含硅/聚氨酯丙烯酯的合成、光聚合行为及膜性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了含硅丙烯酸酯、脂环族环氧低聚物及基于倍半硅氧烷的有机-无机杂化聚氨酯丙烯酸酯低聚物,并将其应用于紫外光固化体系中,分别得到自由基固化含硅丙烯酸酯/环氧丙烯酸酯、阳离子固化脂环族环氧低聚物/环氧树脂、有机-无机杂化聚氨酯丙烯酸酯低聚物/含磷丙烯酸酯体系。详细研究了阻燃涂层在紫外光辐照下的光固化动力学及固化膜的热性能、力学性能和阻燃机理;合成了半结晶超支化聚(酯-酰胺),探讨了其作为紫外光固化粉末涂层树脂的可能性。具体的研究内容如下:
     合成了三(丙烯酰氧基乙氧基)苯基硅烷(TAEPS)和二(丙烯酰氧基乙氧基)甲基苯基硅烷(DAEMPS)树脂,采用FTIR、1H NMR、13C NMR和29Si NMR对其进行了分子结构表征,并与商品化环氧丙烯酸酯EB600混合,在光引发剂存在下,以紫外光辐照快速固化成膜。体系最大光聚合速率随着TAEPS或DAEMPS含量的增加而增大,固化膜中最终双键转化率变化趋势却相反,采用Photo-DSC测试可达80%以上;添加TAEPS和DAEMPS可有效提高材料的阻燃性能,其极限氧指数(LOI)值从EB600固化膜的21提高到30以上;TAEPS和DAEMPS固化膜在氮气中800℃时的成炭量分别是EB600固化膜的3倍和2倍;固化膜的Tg随着TAEPS含量的增加而增大,而对于DAEMPS却相反,前者由于交联密度的增加,而后者由于Si-O和Si-C柔性结构起主导作用:由于交联结构中柔性链的引入,固化膜的拉伸强度随着TAEPS或DAEMPS含量的增加而减小;而相反,含量为85%TAEPS或DAEMPS固化膜的断裂伸长率却是40%含量固化膜的1.3倍以上。
     采用“醚交换-氧化法”合成了脂环族环氧树脂三(3,4-环氧基-环己基-1-甲氧基)苯基硅烷(TEMPS),利用FTIR、1H NMR、13C NMR和29Si NMR对其进行了分子结构表征,并将其与双酚A环氧树脂(EP828)以不同比例混合后进行阳离子光固化制备了一系列样品。DMTA结果表明,TEMPS和EP828具有良好的相容性,固化膜的Tg和Ts分别从纯EP828固化膜的138℃和93℃降到TEMPS含量为80%固化膜的122℃和79℃;固化膜的断裂伸长率随TEMPS含量的增加而提高,而拉伸强度变化趋势则相反;TEMPS的加入可有效提高材料的阻燃性能,其极限氧指数(LOI)值从EP828固化膜的22提高30以上;固化膜在空气中的最大降解速率对应的温度Tmax2随着TEMPS含量的增加而提高,空气中800℃时的成炭量从纯EP828固化膜0%提高到TEMPS含量为80%固化膜的14%;其阻燃过程为:固化膜燃烧受热时,低表面能的含硅物质由材料内部向表面迁移,并迅速聚集成炭,致密的含硅炭化层能阻碍热量和可燃气体的扩散,从而延缓燃烧和热释放速度,达到阻燃的目的。
     合成了基于纳米多元醇的有机/无机杂化聚氨酯丙烯酸酯(SHUA),将SHUA与含磷丙烯酸酯(TAEP)以不同的比例混合,制备了一系列紫外光可固化有机/无机杂化阻燃树脂。体系的最大光聚合速率和最终双键转化率随SHUA含量增加而减小;SHUA与TAEP有很好的相容性,固化膜的弹性模量和Tg均随SHUA含量增加先增大后减小,当SHUA含量为10%时,Tg达到最大值(150℃);所有测试样品极限氧指数(LOI)值均在30以上,炭层的膨胀程度随SHUA含量增加呈先增大后减小趋势,当SHUA含量为20%时,膨胀程度最大;SHUA含量为40%固化膜在850℃时的成炭量是TAEP固化膜的6倍;固化膜的断裂伸长率随SHUA含量增加而提高,而拉伸强度则先增加后减小,当SHUA含量为5%时,体系获得最大拉伸强度(21.6 MPa)。
     以丁二酸酐为AA'单体,三羟甲基氨基甲烷为CB3单体,在无催化剂无溶剂条件下采用热缩聚法合成了超支化聚(酯-酰胺)(HP),采用1H NMR、GPC等对其分子结构进行了表征,并计算出其羟值为488mg KOH/g;将HP外围羟基进行烷基长链和丙烯酸酯改性后得到一系列半结晶超支化聚(酯-酰胺)(HP-LxDy)。HP处于无定形态,分子外围引入长链后,HP-LxDy具有内核无定形外围结晶的特殊结构,其Tg和Tm分别在40℃和120℃左右,满足低温光固化粉末涂层要求。HP-LxDy光聚合反应速率随光照时间迅速增加,最大光聚合速率随着树脂中双键含量的增加呈增大的趋势,最终双键转化率则呈减小的趋势。
The present thesis was aimed on the synthesis of silicon-containing acrylate, silicon-containing cycloaliphatic epoxy resin and silsesquioxane-based organic-inorganic hybrid urethane acrylate, and study on their photopolymerization kinetics, thermal degradation behavior, flame retardance as well as applications in UV curable coatings. A series of semi-crystalline hyperbranched poly (ester-amide)s were also synthesized and their application in UV-curable powder coating was studied. The detailed outline is elaborated as follows:
     The silicon-containing multifunctional acrylates, tri(acryloyloxyethyloxy) phenyl silane (TAEPS) and di(acryloyloxyethyloxy) methyl phenyl silane (DAEMPS) were synthesized and their molecular structures were confirmed by FTIR,1H NMR, 13C NMR and 29Si NMR spectroscopic analysis. The obtained TAEPS and DAEMPS were blended with a commercial epoxy acrylate (EB600) in different ratios to formulate a series of silicon-containing UV-curable resins. The maximum photopolymerization rate, which was monitored by Photo-DSC, increased along with the increase of TAEPS or DAEMPS content, while the final unsaturation conversion decreased. The limiting oxygen index (LOI) values of UV cured film increased from 21 for EB600 to 30 above for silicon-containing resins, which indicated that the addition of TAEPS or DAEMPS can efficiently enhance the flame retardancy of EB600. The char yields of cured TAEPS and DAEMPS films at 800℃measured under nitrogen atmospheres were two times and one times, respectively, higher than that of EB600. The glass transition temperatures of the UV-cured films increased with the increase of TAEPS content, and decreased with the increase of DAEMPS content. The tensile strength decreased with the increase of TAEPS or DAEMPS content, while the elongation-at-break increased.
