光固化三维打印成形材料的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光固化三维打印技术类似于UV喷墨打印,是采用液滴喷射成形的快速成形技术。在成形过程中,使用两组喷头分别喷射光固化实体材料和光固化支撑材料,随即利用紫外光照射固化,逐层堆积成形,打印完毕后,用水枪去除支撑材料,得到需要的零件。它将喷射成形和光固化成形的优点结合在一起,提高了成形效率和精度,降低了成本。
     光固化三维打印需要使用实体光固化材料和支撑光固化材料来成形零件,选择恰当的成形材料至关重要。目前只有3D Systems公司和OBJET公司有光固化三维打印设备和配套成形材料,成形温度分别为100-110℃和70-75℃。本课题组是国内第一家研究光固化三维打印设备和成形材料,三维打印机使用赛尔XJ500喷头喷射光敏树脂,成形温度为50-55℃。成形温度越低,成形材料的选择面越窄,材料性能要求越苛刻,因此成形材料的制备和性能研究是一个迫切需要解决的难题。
     本文根据三维打印机紫外光源的特点和成形材料化学反应机理,总结了成形材料的特性参数、收缩翘曲和喷射铺展参数的实验方法。
     合成了聚丙二醇二缩水甘油醚二丙烯酸酯,确定最佳合成条件:以聚丙二醇二缩水甘油醚和丙烯酸为反应物,反应温度控制在100—110℃,催化剂N,N-二甲基苄胺的质量分数为0.80%,阻聚剂对甲氧基苯酚的质量分数为0.20~0.40%。以它和阳离子单体制备了一种混杂型实体材料,适合在55℃稳定喷射,光敏性好,固化后的零件具有较佳的热机性能。
     合成了自由基型实体材料的原料低粘度氨基甲酸酯丙烯酸酯,确定最佳合成条件:以TDI、HEA和PEG为反应物,第一步反应过程中n(TDI):n(HEA)=1,催化剂DBT质量分数0.2%,反应温度40℃,反应时间2—3h:第二步反应过程中n(TDI):n(PEG)=2,反应温度55—60℃,反应时间为5—6h。以它为主要原料制备了一种自由基型实体材料,适合于50℃工作,喷射稳定性、铺展性能较好,但固化收缩率大、固化速度稍慢。
     研究了阳离子型实体材料中苄醇促进剂的作用。苄醇通过活化单体机理和自由基诱导鎓盐光解机理加速脂环族环氧和氧杂环丁烷光固化速率,自由基诱导鎓盐光解机理起主要作用。其中苄醇上带给电子性基团,更有效地稳定了苄醚自由基和苄醚阳离子,使阳离子型光引发剂光解速率加快,从而加速阳离子体系固化速率。实验结果与理论相符。
     研究了阳离子型实体材料中氧杂环丁烷的光固化动力学。氧杂环丁烷首先被质子化,形成了二级氧鎓正离子,二级氧鎓正离子受另外一个单体亲核进攻而开环,相应地生成一个三级氧鎓正离子,继续不断受单体进攻形成聚合物。三级氧鎓正离子相对稳定,因此最后一步反应活化能很高,一旦克服其活化能,反应将迅速进行。
     以脂环族环氧、氧杂环丁烷和乙烯基醚为主要反应性原料制备了蓝色阳离子型实体材料,性能测试表明这种阳离子型实体材料喷射稳定,适合在55℃下工作,阳离子型实体材料的光敏性、固化后力学性能、热性能较佳,满足三维打印的要求。
     合成了三维打印支撑材料的两种齐聚物。其中水性氨基甲酸酯丙烯酸酯的最佳合成条件是:第一步在甲苯二异氰酸酯中滴加二羟甲基丙酸的反应温度为30℃,反应时间1.5小时;第二步加入聚乙二醇的反应温度为45—50℃,反应3.5h;第三步滴加丙烯酸羟乙酯的反应温度为50—55℃,反应约5h。当TDI:DMPA:PEG的投料摩尔数比为4:2:1时,得到羧基酸值约为66.5mgKOH/g的水性氨基甲酸酯丙烯酸酯齐聚物,使用三乙胺100%中和羧基后,这种齐聚物具有较好的水溶性。通过醇钠-酰氯法合成了聚乙二醇二丙烯酸酯,聚乙二醇1000二丙烯酸酯所含醚键最多,亲水性好,固化后强度低,作为另一种齐聚物。以上述两种齐聚物、β—羧乙基丙烯酸酯和温敏材料PEO—PPO—PEO配制了支撑材料。支撑材料的喷射稳定性较好,很少有堵孔现象,其光敏性较实体材料差一点。观察成形后支撑材料和阳离子型实体材料垂直结合面的SEM照片,并通过在水中浸泡和剥离性能研究表明,支撑材料较容易去除。
UV-curing Three-dimensional Printing (3DP) is similar to UV ink-jet printing, whichis the spray forming of UV resin droplets. In the forming process, two sets of printingheads simultaneously spray UV-curing building material and UV-curing support material,respectively. Then the materials are cured by ultraviolet light. The materials accumulatelayer by layer. Lastly, when the printing is completed, removing the support material bywater gun, the prototyping part is achieved. UV-curing Three-dimensional Printingcombines the advantages of UV-curing and spray forming, to improve the efficiency andaccuracy of rapid prototyping and reduce costs.
