纳米氧化物及其复合材料的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氧化物及其复合材料在传统材料增强和功能化、药物缓释和靶向、分离和纯化、生物传感等领域有着重要的应用前景。纳米氧化物通过与其它功能材料的杂化或复合,既保持了原有材料的性能,又产生了新奇效应。许多材料的奇特性能,就是通过复合或杂化的方式而得到的。发展构建这些纳米结构单元材料的新方法;探究这些单元进行周期性有序组装以扩展尺度的原理,直至得到全新材料或器件;发展对于这些材料微相结构的控制手段,具有重要的理论价值和现实意义。
     在本论文工作中,我们对SiO2和ZnO及其复合材料的合成方法、介观结构、相应性质和传感应用进行了讨论。结合纳米材料的基本理论,以构效关系为主线,对于这些氧化物及其纳米复合物材料的结构和性能进行了研究。
     本论文研究工作主要包括以下几方面的内容:
     第二章,通过动态调节混合溶剂体系的组成,实现表面配体的交换和调制,以氧化硅水溶胶和聚二甲基硅氧烷(PDMS)在酸性条件下直接反应,形成杂化界面,制备了核壳结构的单分散氧化硅/PDMS纳米复合材料。对于其反应机理进行了讨论,开展了其作为增强材料在光固化涂层中的应用研究。结果表明,合成的单分散核壳材料易于分散于不同的有机体系,较小的添加量可以明显改善涂层的性能。
     第三章,在丙三醇体系,通过氢氧化钾和氯化锌反应,合成了两种花状氧化锌纳米晶。运用SEM、XRD、红外和紫外光谱等分析技术对其进行了表征。并对于其在电化学传感器中的应用进行了研究。结果表明,合成的氧化锌有较好的分散性,构建的电化学传感器对于过氧化氢有良好的响应。
     第四章,以单分散纳米氧化锌球为原料,运用原位模板,通过简单的超声辅助液相转化法选择性地合成了核壳结构ZnO球/CdS棒和ZnO球/CdS粒子的纳米复合材料。其形成机理与超声辐射密切相关。对合成的核壳结构纳米材料的光致发光和电致化学发光性质进行了研究。
     第五章,使用六次甲基四胺和柠檬酸三钠作为形貌控制剂,运用微波水热法,合成了有较好分散性的中空六角状圈形结构的Au/ZnO纳米复合物,该结构是由层状氧化锌和随机分散于表面的Au纳米粒子紧密组装而成的。通过XRD、SEM、TEM、紫外-可见、PL光谱等分析技术对该结构进行了表征,并对其光学性质进行了研究。
Nanooxides and their composites are important materials showing promising potentials in reinforcement and functionalization of classic materials, drug targeted delivery, separation, purification, biosensors and so on. Oxide nanocomposites possess not only the combination of the functions inherited from its contents but also novel properties resulting from the synergism among them. Developing new methods for synthesizing different nanoparticles, controlling the assembly process for periodical regular structure searching for novel functionality and even designating functional device, studying the factors affecting their mesostructure and the relationship between property and structure should be beneficial for theoretical investigation as well as the application of the oxide nanomaterials and their composites.
     Following the methodology above, this dissertation presents a systematic research on the relationship among the synthesis, structure, property and application for several oxide nanoparticles and their composites. The main results were summarized as follows:
     Chapter 2:A core-shell hybrid nonocomposite composed of silica and polydimethylsilane (PDMS) was successful synthesized by a novel solvent adjustment strategy through the direct reaction between silica nanoparticles and PDMS by using cheap commercial aqueous silica sol. The nonocomposite was characterized and a possible mechanism was discussed. A preliminary application for the nanocomposites in coating material was carried out which revealed obvious improvement in the property of the coating film.