     A novel silicon-containing trifunctional cycloaliphatic epoxide resin tri(3,4-epoxycyclohexylmethyloxy) phenyl silane (TEMPS) was synthesized via "transetherification and oxidation" method and characterized by FTIR,1H NMR, C NMR and 29Si NMR spectroscopic analysis. The obtained resin was then blended with bisphenol A epoxy resin (EP828) in different ratios to formulate a series of silicon-containing UV-curable resins. The data from the dynamic mechanical thermal analysis showed that TEMPS had good miscibility with EP828. The Tg and Ts both decreased from 138℃and 93℃for pure EP828 to 122℃and 79℃for sample with 80% TEMPS loading, respectively. The elongation-at-break increased with the increase of TEMPS content, while the tensile strength showed an opposite trend. The limiting oxygen index (LOI) values of cured film increased from 22 for EP828 to 30 for silicon-containing resins, which indicated that the addition of TEMPS can efficiently enhance the flame retardancy of EP828. The temperature at the maximum rate of weight loss Tmax2 increased with increasing TEMPS content. The char yields at 800℃measured under air atmospheres increased from 0% for pure EP828 to 14% for cured films with 80% TEMPS loading. Their flame retardant performance arise partly from the dilution function to more combustible organic gases, and partly from the barrier effect by the silicaceous residues formed in an advancing flame. While heating, the low surface energy of silicon migrates to the surface of coated film, following by the formation of a protective layer with high heat resistance. The high-performance char acts as an insulator and mass transport barrier, which can cut off the heat and oxygen transfer, and thus effectively improve the flame retradance of UV-cured resin.
     The silsesquioxane-based hybrid urethane acrylate (SHUA) was synthesized by modifying silsesquioxanebased hybrid polyol (SBOH) with the half adduct of isophorone diisocyanate and 2-hydroxyethyl acrylate, and characterized by FTIR and 'H NMR spectroscopy. The SHU A was mixed with a phosphorus-containing trifunctional acrylate (TAEP) with different ratios to prepare a series of UV-curable organic-inorganic hybrid resins. Both the maximum photopolymerization rate and final unsaturation conversion in the UV-cured films determined by photo-DSC decreased along with the increase of SHUA content. The data from the dynamic mechanical thermal analysis showed that SHUA had good miscibility with TAEP. Both the storage modulus in rubbery state and Tg first increased and then decreased along with the addition of SHUA content. The sample with 10% SHUA loading had the highest Tg of 150℃. The limiting oxygen index (LOI) values of all test samples were above 30. The char layer of sample with 20% SHUA loading had the maximum degree of expansion. The char yield of sample with 40% SHUA loading at 850℃was five times higher than that of TAEP. The elongation-at-break increased with the increase of SHUA content, while the tensile strength first increased and then decreased. The sample with 5% SHUA loading had the highest tensile strength of 21.6 MPa.
