANG D. J. Size-and orientation-dependent photovoltaic properties of ZnO nanorods [J]. Journal of Physical Chemistry C,2007,111 (45):17136-17145.
    [28]S. ROY MORRISON, The Chemical Physics of Surface, Plenum Press, New York and London,1977.
    [29]ZHANG Q L. WANG D J. WEI X. XIE T F. LI Z H. LIN Y H. YANG M. An investigation of alkane conformations based on the ABEEM/MM model [J]. Thin Solid Films,2005,491 (4-6):242-247.
    [30]MAHROV B. BOSCHLOO G. HAGFELDT A. DLOCZIK L. DITTRICH TH. Photovoltage study of charge injection from dye molecules into transparent hole and electron conductors [J]. Applied Physics Letters,2004,84 (26):5455-5457.
    [31]WANG H. LEWIS J P. Effects of dopant states on photoactivity in carbon-doped TiO2 [J]. Journal of Physica:Condensed Matter,2005,17 (21):L209-L213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700