     Chapter 3:Two kinds of flower-like zinc oxide nanocrystals were synthesized by mixing KOH and ZnCl2 in glycerol solution. The experimental parameters affecting the formation of the nanocrystals were optimized, and possible mechanism was discussed. The obtained products were characterized with XRD, SEM techniques and UV-Vis spectroscopy. The results indicated that the flower-like nanocrystals were hexagonal wurtzite structure. In addition, hemoglobin (Hb) was immobilized on the ZnO nanocrystals. It was found that the flower-like ZnO could enhance the direct electron transfer of Hb. The results showed that the as-fabricated biosensor had a good linear amperometric response to H2O2 in the concentration range from 1×10-6 to 1.2×10-4 mol L-1.
     Chapter 4:The core-shell type ZnO nanosphere/CdS nanorod and ZnO nanosphere/CdS nanoparticle composites have been selectively prepared through a simple ultrasound-assisted solution phase conversion process。using monodispersed ZnO nanospheres as a starting reactant and in situ template. The formation mechanism of the products is closely connected with the ultrasonic effect. The photoluminescence and electrogenerated chemiluminescence properties of the as-prepared core-shell structures were investigated.
     Chapter 5:By using hexamethylenetetramine and sodium citrate as the reaction, morphology and assembly control agents, a well dispersed hollow hexagonal ring-shaped structure of ZnO/Au nanocomposite was successfully fabricated through microwave assistant hydrothermal method. The composite is composed of layered ZnO and randomly scattered Au nanoparticles on the surface. The composite was characterized by XRD, SEM, TEM. Its optical properties were investigated according to UV and PL spectra and a possible mechanism of the formation for the as prepared composite was proposed.
引文
1. Antonitt M., Ozin G. A., Chem. Eur. J.,2004,10,28.
    2.冯翠菊,丁东, 现行物理知识,2010,22(5),29
    3. Fratzl P, Gupta HS, Paschalis EP, Roschger P, J Mater Chem,2004,14,2115
    4. Casavola M., Buonsanti R., Caputo G, Cozzoli P.D., Eur. J. Inorg. Chem.,2008,6,837.
    5. Buonsanti R., Casavola M., Caput G.o,. Cozzoli P.D, Nanotechnol.,2007,1,224
    6. Qi Limin, Coordination Chemistry Reviews,2010,254,1054
    7. Shi H., Wang X., Zhao N., Qi L., Ma J., J. Phys. Chem. B,2006,110,748
    8. Huang T.,Qi L.,Nanotechnology,2009,20,025606.
    9. Yang J., Qi L., Lu C., Ma J., Chen g H., Angew. Chem. Int. Ed.,2005,44,598.
    10. Stein A., Li F., Denny N.R., Chem. Mater.,2008,20,649
    11.Lu L., Eychmuller A., Acc. Chem. Res.,2008,4,1244.