     Through thermal polycondensation from succinic anhydride as an AA'monomer and tris-(hydroxymethyl)aminomethane as a CB3 monomer in the absence of catalyst and solvent, hyperbranched poly (ester-amide) (HP) was synthesized and its structure was characterized by1H NMR and GPC. The calculated hydroxyl number of HP was 488 mg KOH/g. A series of semi-crystalline hyperbranched poly(ester-amide)s (HP-LχDy) was obtained by modifying hydroxyl end groups of HP with IPDI-C18 and IPDI-HEA in different ratios. HP is amorphous, while HP-LχDy is semi-crystalline due to the introduction of long alkyl chains. The degree of crystallinity increased with increasing the substitution degree of long alkyl chains emitting from the spherelike interior. The Tg and Tm of HP-LχDy were about 40℃and 120℃. The maximum photopolymerization rate, which was monitored by Photo-DSC, increased along with the increase IPDI-HEA content, while the final unsaturation conversion decreased.
引文
[1]余丰,范继贤,何典,邵华,周正发,徐卫兵.上海涂料,2006,44,19.
    [2]Chang ST, Chou PL, Polym Degrad Stab,1999,63,435.
    [3]Bongiovanni R, Montefusco F, Priola A. Prog Org Coat,2000,45,359.
    [4]文志红,方平艳,王振强.中国涂料,2006,8,42.
    [5]赵红振,齐暑华,周文英,李国新.化学与粘合,2006,
    [6]施文芳,金有铠,金养智.信息记录材料,2007,6,39.
    [7]施文芳,金养智.精细与专用化学品,2008,12,11.
    [8]Ravey M, Pearce EM. J Appl Polym Sci,1997,63,47.
    [9]Randoux T, Vanovervelt JC, Van den Bergen H, Camino G. Prog Org Coat,2002, 45,281.
    [10]Timothy E, Erwin S. WO 9502004.
    [11]Chen-Yang YW, Chuang JR, Yang YC, Li CY, Chiu YS. J Appl Polym Sci,1998, 69,115.
    [12]胡源,尤飞,宋磊.聚合物材料火灾危险性分析与评估.北京,化学工业出版社,2007.
    [13]欧育湘.实用阻燃技术.北京,化学工业出版社,2002.
    [14]Kang UG, Bush RW, Ketley AD, Grace WR. J Radiation Curing,1983,1,14.
    [15]Kannan P, Kishoret G, Kishoret K. Polymer,1997,38,4349.
    [16]lnan TY, Ekinci E, Yildiz E, Kuyulu A, Guungor A. Macromol Chem Phys,2001, 202,532.
    [17]Inan TY, Ekinci E, Yildiz E, Kuyulu A, Giiungor A. Macromol Macromol Chem Phys,2001,202,541.
    [18]Liu WC, Varley RJ, Simon GP. Polymer,2006,47,2091.
    [19]Haim D, Moshe G. Macromol Mater Eng,2006,291,913.
    [20]Sen AK, Mukheriee B, Bhattacharya AS, Sanghi LK, De PP, Bhowmick K. J Appl Polym Sci,43,1991,1674.
    [21]Chen-Yang YW, Lee HF, Yuan CY. J Polym Sci Part A:Polym Chem,2000,38, 972.
    [22]Smit CN, Hennink WE, De Ruiter B, Luiken AH, Marsman MPW, Bouwma J. North American Conference Proceedings of RadTech'90.1990,2,148.
    [23]Walsh WK, Gupta BS. J Coat Fabrics,1981,11,255.
    [24]Liang HB, Ding J, Shi WF. Polym Degrad Stab,2004,86,217.
    [25]Liang HB, Asif A, Shi WF. J Appl Polym Sci,2005,97,185.
    [26]Liang HB, Huang ZG, Shi WF. J Appl Polym Sci,2006,99,3130.
    [27]Wang QF, Shi WF. Eur Polym J,2006,42,2261.
    [28]Chen XL, Hu Y, Jiao CM, Song L. Prog Org Coat,2007,59,318.
    [29]Chen XL, Hu Y, Jiao CM, Song L. Polym Degrad Stab,2007,92,1141.
    [30]Chen XL, Hu Y, Song L, Xing WY. J Fire Sci,2008,26,93.
    [31]Wang HL, Liu JH, Xu SP, Shi WF. Prog Org Coat,2009,65,263.
    [32]Potin Ph. Eur Polym J,1991,27,341.
    [33]Chen-Chang YW, Chuang JR, Yang YC. Polym Prepr,1996,37,340.