     UV-curing building material and UV-curing support material is crucial for UV-curing3DP. At present, only 3D Systems Corporation and OBJET Corporation can supplyUV-curing Three-dimensional Printing machines and forming materials, and the sprayingtemperature of UV materials is 100-110℃and 70-75℃, respectively. It is the first teamfor us to research on UV-curing three-dimensional printing equipment and formingmaterial at home, and XAAR XJ500 is the printing head, with material sprayingtemperature of 50-55℃. The lower spraying temperature is, the less is suitable rawmaterial, and the more difficultly will we research on the forming materials. Therefore, thepreparation and properties study of UV forming materials is of vital importance.
     This paper researches on the theory and experimental method of the critical exposure,penetration depth, contractility, curl distortion of UV resins. Droplets formation andspraying process of piezoelectricity printing head are described, and spraying processparameters, spreading and wetting parameters are discussed. It is the theoretical principleof the preparation and properties study of UV forming materials.
     The polypropylene glycol diglycidylether diacrylate was synthesized bypolypropylene glycol diglycidylether and acrylic acid as two main materials. Thepreferable synthesizing conditions as below: the temperature is 100-110℃, the catalystmass fraction of N,N-dimethyl benzylamine is 0.80% and the inhibitor mass fraction ofp-hydroxyanisole is 0.20-0.40%. The hybrid building material was prepared bypolypropylene glycol diglycidylether diacrylate, cycloaliphatic epoxide, oxetane and vinylether as the main materials. The parameters and experiment results of the hybrid buildingmaterial indicated that, it has good photosensitive, and can be sprayed steadily at 55℃, the cured building material has excellent mechanical and thermal properties.
     The free radical building material's oligomer of low viscosity urethane acrylate wassynthesized by TDI, HEA and PEG as three main materials. The preferable synthesizingconditions as below: at the first step, n(TDI):n(HEA)=1, the catalyst mass fraction of DBTis 0.2%, the temperature is 40℃, reaction time is 2-3 hours; at the second step,n(TDI):n(PEG)=2, the temperature is 55-60℃, reaction time is 5-6 hours. The free radicalbuilding material was prepared by low viscosity urethane acrylate as the main materials.The parameters and experiment results of the free radical building material demonstratedthat, it can be sprayed steadily at 50℃, but it's photosensitive and contractility is poorerthan other two building materials.
     This paper investigates the effect of the benzyl alcohol on cationic building material.Benzyl alcohol and its analogues with electron-donating substituents are usefulaccelerators for the cationic polymerization of cycloaliphatic epoxide and oxetane. Theaccelerated nature is activated monomer mechanism and the free-radical chain-induceddecomposition of onium salt cationic photoinitiator.
     Oxetane is a kind of raw material in cationic building material. Thephotopolymerization kinetics of oxetane is studied by RT-FTIR technique. Throughanalyzing the photopolymerization mechanism of oxetane, it disclosed that the lastelementary reaction's activation energy is maximum, once heat of reaction overcomeactivation energy, the reaction velocity is very fast.
     The blue cationic building material was prepared by cycloaliphatic epoxide, oxetaneand vinyl ether as three main materials. The parameters and experiment results of thecationic building material indicated that, it has good photosensitive, and can be sprayedsteadily at 55℃, the cured cationic building material has appropriate mechanical andthermal properties.
     The support material was prepared by water-borne polyurethane acrylate,polyethylene glycol (1000) diacrylate and PEO-PPO-PEO as the main materials. Thepreferable synthesizing conditions of water-borne polyurethane acrylate is as below: at thefirst step, the temperature is 30℃, reaction time is 1.5 hours; at the second step, thetemperature is 45-50℃, reaction time is 3.5 hours; at the last step, the temperature is50-55℃, reaction time is 5 hours. When TDI:DMPA:PEG is 4:2:1, acid value ofwater-borne polyurethane acrylate is 66.5 mgKOH/g, and it gain excellent water solubilitywith 100% triethylamine to neutralize. Polyethylene glycol diacrylate was synthesized by polyethylene glycol sodium with acryloyl chloride. The support material possesses goodspray stability, but the photosensitive of the support material is worse than buildingmaterials. The experiment demonstrated that UV cured support material can easily peeledby water gun.