    12. Li Y., Cai W., Duan G., Chem. Mater.,2008,20,615
    13.Li C.,Hong G.,Wang P.,Yu D.,QiL., Chem. Mater.,2009,21,,891
    14. Li C., Hong G., Qi L., Chem. Mater.,2010,22,476
    15.Tao A.R., Habas S., Yang P.,Small,2008,4,310
    16. Saunders A.E., Ghezelbash A., Smilgies D.M.,. Sigman M.B, Korgel B.A., Nano Lett., 2006,6,2959.
    17. Sun C. Q., Progress in Solid State Chemistry,2007,35,1
    18. Vaia Richard A., Wagner H. Daniel, Materialstoday,2004, November,32
    19. Santchez C., Soler-Illia G. J. De A. A., Ribot F. Lalot T., Mayer C. R., Cabuil V.,. Chem. Mater.,2001,13,3061
    20. Markus Niederberger,Nicola Pinna,Metal Oxide Nanoparticlesin Organic Solvents Synthesis, Formation, Assembly and Application, Springer-Verlag, London Limited, 2009
    21. Hezinger A.F.E., European Journal of Pharmaceutics and Biopharmaceutics,2008,68, 138
    22. Rao C.N.R., Kulkarni G.U., Thomas P.J., Nanocrystals:Synthesis,Properties and Applications,Springer-Verlag Berlin Heidelberg 2007
    23. Schartl W., Adv. Mater,2000,12,1899
    24. Thanh Nguyen T.K., Green Luke A.W., Nano Today,2010,5,213
    25. Atkins P.W.,Atkins Paula J. De, Physical Chemistry,8th ed., Oxford University Press, Oxford/New York,2006
    26. Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R., J. Chem. Soc., Chem. Commun.,1994,801
    27. Levy R., Than.h N.T.K, Doty R.C., Hussain I., Nichols R.J., Schiffrin D.J., et al., J. Am. Chem. Soc.,2004,126,10076
    28. Longmire M., Choyke P.L., Kobayashi H., Nanomedicine,2008,3,703
    29. Ulman A., Chem. Rev.,1996,96,1533
    30. Chan W.C.W., Nie S.M., Science,1998,281,2016
    31. Gittins D.I., Caruso F.,Angew. Chem. Int. Ed.,2001,40,3001
    32. Agasti S.S., You C.C., Arumugam P., Rotello V.M., J. Mater. Chem.,2008,18,70
    33. Tadmor R., Rosensweig R.E., Frey J., Klein J., Langmuir,2000,16,9117
    34. Porter M.D., Bright T.B.,. Allara D.L,. Chidsey C.E.D, J. Am. Chem. Soc.,1987,109, 3559.
    35. Parak W.J., Pellegrino T., Micheel C.M., Gerion D., Williams S.C., Alivisatos A.P., Nano Lett.,2003,3,33
    36. Stouwdam J.W., Shan J., Veggel F. van, Pattantyus Abraham A.G., Young J.F., Raudsepp M.,J.Phys.Chem.C,2007,111,1086
    37. Zolnik B.S., Gonzalez-Fernandez A., Sadrieh N., Dobrovolskaia M.A., Endocrinology, 2010,151,458
    38. Tanaka Y., Maenosono S., J. Magn. Magn. Mater.,2008,320, L121
    39. Guo L., Yang S.H., Yang C.L., Yu P., Wang J.N., Ge W.K., et al., Appl. Phys. Lett.2000, 76,2901
    40. Chang E., Miller J.S., Sun J.T., Yu W.W., Colvin V.L., Drezek R., et al., Biochem. Biophys. Res. Commun.,2005,334,1317
    41. Stellacci F., Bauer C.A., Meyer-Friedrichsen T., Wenseleers W., Marder S.R., Perry J.W., J. Am. Chem. Soc.,2003,125,328
    42. Feng K J, Yang Y H, Wang Z J, Jiang J H, Shen G L, Yu R Q. Talanta,2006,70(3),561
    43. LUO J. et al. Chinese Journal of Analytical Chemistry,2009,37(12),1847
    44. Ballauff M. Macromol Chem Phys 2003,204,220
    45. Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W., Colloid Polym Sci,2000, 278,972