    [34]Inan TY, Ozarslan O, Kuyulu A, Ekinci E, Gungor A. J Appl Polym Sci,1999,73, 2575.
    [35]Huang ZG, Shi WF. Eur Polym J,2006,42,1506.
    [36]Huang ZG, Shi WF. Polym Degrad Stab,2006,91,1674.
    [37]Cho CS, Chang SJ, Teng WJ, Chen JJ,2003, US Patent 6566483.
    [38]Liang HB, Asif A, Shi WF. Polym Degrad Stab,2005,87,495.
    [39]Liang HB, Shi WF, Gong M. Polym Degrad Stab,2005,90,1.
    [40]Chen XL, Hu Y, Song L, Jiao C. Polym Adv Technol,2008,19,322.
    [41]Chen XL, Hu Y, Song L, Xing WY. Polym Adv Technol,2008,19,393.
    [42]Huang ZG, Shi WF. Eur Polym J,2007,43,1302.
    [43]Huang ZG, Shi WF. Prog Org Coat,2007,59,312.
    [44]Wang HL, Xu SP, Shi WF. Prog Org Coat,2009,65,417.
    [45]Hsiue GH, Wang WJ, Chang FC. J Appl Polym Sci,1999,73,1231.
    [46]Wang WJ, Perng LH, Hsiue GH, Chang FC. Polymer,2000,41,6113.
    [47]Mecado LA, Reina JA, Galia M. J Polym Sci Part A:Polym Chem,2006,44, 5580.
    [48]Hsiue GH, Wei HF, Shiiao SJ, Kuo WJ, Sha YA. Polym Degrad Stab,2001,73, 309.
    [49]Lee MS, Kang CJ, Peng KL. US6337363,2002.
    [50]Mercado LA, Galia M, Reina JA. Polym Degrad Stab,2006,91,2588.
    [51]Wu CS, Liu YL, Chiu YS. Polymer,2002,43,4277.
    [52]Wu CS, Liu YL, Chiu YC, Chiu YS. Polym Degrad Stab,2002,78,41.
    [53]Liu YL, Chang GP, Wu CS. J Appl Polym Sci,2006,102,1071.
    [54]Hsiue GH, Liu YL, Tsiao J. J Appl Polym Sci,2000,78,1.
    [55]Sponton M, Mercado LA, Ronda JC, Galia M, Cadiz V. Polym Degrad Stab, 2008,93,2025.
    [56]Canadell J, Mantecon A, Cadiz V. Polym Degrad Stab,2007,92,1934.
    [57]Liu MF, Tsen WC, Shu YC, Chuang FS. J Appl Polym Sci,2001,79,881.
    [58]Lligadas G, Ronda JC, Galia M, Cadiz V. Biomacromolecules,2006,7,2420.
    [59]Liu YL, Chou CI. Polym Degrad Stab,2005,90,515.
    [60]Zheng S, Wang H, Dai Q, Kuo X, Ma D, Wang K. Macromol Chem Phys,1995, 196,269.
    [61]Hsiue GH, Liu YL, Liao HH. J Polym Sci Part A:Polym Chem,2001,39,986.
    [62]Chiang CL, Ma CCM. Eur Polym J,2002,38,2219.
    [63]Chiang CL, Ma CCM. J Polym Sci Part A:Polym Chem,2003,41,1371.
    [64]Chang RC, Chiang CL, Chiu YC, J Appl Polym Sci,2007,106,3290.
    [65]Chiu YC, Ma CCM, Liu FY, Chou IC,Chiang CL, Yang JC. J Appl Polym Sci, 2009,114,1435.
    [66]Chiang CL, Ma CCM. Polym Degrad Stab,2004,83,207.
    [67]Brinker CJ, Scherer GW. Sol-gel science, the physics and chemistry of sol-gel processing. San Diego:Academic Press,1990.
    [68]Joseph R, Zhang S, Ford W. Macromolecules,1996,29,1305.
    [69]Liu J, Gao Y, Wang FD, Wu M, J Appl Polym Sci,2000,75,384.
    [70]Chiang CL, Chiu SL, J Polym Res 2009,16,637.
    [71]Kuan CF, Yen WH, Chen CH, Yuen SM, Kuan HC. Chiang CL. Polym Degrad Stab,2008,93,1357.
    [72]Hribernik S, Smole MS, Kleinschek KS, Bele M, Jamnik J, Gaberscek M. Polym Degrad Stab,2007,92,1957.
    [73]Yaman N, Fibers and Polymers,2009,10,413.
    [74]Liu YL, Chang GP, Hsu KY, Chang FC. J Polym Sci Part A:Polym Chem,2006, 44,3825.
    [75]Wu Q, Zhang C, Liang R, Wang B. J Therm Anal Calorim,2010, DOI 10.1007/s10973-009-0474-9.