引文
[1] 莫健华.快速成形及快速制模[M].北京:电子工业出版社,2006
    [2] 颜永年,张伟,卢清萍,等.基于离散/堆积成型概念的RPM原理和发展[J].中国机械工程,1994,5(4):64-66
    [3] Krause E L., Ciesta M., Stiel Ch., et al. Enhanced rapid prototyping for faster product development process [J]. Annals of the CIRP, 1997, 46(1): 412-421
    [4] 黄树槐,肖跃加,莫健华,等.快速成形技术的展望[J].中国机械工程,2000,11(Z1):195-200
    [5] 颜永年,林峰,张人佶,等.快速制造技术的最新进展及其发展趋势[J].电加工与模具,2006,5(S1):12-17
    [6] 颜永年,齐海波.快速制造的内涵与应用[J].航空制造技术,2004,(5):26-29
    [7] Wohlers T. T. Wohlers Report 2000 - Rapid Prototyping & Tooling State of the industry Annual Worldwide Progress Report[R], Colorado USA, 2000
    [8] New Industry study reports 33% grouth of products and servives in additive fabrication, http://www.wohlersassociates.com
    [9] Sachs E. M., Haggerty J. S., Cima M. J., et al. Three-dimensional printing process to fabricate moulds and prototypes - involving selectively applying binder to successively deposited powder layers[P]. US5204055-A1, 1991
    [10] Scans E. M., Haggerty J. S., Cima M. J. Three-dimensional printing technique[P]. US5204055, 1993
    [11] 李晓燕.3DP成形技术的机理研究及过程优化[D]:[博士学位论文].上海:同济大学,2006
    [12] Dimitrov D., Schrevez K., de Beer N., et al. Three dimensional printing in the South African industrial environment[J]. South African Journal of Industrial Engineering, 2008, 19(1): 195-213
    [13] Dimitrov D., Schreve K., Taylor A., et al. Rapid prototyping driven design and realisation of large components[J]. Rapid Prototyping Journal, 2007, 13(2): 85-91
    [14] Kim G. D., Oh Y. T. A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2008, 222(2): 201-215
    [15] 伍咏晖,李爱平,张曙.三维打印成形技术的新进展[J].机械制造,2005,43(12):62-64
    [16] 李晓燕,张曙.三维打印成形系统的开发[J].机械设计,2005,22(11):57-59
    [17] Calvert P. Inkjet printing for materials and devices[J]. Chemistry of Materials, 2001, 13(10): 3299-3305
    [18] Le HP. Progress and Trends in Ink-jet Printing Technology[J]. Journal of Imaging Science and Technology, 1998, 42(1): 49-62
    [19] 郑利文.以色列Objet公司推出别具特色的三维快速成型机[J].模具工业,2007,33(7):71
    [20] Dimitrov D., Schreve K., de Beer N. Advances in three dimensional printing -state of the art and future perspectives[J]. Rapid Prototyping Journal, 2006, 12(3): 136-147
    [21] Chang C. C. Rapid prototyping fabricated by UV resin spray nozzles[J]. 2004, 10(2): 136-145
    [22] 余灯广,杨祥良,王运赣,等.三维打印技术制备控释药片工艺研究[J].中成药,2007,29(5):679-683
    [23] 李晓燕,张曙,余灯广.三维打印成形粉末的均匀试验设计研究[J].上海理工大学学报,2007,29(2):183-188
    [24] 余灯广,杨祥良,王运赣,等.三维打印技术制备豆腐果苷零级控释片研究[J].中成药,2007,29(3):355-359
    [25] 李晓燕,张曙,余灯广.三维打印成形粉末配方的优化设计[J].机械科学与技术,2006,25(11):1343-1346
    [26] 李晓燕,伍咏晖,张曙.三维打印成形机理及其试验研究[J].中国机械工程,2006,17(13):1355-1359
    [27] 李晓燕,张曙.三维打印成形技术在制药工程中的应用[J].中国制造业信息化,2004,33(4):105-107
    [28] 王建.化学芯片的喷墨快速成型技术研究[D]:[硕士学位论文].南京:南京理工大学,2006
    [29] 高琛,黄孙祥,陈雷.液滴喷射技术的应用进展[J].无机材料学报,2004,19(4):714-722
    [30] Michaels S., Sachs E.M., Cima M.J. Metal parts generateon by Three-Dimensional Priming[C]. In: Process of solid freeform fabrication symposium. Austin, Texas: 1992. 244-250
    [31] Cox W.R., Guan C., Hayes D.J, et al. Microjet printing of micro-optical interconnects[J]. International Journal of Microcircuits & Electronic Packaging, 2000, 23(3): 346-351
    [32] Srivastava V.C., Upadhyaya A., Ojha S.N. Microstructural features induced by spray forming of a temary Pb-Sn-Sb alloy[J]. Bulletin of material science, 2000, 23(2): 73-78
    [33] Grau J., M.J. Cima, E.M. Sachs. Alumina molds fabricated by 3-Dimensional Printing for slip casting and pressure slip casting[J]. Ceramic Industry, 1998, 23(7): 22-27
    [34] Kohnen A.S. Drop-on-demand ink jet printing for three dimensional printing application[D]: Massachusetts: Massachusetts Institute of Technology, 1995