    46. Nayak S, Gan D, Serpe MJ, Lyon LA., Small 2005,1,416
    47. Berndt I, Popescu C, Wortmann FJ, Richtering W. Angew Chem Int Ed,2006,45,1081
    48. Berndt I, Pedersen JS, Richtering W. Angew Chem Int Ed,2006,45,1737
    49. Zhou S, Chu B., JPhys Chem B,1998,102,1364
    50. Cui, T., Zhang, J., Wang, J., Cui, F., Chen, W., Xu, F., et al. () Advanced Functional Materials,2005,15,481
    51. Hoener C.F., Allan K.A., Bard A.J. et al., J. Phys. Chem.1992,96,3812
    52. Han M.Y., Huang W., Chew C.H. et al.,J. Phys. Chem.1998 B102,1884
    53. Tian Y., Newton T., Kotov N.A. et al., J. Phys. Chem.1996,100,8927
    54. Hao E., Sun H., Zhou Z. et al., Chem. Mater.1999,11,3096
    55. Casavola M., Buonsanti R., Caputo G., Cozzoli P.D., Eur. J. Inorg. Chem.,2008,6,837
    56. Casavola M., Buonsanti R., Caputo G., Cozzoli P.D., Eur. J. Inorg. Chem.2008,6,838
    57. Carbone Luigi, Cozzoli P. Davide, Nano Today,2010,5,449
    58. Pastoriza-Santos I., Koktysh D.S., Mamedov A.A., Giersig M., Kotov N.A., Liz-Marzan L.M., Langmuir,2000,16,2731
    59. Tom R.T., Nair A.S., Singh N., Aslam M., Nagendra C.L., Philip R. et al., Langmuir, 2003,19,3439
    60. Hirakawa T., Kamat P.V., Langmuir,2004,20,5645
    61. Hirakawa T., Kamat P.V., J. Am. Chem. Soc.,2005,127,3928
    62. D. Wang, Y. Li,J. Am. Chem. Soc.,2010,132,6280
    63. Sobal N.S., Hilgendorff M., Mohwald H., Giersig M., Spasova M., Radetic T. et al., Nano Lett.,2002,2,621.
    64. Lu W., Wang B., Zeng J., Wang X.P., Zhang S.Y., Hou J.G, Langmuir,2005,21,3684
    65. Mokari T., Aharoni A., Popov I., Banin U., Angew. Chem. Int. Ed.,2006,45,8001
    66. Xu J., Lee C.S., Tang Y.B., Chen X., Chen Z.H., Zhang W.-J. et al., ACS Nano,2010,4, 1845
    67. Sobal N.S., Hilgendorff M., Mohwald H., Giersig M., Spasova M., Radetic T. et al., Nano Lett.,2002,26,21
    68. Lu W., Wang B., Zeng J., Wang X.P., Zhang S.Y., Hou J.G., Langmuir,2005,21,3684
    69. Mokari T., Aharoni A., Popov I., Banin U., Angew. Chem. Int. Ed.,2006,45,8001
    70. Wen, J.Y.& Wilkes, G.L., Chem. Mater.,1996,8,1667
    71. Hench, L.L.& West, J.K., Chem.Rev.,1990,90,33
    72. Orgaz, F Rawson H., J Non-Cry st. Solids.,1986,82,57
    73. Mackenzie, J.D., J Non-Cry st Solids,1982,48,1
    74. Sun, C.C.& Mark, J.E. Polymer,1989,30,104
    75. Coltrain, B.K., Ferrar, W.T.& Landry, C.J.T. et al. Chem. Mater.,1992,4,358
    76. Biteau, J., Chaput, F.& Lahlil, K et al,Chem Mater,1998,10,1945
    77. Smaihi, M., Jermoumi, T & Marignan J., et al., J Membr. Sci.,1996,116,211
    78. Joly, C., Goizet, S.& Schrotter, J.C., et al., J Membr. Sci.,1997,130,63
    79. Schrotter, J.C., Smaihi, M.& Guizard, C., J. Appl. Polym. Sci.,1996,61,2137
    80. Loy, D.A.& Shea, K.J., Chem. Rev.,1995,95,1431