    [76]Wu K, Song L, Hu Y, Lu HD, Kandola BK. Kandare E. Prog Org Coat,2009,65, 490.
    [77]Bourbigot S, Turf T, Bellayer S, Duquesne S. Polym Degrad Stab,2009,94, 1230.
    [78]Okoshi M, Nishizawa H. Fire Mater,2004,28,423.
    [79]He QL, Song L, Hu Y, Zhou S, J Mater Sci,2009,44,1308.
    [80]Glodek TE, Boyd SE, McAninch IM, LaScala JJ. Compos Sci Technol,2008,68, 2994.
    [81]Dasari A, Yu ZZ, Mai YW, Cai GP, Song HH. Polymer,2009,50,1577.
    [82]Abe Y, Gunji T. Prog Polym Sci,29 2004,149.
    [83]Masson F, Decker C, Andre S, Andrieu X. Prog Org Coat,2004,49,1.
    [84]Zhou WX, Chan Park MB. Appl Surf Sci,2006,25,1921.
    [85]Kong J, Fan XD, Zhang GB, Xie X, Shi QF, Wang SJ. Polymer,2006,47,1519.
    [86]Liu HB, Chen MC, Huang ZT, Xu K, Zhang XJ. Eur Polym J,2004,40,609.
    [87]Apohan NK, Karatas S, Bilen B, Gungor A. J Sol-Gel Sci Technol 2008,46,87.
    [88]Chen XL, Hu Y, Jiao CM, Song L. Polym Degrad Stab,2007,92,1141.
    [89]Chen XL, Hu Y, Song L, Polym Eng Sci,2007,48,116.
    [1]Timothy E, Erwin S. WO 9502004.
    [2]Chen-Yang YW, Chuang JR, Yang YC, Li CY, Chiu YS. J Appl Polym Sci,1998, 69,115.
    [3]Ravey M, Pearce EM. J Appl Polym Sci,1997,63,47.
    [4]Cheng YY, He PS. J Compos Mater,2006,40,1215.
    [5]Weil E, Levchik S. J Fire Sci,2004,22,25.
    [6]Nikolaev PV, Nikolaeva EP. Russ J Appl Chem,2005,78,843.
    [7]Randoux TH, Vanovervelt JC1, Van den Bergen H, Camino G, Prog Org Coat, 2002,45,281.
    [8]Wang XD, Lin JJ. Colloid Polym Sci 2005,283,593.
    [9]Liu WC, Varley RJ, Simon GP. Polymer,2006,47,2091.
    [10]Haim D, Moshe G. Macromol Mater Eng,2006,291,913.
    [11]Sen AK, Mukheriee B, Bhattacharya AS, Sanghi LK, De PP, Bhowmick K. J Appl Polym Sci,43,1991,1674.
    [12]Chen-Yang YW, Lee HF, Yuan CY. J Polym Sci Part A:Polym Chem,2000,38, 972.
    [13]Liang HB, Shi WF. Polym Degrad Stab,2004,84,525.
    [14]Liang HB, Asif A, Shi WF. J Appl Polym Sci,2005,97,185.
    [15]Huang ZG, Shi WF. Eur Polym J,2006,42,1506.
    [16]Wang QF, Shi WF. Eur Polym J,2006,42,2261.
    [17]Chen XL, Hu Y, Jiao CM, Song L. Prog Org Coat,2007,59,318.
    [18]Chen XL, Hu Y, Song L, Xing WY. Polym Adv Technol,2008,19,393.
    [19]Chen XL, Hu Y, Song L, Xing WY. J Fire Sci,2008,26,93.
    [20]Huang ZG, Shi WF. Eur Polym J,2007,43,1302.
    [21]Huang ZG, Shi WF. Prog Org Coat,2007,59,312.
    [22]Wang HL, Xu SP, Shi WF. Prog Org Coat,2009,65,417.
    [23]Chen XL, Hu Y, Jiao CM, Song L. Polym Degrad Stab,2007,92,1141.
    [24]Kashiwagi T, Gilman JW. Fire Retardancy of Polymeric Materials Grand, Wilkie AF, Eds GA, Marcel Dekker:New York,2000.
    [25]Hsiue GH, Wei HF, Shiiao SJ, Kuo WJ, Sha YA. Polym Degrad Stab,2001,73, 309.
    [26]Hsiue GH, Wang WJ, Chang FC. J Appl Polym Sci,1999,73,1231.
    [27]Hsiue GH, Liu YL, Tsiao J. J Appl Polym Sci,2000,78,1.
    [28]Wang WJ, Perng LH, Hsiue GH, Chang FC. Polymer,2000,41,6113.
    [29]Abad MJ, Barral L, Fasce DP, Williams RJJ. Macromolecules,2003,36,3128.