    [35] Sachs E.M., Cima M.J. CAD-casting: direct fabrication of ceramic shells and cores by three dimensional printing[J]. Manufacturing Review, 1992, 5(2): 117-126
    [36] Yoo Jaedeok, Cho Kyung-mox. Transformation-toughened ceramic multilayers with compositional gradients[J]. Journal of the American Ceramic Society, 1998, 81(1): 21-32
    [37] Sun W., Dcosta D.J. Freeform fabrication of Ti_3SiC_2 powder-based structures: Part Ⅰ-Integrated fabrication process[J]. Journal of Materials Processing Technology, 2002, 127(3): 343-351
    [38] Sun W., Dcosta D.J. Freeform fabrication of Ti_3SiC_2 powder-based structures: Part Ⅱ -Characterization and microstructure evaluation[J]. Journal of Materials Processing Technology, 2002, 127(3): 352-360
    [39] Jooho Moon, E. Grau Jason. Ink-jet printing of binders for ceramic components[J]. Journal of the American Ceramic Society, 2002, 85(4): 755-762
    [40] 李晓燕,张曙.三维打印快速成形及其试验研究[J].电加工与模具,2005,(5): 22-25
    [41] Kim Seong-Jim, McKean D.E. Aqueous TiO_2 suspension preparation and novel application of ink-jet printing technique for ceramics patterning[J]. Journal of Materials Science Letters, 1998, 17(2): 141-144
    [42] Windle J., Derby B. Ink jet printing of PZT aqueous ceramic suspensions[J]. Journal of Materials Science Letters, 1999, 18(2): 87-90
    [43] Teng W.D., Edirisinghe M.J., Evans Julian R.G. Optimization of dispersion and viscosity of a ceramic jet printing ink[J]. Journal of the American Ceramic Society,1997, 80(2): 486-494
    [44] Teng W.D., Edirisinghe M.J. Development of continuous direct ink jet printing of ceramics[J]. British Ceramic Transactions, 1998, 97(4): 169-173
    [45] Teng W.D., Edirisinghe M.J. Development of ceramic inks for jet printing: Effect of conductivity[J]. Key Engineering Materials, 1997, 132-136(1): 337-340
    [46] Derby B., Lee D.H., Wang T. Development of PZT suspensions for ceramic ink-jet printing[J]. Materials Research Society Symposium - Proceedings, 2003,758:113-118
    [47] Matthew Mott, Song Jin-Hua, R.G. Evans Julian. Microengineering of ceramics by direct ink-jet printing[J]. Journal of the American Ceramic Society, 1999, 82(7):1653-1658
    [48] Griffith L.G., Wu B.M., M.J. Cima. In vitro organogenesis of liver tissue[J]. Annals of the New York Academy of Sciences, 1997, 831: 382-397
    [49] Park A., Wu B.M., Griffith L.G. Integration of surface modification and 3D fabrication techniques to prepare pattered poly(L-lactide) substrates allowing regionally selective cell adhesion[J]. Journal of Biomaterials Science, Polymer Edition, 1998, 9(2): 89-110
    [50] Lam E.X.F., Mo X.M., Teoh S.H. Scaffold development using 3D printing with a starch-based polymer[J]. Materials Science and Engineering, 2002, C(20): 49-56
    [51] Liu J. X., Kuhn H. A. Rapid manufacture of Ni-based superalloy components by three-dimensional printing[J]. Transactions of Nonferrous Metals Society of China,2006,16: S1901-S1906
    [52] Kernan B. D., Sachs E. M., Oliveira M. A., et al. Three-dimensional printing of tungsten carbide-10 wt% cobalt using a cobalt oxide precursor[J]. International Journal of Refractory Metals & Hard Materials, 2007,25(1): 82-94
    [53] Suwanprateeb J. Strength improvement of critical-sized three dimensional printing parts by infiltration of solvent-free visible light-cured resin[J]. Journal of Materials Science-Materials in Medicine, 2006, 17(12): 1383-1391
    [54] Suwanprateeb J. Comparative study of 3DP material systems for moisture resistance applications[J]. Rapid Prototyping Journal, 2007, 13(1): 48-52
    [55] Young A. T. Jet Drop Printing Process Utilizing a Radiation Curable Ink[P].US4303924-A, 1981
    [56] Shevelev N., Lent B. A. UV-curable etch resistant jet ink, for PCB(s) - comprises multicomponent acrylate! resin compsn. with photoinitiator, organic carrier etc[P].US5270368-A, 1993