    81. Santchez C., De A. A. Soler-Illia G J.,. lalot F.Ribot T., Mayer C. R., Cabuil V.,. Chem. Mater.,2001,13,3061
    82. Pena-alonso R., Rubio J., Rubio F., Oteo J. L., journal of materials science,2003,25,255
    83. Oh E.O., Gupta R.K., Whang C.M., Journal of Sol-Gel Science and Technology,2003,28, 279
    84. Kim S. M., Chakrabarti K., Oh E.O., Whang C.M., Journal of Sol-Gel Science and Technology,2003,27,149
    85. Tellez L., Rubio J., Rubio F., Morales E., Oteo J. L., J Mater Sci.,2003,38,1773
    86. Briggs D, Brewis DM, Konieczko MB., J Mater Sci.,1979;14,1344
    87. Garbassi F, Occhiello F, Polato E, Brown A., J Mater Sci.,1987,22,207
    88. Gossu G, Ingo GM, Mattogno G, Padelleti G, Proietti G.M., Appl Surf Sci.,1992,56,81
    89. Wells RK, Badyal JPS, Drummond IW, Robinson KS, Street F., J. Polymer,1993,34, 3611
    90. Momose Y, Ikawa K, Sato T, Okazaki S., J Appl Polym Sci,1987,33,2715
    91. Rye RR. J Polym Sci, Polym Phys Ed,1988,26,2133
    92. Kita H, Muraoka M, Tanaka K, Okamoto K., Polym J,1988,2,485
    93. Blais P, Carlsso DJ, Csullog GW, Wiles DM., J Colloid Interface Sci,1974,47,636
    94. Rye RR, Martinetz RJ., J Appl Polym Sci,1989,37,2529
    95. Zeronia SH, Wang HZ, Alger WK., J Appl Polym Sci,1990,41,527
    96. Ito Y, Sisido M, Imanishi Y. J Biomed Mater Res,1986; 20,1157
    97. PuKαnszky B., European Polymer Journal,2005,41,645
    98. Wang Z.L., Mater. Sci. Eng. R.,2009,64,33
    99. Tam K.H., Djurisic A.B., Chan C.M.N., Xi Y.Y., Tse C.W., Leung Y.H., Chan W.K., Leung F.C.C., Au D.W.T., Thin Solid Films,2008,516,6167
    100. Zhang L., Ding Y, Povey M., York D., Prog. Nat. Sci.,2008,18,939
    101. Das J., Khushalani D., J. Phys. Chem. C.,2010,114,2544
    102. Georgekutty R., Seery M.K., Pillai S.C., J.Phys.Chem. C.,2008,112,13563
    103. Zheng Y., Chen C., Zhan Y., Lin X., Zheng Q., Wei K., Zhu J., J. Phys. Chem. C.,2008, 112,10773
    1.Sanchez C., Rozes L., Ribot F., Laberty-Robert C., Grosso D., Sassoye C., Boissiere C., Nicole L., C. R. Chimie,2010,1,33
    2.Santchez C., Soler-Illia G. J. De A. A., lalot F. Ribot. T., Mayer C. R., Cabuil V., Chem. Mater,2001,13,3061
    3 Camenzind A., Schweizer T., Sztucki M., Pratsinis S.E., Polymer,2010,51,1796
    4. Pena-alonso R., Rubio J., Rubi o F., Oteo J. L., J Mater Sci.,2003,25,255
    5. Kim S. M., Chakrabarti K., Oh E.O., Whang C.M., Journal of Sol-Gel Science and Technology,2003,27,149
    6. Oh E.O., Gupta R.K., Whang C.M., Journal of Sol-Gel Science and Technology,2003,28, 279
    7. Liu Y., Li S., Macroml. Rapid Commun. Phys.,2004,25,1392
    8. Liu X., Ma Z., Xing J., Liu H., Joural of Magnetismand magneticMaterials,2004,270,1
    9. Rao A. V., Kulkarn M. M., Materials Chemistry and Physics,2002,77,819
    10. Amiri A.,Φye G., Sjoblom J., Colloids and Surfaces A:Physicochem. Eng. Aspects 2011, 378,14