    [30]Mercado LA, Reina JA, Galia M. J Polym Sci Part A:Polym Chem,2006,44, 5580.
    [31]Mercado LA, Galia M, Reina JA. Polym Degrad Stab,2006,91,2588.
    [32]Sponton M, Mercado LA, Ronda JC, Galia M, Cadiz V. Polym Degrad Stab, 2008,93,2025.
    [33]Masashi Kaji KNTE. J Appl Polym Sci,74,1999,690.
    [34]Davidson RS, Ellis R, Tudor S, Wilkinson SA. Polymer,1992,33,3031.
    [35]Batten RJ, Davidson RS, Ellis RJ, Wilkinson SA. Polymer,1992,33,3037.
    [36]Andrzejewska E, Andrzejewski M. J Polym Sci Part A:Polym Chem,1998,36, 665.
    [37]Xu G, Zhao YB, Shi WF. J Polym Sci Part B:Polym Phys,2005,43,3159.
    [1]Yan LK, Kou KC, Ji TZ, Liang GZ, Ha E. J Adhes Sci Technol,2007,21,1483.
    [2]Mazela W, Czub P, Pielichowski J. Polimery,2005,50,100.
    [3]Chae KH, Jang YM, Kim YH, Sohn OJ, Rhee JI. Sens Actuator B-Chem,2007, 124,153.
    [4]Czub P. Polimery,2008,53,182.
    [5]Malysheva GV, Polym Sci Ser C,2007,49, (2),209-212.
    [6]Tomalia DA, Frechet JMJ. J Polym Sci Part A:Polym Chem,2002,40,2719.
    [7]Xia XN, Lu YB, Zhou X, Xiong YQ, Zhang XH, Xu WJ. J Appl Polym Sci,2006, 102,3842.
    [8]Chen-Yang YW, Lee HF, Yuan CY. J Polym Sci Part A:Polym Chem,2000,38, 972.
    [9]Sen AK, Mukheriee B, Bhattacharya AS, Sanghi LK, De PP, Bhowmick K. J Appl Polym Sci,1991,43,1674.
    [10]Hsiue GH, Wang WJ, Chang FC. J Appl Polym Sci,1999,73,1231.
    [11]Hsiue GH, Liu YL, Tsiao J. J Appl Polym Sci,2000,78,1.
    [12]Wang WJ, Perng LH, Hsiue GH, Chang FC. Polymer,2000,41,6113.
    [13]Abad MJ, Barral L, Fasce DP, Williams RJJ. Macromolecules,2003,36,3128.
    [14]Mecado LA, Reina JA, Galia M. J Polym Sci Part A:Polym Chem,2006,44, 5580.
    [15]Mercado LA, Galia M, Reina JA. Polym Degrad Stab,2006,91,2588.
    [16]Sponton M, Mercado LA, Ronda JC, Galia M, Cadiz V. Polym Degrad Stab, 2008,93,2025.
    [17]Hsiue GH, Wei HF, Shiiao SJ, Kuo WJ, Sha YA. Polym Degrad Stab,2001,73, 309.
    [18]Garnett JL. Radiat Phys Chem,1995,46,925.
    [19]Decker C. Prog Poiym Sci,1996,21,593.
    [20]Fieberg A, Reis O. Prog Org Coat,2002,45,239.
    [21]Crivello JV, Lam JHW. J Polym Sci Polym Chem,1978,16,2441.
    [22]Wang YF, Wang RM, Guo ZC. Surf Eng,2009,25,36.
    [23]Garcia FG, Leyva ME, de Queiroz AAA, Higa OZ. J Appl Polym Sci,2009,112, 1215.
    [24]Jayakumari LS, Sampath PS, Sarojadevi M. J Appl Polym Sci,2009,112,2579.
    [25]Wu S, Sears MT, Soucek MD, Simonsick WJ. Polymer,1999,40,5675.
    [26]Decker C, Viet TNT, Decker D, Weber-Koehl E. Polymer,2001,42,5531.
    [27]Sangermano M, Malucelli G, Bongiovanni R, Priola A, Harden A. Polym Int, 2005,54,917.
    [28]Fernandez-Francos X, Salla JM, Cadenato A, Morancho JM, Mantecon A, Serra A, Ramis X. J Polym Sci Part A-Polym Chem,2007,45,5446.
    [29]Eggimann T, Ibrahim N, Shaw RA, Wieser H. Can J Chem Rev Can Chim,1993, 71,578.
    [30]Wang HL, Liu JH, Xu SP, Shi WF. Prog Org Coat,2009,65,263.
    [31]Sasaki H. Prog Org Coat,2007,58,227.
    [32]Decker C, Le Xuan H, Nguyen Thi Viet T. J Polym Sci Polym Chem,1996,34, 1771.