    [57] Marshall A. C, Hudd A. L., Marshall A. Ink Composition[P]. US5275646-A, 1994
    [58] Roth J. D. Inkjet printing ink for non-metal substrates using piezoelectric or electrostatic inkjet process[P]. US5889084-A, 1997
    [59] Zhang H., Massingill J. L., Woo J. T. K. Low VOC, low viscosity UV cationic radiation-cured ink-jet ink system[J]. Journal of Coatings Technology, 2000, 72(905):45-52
    [60] Erdtmann D., Romano C. E., Martin T. W. Inkjet images on PVA overcoated with hardener solution[P]. US6161929-A, 1999
    [61] Reem R. C, Klingman K. J., Reem C. O. E. K. C, et al. Ink Set for Ink Jet Printing[P]. US6715869-B1, 2004
    [62] Biehl S., Danzebrink R., Oliveira P., et al. Refractive microlens fabrication by ink-jet process[J]. Journal of Sol-Gel Science and Technology, 1998,13(1-3): 177-182
    [63] Danzebrink R., Aegerter M. A. Deposition of micropatterned coating using an ink-jet technique[J]. Thin Solid Films, 1999, 351(1-2): 115-118
    [64] Danzebrink R., Aegerter M. A. Deposition of optical microlens arrays by ink-jet processes[J]. Thin Solid Films, 2001, 392(2): 223-225
    [65] Ishii Y., Koike S., Arai Y., et al. Ink-jet fabrication of polymer microlens for optical-I/O chip packaging[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2000, 39(3B): 1490-1493
    [66] O'Neill F. T., Owen G, Sheridan J. T. Alteration of the profile of ink-jet-deposited UV-cured lenses using applied electric fields[J]. Optik, 2005, 116(4): 158-164
    [67] Ohata M., Mikami S., Osugi H. Ink repellent coatings consisting of silicone-acrylic block copolymer for ink jet printers[J]. Journal of Imaging Science and Technology,2001, 45(1): 24-29
    [68] Kiatkamjornwong S., Rattanakasamsuk K., Noguchi H. Evaluation of some strategies to control fading of prints from dye-based ink[J]. Journal of Imaging Science and Technology, 2003, 47(2): 149-154
    [69] Chang C. J., Wu F. M., Chang S. J., et al. Influence of UV-curable compositions and rib properties on ink-jet-type color filter performance[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43(9A):6280-6285
    [70] Chang C. J., Chang S. J., Wu F. M., et al. Effect of compositions and surface treatment on the jetting stability and color uniformity of ink-jet printed color filter[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43(12): 8227-8233
    [71] Chang C, J., Chang S. J., Shih K. C., et al. Improving mechanical properties and chemical resistance of ink-jet printer color filter by using diblock polymeric dispersants[J]. Journal of Polymer Science Part B-Polymer Physics, 2005, 43(22): 3337-3353
    [72] Chang C. J., Tzeng H. Y. Preparation and properties of waterborne dual curable monomers and cured hybrid polymers for ink-jet applications[J]. Polymer, 2006, 47(26): 8536-8547
    [73] Liu Y. X., Cui T. H. Polymeric integrated AC follower circuit with a JFET as an active device[J]. Solid-State Electronics, 2005, 49(3): 445-448
    [74] 朱玲,王夏琴,李文彬.喷墨印花用紫外光固化油墨[J].上海纺织科技,2005,33(10):14-16,18
    [75] 朱玲,李文彬,王夏琴,等.光引发剂对数码喷墨用黑色UV固化油墨固化速率的影响[J].信息记录材料,2005,6(1):14-17,20
    [76] 朱玲.光引发剂与颜料对喷墨印花用UV固化油墨固化速度的影响[J].染料与染色,2004,41(3):158-160
    [77] 韩阳芳,王夏琴.数码喷墨用紫外光固化油墨[J].天津化工,2003,17(6):7-9
    [78] 王丽,张育川,曾宪玉,等.喷墨CTP版UV墨水用超低黏度聚氨酯丙烯酸酯的合成及性能[J].北京化工大学学报(自然科学版),2006,33(2):59-63
    [79] 史红梅,魏杰.UV喷墨油墨的进展[J].信息记录材料,2005,6(2):36-39,50
    [80] 陶志,焦杨,魏杰.UV固化喷墨中光引发体系的研究[J].影像技术,2007,(1):32-34
    [81] 王娜,魏先福,黄蓓青,等.UV喷墨油墨分散性评价方法的研究[J].包装工程,2008,29(10):99-101
    [82] 张婉,魏先福,黄蓓青,等.单体和预聚物对UV喷墨油墨性能的影响[J].信息记录材料,2008,9(1):3-7
    [83] 张婉,魏先福,黄蓓青,等.单体对UV喷墨油墨性能的影响[J].北京印刷学院学报,2007,15(6):4-6
    [84] 张婉,黄蓓青,魏先福.单体对UV喷墨油墨体系固化速度的影响[J].包装工程,2007,28(10):45-47