    11. Yu H., Yuan Q., Wang D., Zhao Y., Journal of applied Polymer Science,2004,94,1347
    12. Dong H., Lee M., Thomas R. D., Zhang Z., Reidy R.F., Mueller D.W., Journal of Sol-Gel Science and Technology 2003,28,5
    13. Coradin T., Lopez P., ChemBioChem,2003,4,251
    14. Kim S. M., Chakrabarti K., Oh E.O., Whang C.M., Journal of Sol-Gel Science and Technology,2003,27,149
    15. Song K., Park J., Kang H., Kim S., Journal of Sol-Gel Science and Technology 2003,27, 53
    1. Przybyszewska, M; Zaborski, M, Przemysl Chemiczny,2009,88,154
    2. Fu Y S, Du X W, Sun J, et al., Journal of Alloys and Compounds,2008,461,527
    3. Li M G, Bala H, Lv X T, et al., Materials Letters,2007,61,690
    4.Akhtar M. S, Khan M. A, Jeon M S, et al., Electrochimica Acta,2008,53,7869
    5.Wu C L, Qiao X L, Chen J G, et al., Materials Chemistry and Physics,2007,102,7
    6. Xie J, Li P, Li Y T, et al., Materials Chemistry and Physics,2009,114,943
    7. Singla M L, Shafeeq M M, Kumar M, Journal of Luminescence,2009,129,434
    8.Krishnan B, Irimpan L, Nampoor V P N, et al., Physica E,2008,40,2787
    9. Rani S, Suri P, Shishodia P K, et al., Solar Energy Materials & Solar Cells,2008,92,1639
    10.He S, Maeda H, Uehara M, et al., Materials Letters,2007,61,626
    11.Uekawa N, Iahii S, Kojima T, et al., Materials Letters,2007,61,1729
    12.Zhang H X, Feng J, Wang J, et al., Materials Letters,2007,61,5202
    13.Bitenc M, Orel Z C, Materials Research Bulletin,2009,44,381
    14.Lee S, Jeong S, Kim D, et al., Superlattices and Microstructures,2008,43,330
    15.Gorton, L., Lindgren, A., Larsson, T., Munteanu, F. D., Ruzgas, T., Gazaryan, I. Anal. Chim.Acta,1999,400,91
    16.Ghindilis, A. L., Atanasov, P., Wilkins, E. Electroanalysis 1997,9,661
    17.Heller, A. Acc. Chem. Res.,1990,23,128
    18.Armstrong, F. A., Hill, H. A. O., Walton, N. J. Acc. Chem. Res.,1988,21,407
    19.Willner, I., Katz, E. Angew. Chem. Int. Ed.2000,39,1180
    20.Xiao, Y, Patolsky, F., Katz, E., Hainfeld, J. F., Willner, I. Science,2003,299,1877
    21.Han, X., Huang, W., Jia, J., Dong, S., Wang, E. Biosens. Bioelectron.,2002,17,741
    22.Lu, Q., Zhou, T., Hu, S., Biosens. Bioelectron.,2007,22,899
    23.Dai, Z.; Liu, S.; Ju, H.; Chen, H.,Biosens. Bioelectron.,2004,19,861
    24.Feng, J.-J.; Xu, J.-J.; Chen, H.-Y. Electrochem. Commun.2006,8,77
    25.Mousty, C. Applied Clay Science 2004,27,159
    26.Chen Q H, Zhang WG, Journal of Non-Crystalline Solids,2007,353,374
    27.R. Kubo, Phys. Soc. Jpn.1962,17,975
    28.Jitianu M, Goia D V, Materials Chemistry and Physics,2008,112,393
    29.Wahab R, Ansari S G, Seo H, et al., Solid State Sciences,2009,11,439
    1.(a) Alivisatos A. P., Science,1996,271,933. (b) Caruso F.,Adv. Mater.,2001,13,11.