    [33]Crivello JV, Bulut U. J Polym Sci Part A-Polym Chem,2006,44,6750.
    [34]Decker C, Nguyen Thi Viet T, Le Xuan H. Eur Polym J,1996,32,1319.
    [35]Crivello JV, J Macromol Sci Part A-Pure Appl Chem,2008,45,591.
    [36]Kambour RP, Klopfer HJ, Smith SA. J Appl Polym Sci,1981,26,847.
    [37]Kambour RP, Ligon WV, Russell RR. J Polym Sci Polym Lett,1978,16,327.
    [38]Kanai H, Sullivan V, Auerback A. J Appl Polym Sci,1994,53,527.
    [39]Nielsen LE. J Macromol Sci-Rev Macromol Chem Part C,1969,3,69.
    [1]吴宗南,梁红波.广东化工,2009,36,52.
    [2]Malucelli G, Bongiovanni R, Sangermano M. Polymer,2007,48,7000.
    [3]Chen ZG, Webster DC. Polym Int,2007,56,754.
    [4]Cheng XE, Huang ZG, Liu JH, Shi WF. Prog Org Coat,2007,59,284.
    [5]Karatas S, Hosgor Z, Apohan NK, Gungor A. J Polym Res,2010,17,247.
    [6]Chou YC, Wang Y, Hsieh E. J Appl Polym Sci,2007,105,2073.
    [7]Dworak D, Soucek MD. Macromolecules,2006,207,1220.
    [8]Li G, Wang L, Ni H, Pittman CU. J Inorg Organomet Polym,2001,11,123.
    [9]Abe Y, Gunji T, Prog Polym Sci,2004,29,149.
    [10]Yen YC, Ye YS, Cheng CC, Lu CH, Tsai LD, Huang JM, Chang FC. Polymer, 2010,51,84.
    [11]Franchini E, Galy J, Gerard JF, Tabuani D, Medici A. Polym Degrad Stab,2009, 94,1278.
    [12]Yang BH, Xu HY, Yang ZZ, Liu XY. J Mater Chem,2009,19,9038.
    [13]Knight PT, Lee KM, Chung T, Mather PT. Macromolecules,2009,42,6596.
    [14]Haddad TS, Lichtenhan JD. Macromolecules,1996,29,7302.
    [15]Wahab MA, Mya KY, He CB. J Polym Sci Part A:Polym Chem,2008,46,5887.
    [16]Lichtenhan JD. Comments Inorg Chem,1995,17,115.
    [17]Unno M, Suto A, Takada K, Matsumoto H. Bull Chem Soc Jpn,2000,73,215.
    [18]Xie P, Zhang R. Polym Adv Technol,1997,8,649.
    [19]Xu H, Xie P, Zhang R. Eur Polym J,2001,37,2397.
    [20]Deng J, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR. J Am Chem Soc,2002,124,15194.
    [21]Pyun J, Matyjaszewski K, Wu J, Kim GM, Chun SB, Mather PT. Polymer,2003, 44,2739.
    [22]Xu HY, Kuo SW, Lee JY, Chang FC. Polymer,2002,43,5117.
    [23]Huang JC, He CB, Xiao Y, Mya KY, Dai J, Siow YP. Polymer,2003,44,4491.
    [24]Philips SH, Gonzalez RI, Chaffee KP, Haddad TS, Hoflund GB, Hsiao BS, Fu BX. SAMPE,2000,45,1921.
    [25]Fu BX, Namani M, Lee A. Polymer,2003,44,7739.
    [26]Pellice SA, Fasce DP, Williams RJJ. J Polym Sci Part B:Polym Phys,2003,41, 1451.
    [27]Lee A. Mater Res Soc Symp Proc,1999,576,343.
    [28]Phillips SH, Blanski RL, Svejda SA, Haddad TS, Lee A, Lichtenhan JD. Feher FJ, Mather PT, Hsiao BS. Mater Res Soc Symp Proc,2000,628, CC4.6.1.
    [29]Lee A, Lichtenhan JD. Macromolecules,1998,31,4970.
    [30]Zheng L, Hong S, Cardoen G, Burgaz E, Gido SP, Coughlin EB. Macromolecules,2004,37,8606.
    [31]Fasce DP, Williams RJJ, Mechin F, Pascault JP, Llauro MF, Petiaud R. Macromolecules,1999,32,4757.
    [32]Fasce DP, Williams RJJ, Erra-Balsells R, Ishikawa Y, Nonami H. Macromolecules,2001,34,3534.
    [33]dell'Erba IE, Fasce DP, Williams RJJ, Erra-Balsells R, Fukuyama Y, Nonami H. J Organomet Chem,2003,686,42.
    [34]dell'Erba IE, Williams RJJ. Eur Polym J,2007,43,2759.