    [85] Levy A. Composition useful for supporting and building three-dimensional object by rapid prototyping comprises temperature sensitive polymer, surface tension-reducing additive, photo curable reactive component, photo-initiator and stabilizer[P].US7368484-B2, 2007
    [86] Kritchman E., Gothait H., Miller G. Building of three-dimensional objects comprises dispensing first material used to form three-dimensional object, second material used to form part of support structure, and third material to form release layer[P].US7364686-B2, 2004
    [87] Levy A. Composition for supporting and/or building three-dimensional structure comprises temperature sensitive polymer(s) and surface-active agent(s) and exhibits reverse thermal gelation properties[P]. US6863859-B2, 2003
    [88] Napadensky E., Gothait H., Lifshitz Z., et al. Composition used in three-dimensional objects manufacture, comprises reactive component, photo-initiator, surfactant and a stabilizer, and has predefined viscosity at varied temperatures[P]. US7479510-B2,2002
    [89] Sodian R., Schmauss D., Markert M., et al. Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting[J]. Annals of Thoracic Surgery, 2008, 85(6): 2105-2109
    [90] Yin X. W., Travitzky N., Greil P. Three-dimensional printing of nanolaminated Ti3A1C2 toughened TiA13-A12O3 composites[J]. Journal of the American Ceramic Society, 2007, 90(7): 2128-2134
    [91] Dimitrov D., van Wijck W., de Beer N. An introduction to rapid casting:Development and investigation of process chains for sand casting of functional prototypes[J]. South African Journal of Industrial Engineering, 2007, 18(1): 157-173
    [92] Dimitrov D., van Wijck W., de Beer N., et al. Development, evaluation, and selection of rapid tooling process chains for sand casting of functional prototypes[J].Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2007, 221(9): 1441-1450
    [93] Habibovic P., Gbureck U., Doillon C. J., et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants[J]. Biomaterials, 2008, 29(7):944-953
    [94] Khalyfa A., Vogt S., Weisser J., et al. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants[J]. Journal of Materials Science-Materials in Medicine, 2007, 18(5): 909-916
    [95] Dourandish M., Godlinski D., Simchi A., et al. Sintering of biocompatible P/M Co-Cr-Mo alloy (F-75) for fabrication of porosity-graded composite structures[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008, 472(1-2): 338-346
    [96] Chumnanklang R., Panyathanmaporn T., Sitthiseripratip K., et al. 3D printing of hydroxyapatite: Effect of binder concentration in pre-coated particle on part strength[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007, 27(4): 914-921
    [97] Tay B. Y., Zhang S. X., Myint M. H., et al. Processing of polycaprolactone porous structure for scaffold development[J]. Journal of Materials Processing Technology, 2006, 182(1-3): 117-121
    [98] Ryan G. E., Pandit A. S., Apatsidis D. P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique[J]. Biomaterials, 2008, 29(27): 3625-3635
    [99] Will J., Melcher R., Treul C., et al. Porous ceramic bone scaffolds for vascularized bone tissue regeneration[J]. Journal of Materials Science-Materials in Medicine, 2008, 19(8): 2781-2790
    [100]Suwanprateeb J., Sanngam R., Suwanpreuk W. Fabrication of bioactive hydroxyapatite/bis-GMA based composite via three dimensional printing[J]. Journal of Materials Science-Materials in Medicine, 2008, 19(7): 2637-2645
    [101]Huang W. D., Zheng Q. X., Sun W. Q., et al. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique[J]. International Journal of Pharmaceutics, 2007, 339(1-2): 33-38
    [102]Wu B M, Borland S W, Giordano R A, et al. Solid free-form fabrication of drug delivery devices[J]. Journal of Controlled Release, 1996, (40): 77-87
    [103]Katstra W. E., Palazzolo R. D., Rowe C. W., et al. Oral dosage forms fabricated by Three Dimensional Printing (TM)[J]. Journal of Controlled Release, 2000, 66(1): 1-9
    [104]Rowe C. W., Katstra W. E., Palazzolo R. D., et, al. Multimechanism oral dosage forms fabricated by three dimensional printing (TM)[J]. Journal of Controlled Release, 2000, 66(1): 11-17
    [105]余灯广,杨勇,刘洁,等.三维打印成形技术制备缓释片剂可行性初步研究[J].中国新药杂志,2006,(7):532-536
    [106]Yu D. G., Yang X. L., Huang W. D., et al. Tablets with material gradients fabricated by three-dimensional printing[J]. Journal of Pharmaceutical Sciences, 2007, 96(9): 2446-2456
    [107]闫利文.微机械制造工艺及其应用[J].现代制造工程,2004,(3):83-85
    [108]潘开林,陈子辰,付建中.基于快速成形的MEMS微制造技术[J].中国机械工程,2002,13(20):1721-1723
    [109]Setti L., Fraleoni-Morgera A. An amperometric glucose biosensor prototype fabricated by thermal inkjet printing[J]. Biosensors and Bioelectronics, 2005, (20): 2019-2026
    [110]Kuhner F., Lugmaier R. A., Mihatsch S., et al. Print your atomic force microscope[J]. Review of Scientific Instruments, 2007, 78(7): 5
    [111]陈用烈,曾兆华,杨建文.辐射固化材料及其应用[M].北京:化学工业出版社, 2003
    [112]潘才元.膨胀聚合反应及应用[M].成都:四川教育出版社,1988
    [113]王军杰,王素琴,卢秉恒.激光快速成形加工中光敏树脂收缩性能的研究[J].化学工程,1996,24(2):68-70,67
    [114]陈明,陈其道,肖善强,等.混杂光固化体系的原理及应用[J].感光科学与光化学,2001,19(3):208-216
    [115]蔡晓路,陆明湖.阳离子光引发剂的发展动态[J].感光材料,1999,(S1):79-83
    [116]Crivello J V, Lam J H W. Diaryliodonium salts, a new class of photoinitiators for cationic polymerization[J]. Macromolecules, 1997, 10(6): 1307-1315
    [117]Yamamura T., Watanabe T., Takeuchi A., et al. Photoeurable composition for photofabricating three-dimensional objects - containing oxetane and epoxy compounds and cationic photoinitiator, and providing tough, dimensionally accurate cured products[P]. US6365644-B1, 2002
    [118]Fouassier J P, Radbek J F.Radiation Curing in Polymer Science and Technology[M]. NewYork: Elsevier Applied Science, 1993
    [119]庞正智,林晓东.光固化涂层相对内应力与体积收缩率的研究[J].北京化工大学学报,1995,22(4):22-26
    [120]段玉岗,王素琴,卢秉恒.用于立体光造型法的光固化树脂的收缩性研究[J].西安交通大学学报,2000,34(3):45-48,59
    [121]You Xiaorong, Mickish Daniel J. Recent advances in stereolithgraphy resins (I)[J]. Journal of Tsinghua University Science and Technology, 2002, 42(S2): 426-433
    [122]Fromm JE. Numerical Calculation of the Fluid Dynamics of Drop-On-Demand Jets[J]. IBM J. Res. Develop., 1984, 28(3): 322-333
    [123]Dijksman JF. Hydrodynamics of Small Tubular Pumps[J]. J. Fluid Mech., 1984, 139:173-191
    [124]Badie R, Frits de Lange. Mechanism of Drop Constriction in a Drop-On-Demand Ink-Jet System[J]. Proceedings of the Royal Society of London, Series A-Mathematical, Physical and Engineering Sciences, 1997, 453:2573-2581
    [125]Brian Derby, Nuno Reis. Inkjet Printing of Highly Loaded Particulate Suspensions[J]. MRS Bulletin, 2003, 28(11): 815-818
    [126]Stow CD, Hadfield MG. An Experimental Investigation of Fluid Flow Resulting from the Impact of a Water Drop with an Unyielding Dry Surface[J]. Proc. R. Soc. London Ser. A, 1981, 373:419-441
    [127]Mundo C, Sommerfeld M, Tropea C. Droplet-wall Collisions Experimental Studies of the Deformation and Breakup Process[J]. Int. J. Multiphase Flow, 1995, 21(2): 151-173
    [128]Pasandideh-Fard M, Qiao YM, Chandra S, et al. Capillary Effects During Droplet Impact on a Solid Surface[J]. Phys. Fluids, 1996, 8(3): 650-659
    [129]Bechtel SE, Bogy DB, Talke FE. Impact of a Liquid Drop Against a Flat Surface[J]. IBM J. Res. Develop., 1981, 25(6): 963-971
    [130]Sinka, V Joseph, Higbie, et al. US4382135, 1983
    [131]刘蕤.水性光固化聚氨酯乳液的改性及性能研究[J].中国皮革,2008,37(21):18-22
    [132]董庆年.红外光谱法[M].北京:石油化学工业出版社,1977
    [133]Desai S., Thakore I.M., Sarawade B.D., et al. Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes[J]. European Polymer Journal, 2000, (36): 711-725
    [134]魏杰,金养智.光固化涂料[M].北京:化学工业出版社,2005