    [35]dell'Erba IE, Fasce DP, Williams RJJ, Erra-Balsells R, Fukuyama Y, Nonami H. Macromol Mater Eng,2004,289,315.
    [36]Mori H, Lanzendorfer MG, Muller AHE. Macromolecules,2004,37,5228.
    [37]Mori H, Muller AHE, Klee JE. J Am Chem Soc,2003,125,3712.
    [38]Mori H, Miyamura Y, Endo T. Langmuir,2007,23,9014.
    [39]Xu JW, Pang WM, Shi WF. Thin Solid Films,2006,514,69.
    [40]Asif A, Huang CY, Shi WF. Colloid Polym Sci,2004,12,200.
    [41]Liang HB, Shi WF. Polym Degrad Stab,2004,84,525.
    [42]Asif A, Shi WF, Shen XF. Polymer,2005,46,11066.
    [43]Huang ZG, Shi WF. Eur Polym J,2006,42,1506.
    [44]Huang ZG, Shi WF. Polym Degrad Stab,2006,91,1674.
    [45]Huang ZG, Shi WF. Eur Polym J,2007,43,1302.
    [46]Hsiue GH, Liu YL, Liao HH. J Polym Sci Part A:Polym Chem,2001,39,986.
    [47]Hsiue GH, Liu YL, Tsaio J. J Appl Polym Sci,2000,78,1.
    [48]Wu CS, Liu YL, Chiu YS. Polymer,2002,43,4277.
    [49]Huang ZG, Shi WF. Polym Degrad Stab,2007,92,1193.
    [50]Bourbigot S, Le Bras M, Delobel R, Tremillon JM. J Chem Soc Faraday Trans, 1996,92,3435.
    [51]Bugajny M, Bourbigot S. Polym Int,1999,48,264.
    [52]Le Bras M, Bourigot S, Revel B. J Mater Sci,1999,34,5777.
    [53]Hsiue GH, Shiao SJ, Wei HF, Kou WJ, Sha YA. J Appl Polym Sci,2001,79, 342.
    [54]Liu WC, Varley RJ, Simon GP. Polymer,2006,47,2091.
    [1]Frecska T. J Rad Curing,1987,14,26.
    [2]Saskia UL, Nico WF. RadTech Europe'99 Conference Proceedings,1999,607.
    [3]Skinner D, RadTech Europe'99 Conference Proceedings,1999,599.
    [4]Wicks ZW, Jones FN, Pappas SP. Organic Coatings:Science and Technology, seconded, Wiley 1999.
    [5]Buysens K, Hammerton D. Conference Proceedings RadTech'04, North America 2004.
    [6]Johansson M, Falken H. J Coatings Tech,1998,70,57.
    [7]Jikei M, Kakimoto MA. Prog Polym Sci,2001,26,1233.
    [8]Tomalia DA, Frechet JMJ. J Polym Sci Part A:Polym Chem,2002,40,2719.
    [9]Sheiko SS, Moller M. Topics Curr Chem,2001,212,137.
    [10]Inoue K. Prog Polym Sci 2000,25,453.
    [11]Hult A, Johansson M, Malmstrom E. Adv Polym Sci 1999,143,1.
    [12]Kim YH, J Polym Sci Part A:Polym Chem,1998,6,1685.
    [13]Schenning APHJ, Elissen-Roman C, Weener JW, Baars MWPL, van der Gaast SJ, Meijer EW. J Am Chem Soc,1998,120,8199.
    [14]Malmstrom E, Jonasson M, Hult A. Macromol Chem Phys,1996,197,3199.
    [15]Sunder A, Bauer T, Mulhaupt R, Frey H. Macromolecules,2000,33,1331.
    [16]Wei HY, Liang HB, Zou JH, Shi WF. J Appl Polym Sci,2003,90,287.
    [17]Wei HY, Shi WF, Shen XF, Nie KM. Eur Polym J,2002,38,1899.
    [18]Wei HY, Shi WF. Polymer,2002,43,1969.
    [19]Johansson M, Glauser T, Rospo G, Hult A. J Appl Polym Sci,2000,75,612.
    [20]Li XR, Zhan J, Li YS. Macromolecules,2004,37,7584.
    [21]Fouassier JP, Rabek JF. Radiation Curing in Polymer Science and Technology, Elsevier:New York 1 (1993) 392.
    [22]Andrzejewska E, Andrzejewski M. J Polym Sci Part A:Polym Chem,1998,36, 665.
    [23]Mourey TH, Turner SR, Rubinstein M, Frechet JMJ, Hawker CJ, Wooley KL. Macromolecules,1992,25,2401.
    [24]Wooley KL, Hawker CJ, Pochan JM, Frechet JMJ, Macromolecules,1993,26, 1514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700