    [135]Yen M.S., Cheng K.L. The effects of soft segments on the physical properties and water vapor permeability of H_(12)MDI-PU cast films[J]. Journal of Applied Polymer Science, 1994, 12(52): 1707-1717
    [136]余宗萍,孙余凭.UV固化三官能脂肪族聚氨酯丙烯酸酯的合成[J].热固性树脂,2006,21(4):23-25
    [137]Cho J. D., Hong J. W. Photo-curing kinetics for the UV-initiated cationic polymerization of a cycloaliphatic diepoxide system photosensitized by thioxanthone[J]. European Polymer Journal, 2005, 41(2): 367-374
    [138]Crivello J. V. Cationically photopolymerizable composition, for fabrication of decorative and protective organic coatings, comprises at least one accelerator comprising phenolic resole and aromatic compound[P]. US6863701-B2, 2003
    [139]Chen J. X., Soucek M. D. Ultraviolet curing kinetics of cycloaliphatic epoxide with real-time Fourier transform infrared spectroscopy[J]. Journal of Applied Polymer Science, 2003, 90(9): 2485-2499
    [140]Gomurashvili Z., Crivello J. V. Phenothiazine photosensitizers for onium salt photoinitiated cationic polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2001, 39(8): 1187-1197
    [141]Bednarek M., Biedron T., Kaluzynski K., et al. Ring-opening polymerization processes involving activated monomer mechanism. Cationic polymerization of cyclic ethers containing hydroxyl groups[C]. In: International Symposium on Ionic Polymerization. Kyoto, Japan: 1999, 1-11
    [142]Crivello J. V., Ma J., Jiang F, et al. Advances in the design of photoinitiators, photo-sensitizers and monomers for photoinitiated cationic polymerization[C]. In: International Symposium on Ionic Polymerization. Boston, MA: 2003, 165-177
    [143]Nash H. A., Docktor H. J., Webster D. C. Effect of composition on performance properties in cationic UV-curable coating systems [C]. In: 81st Annual Meeting of the Federation-of-Societies-for-Coatings-Technology. Philadelphia, PA: 2003, 153-161
    [144]Crivello J. V. Prepolymer mixture used as cured coatings comprises first catalyst component comprising cationic photoinitiator, second catalyst component comprising free radical photoinitiator, and monomer component comprising monomer[P]. US2006041032-A1, 2006
    [145]Sangermano M., Di Gianni A., Malucelli G, et al. Cationic photopolymerization of oxetane-functionalized hyperbranched polymers[J]. Journal of Applied Polymer Science, 2005, 97(1): 293-299
    [146]Sangermano M., Malucelli G, Bongiovanni R., et al. Photopolymerization of oxetane based systems[J]. European Polymer Journal, 2004, 40(2): 353-358
    [147]Bulut U., Crivello J. V. Reactivity of oxetane monomers in photoinitiated cationic polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2005, 43(15): 3205-3220
    [148]Crivello J. V. Synergistic effects in hybrid free radical/cationic photopolymerizations [J]. Journal of Polymer Science Part a-Polymer Chemistry, 2007, 45(16): 3759-3769
    [149]Crivello J. V., Kong S., Jang M. Cationic polymerization: New developments and applications[C]. In: 6th Austrian Polymer Meeting. Vienna, AUSTRIA: 2003, 47-61
    [150]Noutary C., Runacre A. C., Brooks M. R., et al. Ink for ink-jet printing comprises epoxy monomer(s); oxetane monomer(s); hydroxy-containing compound(s); allyl and/or vinyl ether monomer(s); cationic photoinitiator(s); and ink containing coloring agent(s), and has a specified viscosity[P]. EP1817384-A1, 2006
    [151]de Gans B. J., Duineveld P. C., Schubert U. S. Inkjet printing of polymers: State of the art and future developments[J]. Advanced Materials, 2004, 16(3): 203-213
    [152]李斌,张世海,陈勇,等.聚乙二醇二丙烯酸酯齐聚物的合成及其红外激光固化性能研究[J].高分子材料科学与工程,2001,17(5):162-164
    [153]巩长肠,顾迎春,刘彩兵,等.温度敏感型PCL-Pluronic-PCL水凝胶的合成与性能[J].高分子材料科学与工程,2007,23(4):86-88,93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700