    2. Caruso R. A., Antonietti M., Chem. Mater.,2001,13,3272
    3. Singh S., Bozhilov K., Mulchandani A., Chem Commun.,2010,46,1473.
    4. Zhou T. J., Lu M. H., Zhang Z. H., Adv. Mater.,2010,22,403.
    5. Liu S. Q., Li Y. X., Xie M. J., Guo X. F., Ji W. J., Ding W. P., Mater. Lett.,2010,64,402.
    6. Cargnello M., Wieder N. L., Montini T., J. Am. Chem. Soc.,2010,132,1402.
    7. MishraR., Yadav R. S., Pandey A. C., Sanjay S. S., Dar C., J. Lumin.,2010,130,365.
    8. JingL. H., Yang C. H., Qiao R. R., Niu M., Du M. H., Wang D. Y, Gao M. Y, Chem. Mater., 2010,22,420.
    9. HeY, Lu H. T., Sai L. M., Su Y. Y., Hu M., Fan C. H., Huang W., Wang L. H., Adv. Mater.,2008,20,3416.
    10. Purkayastha A., Yan Q. Y., Raghuveer M. S., Adv. Mater.,2008,20,2679.
    11. Pan Z. W., Dai Z. R., Wang Z. L., Science,2001,291,1947.
    12. Johnson J. C., Yan H. Q., Schaller R. D., Haber L. H., Saykally R. J., Yang P. D., J. Phys. Chem.B,2001,105,11387.
    13. Service R. F., Science,1997,276,895.
    14. Wang W. L., Mater. Today,2004,7,26.
    15. Brus L. E., J. Chem. Phys.,1983,79,5566.
    16. Tak Y., Hong S. J., Lee J. S., Yong K., Cryst. Growth Des.,2009,9,2627.
    17. Gao T., Li Q. H., Wang T. H., Chem. Mater.,2005,17,887.
    18. Zhang Y, Xie T. F, Jiang T. F, Wei X., Pang S., Wang X., Wang D. J., Nanotechnology, 2009,20,155707.
    19. Lee W., Min S. K., Dhas V., Ogale S. B., Han S. H., Electrochem. Comm.,2009,11,103.
    20. Fang F., Zhao D. X., Li B. H., Zhang Z. Z., Zhang J. Y., Shen D. Z., Appl. Phys. Lett., 2008,93,233115.
    21. Irimpan L., Nampoori V. P. N., Radhakrishnan P., J. Appl. Phys.,2008,103,094914.
    22. Geng J., Liu B., Xu L., Hu F. N., Zhu J. J., Langmuir,2007,23,10286.
    23. Ren T., Xu J., Tu Y., Xu S., Zhu J. J., J. Electrochem. Comm.,2005,7,5.
    24.(a) Mdleleni M. M., Hyeon T., Suslick K. S., J. Am. Chem. Soc.,1998,120,6189. (b) Gedanken A., Ultrason. Sonochem.,2004,11,47.
    25. Suslick K. S., Choe S. B., Cichowlas A. A., Grinstaff M. W., Nature,1991,353,414.
    26. Gedanken A., Ultrason. Sonochem.,2004,11,47.
    27Geng.J., Hou W. H., Lv Y. N., Zhu J. J., Chen H. Y, Inorg. Chem.,2005,44,8503.
    28. Rana R. K., Mastai Y Gedanken A., Adv. Mater.,2002,14,1414.
    29. Geng J., Zhu J. J., Lu D. J., Chen H. Y, Inorg. Chem.,2006,45,8403.
    30. Suslick K. S., Ultrasound:Its Chemical, Physical and Biological Effects; VCH:Weinhein, Germany,1988.
    31. Kumar R. V., Diamant Y., Gedanken A., Chem. Mater.,2000,12,2301.
    32.(a) Xiao Z. L., Han C. Y., Kwok W. K., Wang H. H., Welp U., Wang J., Crabtree G. W., J. Am. Chem. Soc.,2004,126,2316. (b) Zhang X. J., Zhao Q. R., Tian Y P., Xie Y., Cryst. Growth Des.,2004,4,355.
    33. Liao X. H., Wang H., Zhu J. J., Chen H. Y., Mater. Res. Bull.,2001,36,2339.
    34.(a) Gao T., Wang T. H., Chem. Commun.,2004,2558. (b) Dhas N. A., Gedanken A., Appl. Phys.Lett.,1998,72,2514.
    35.(a) Peng X. G., Adv Mater.,2003,15,459. (b) Geng J., Zhu J. J., Chen H. Y. Cryst. Growth Des.,2006,6,321.
    36.(a) Yang P., Yan H., Mao S., Russo R., Johnson J., Saykally R., Morris N., Pham J., He R., Choi H. J., Adv. Funct. Mater.,2002,12,319. (b) Wu J. J., Liu S. C., Adv. Mater.,2002,14, 215. (c) Li Y. B., Bando Y., Golberg D., Appl. Phys. Lett.,2004,84,3603.
    37. Agata M., Kurase H., Hayashi S., Solid State Commun.,1990,76,1061.
    38. Dhas N. A., Gedanken A., Appl. Phys. Lett.,1998,72,2514.
    39Ding.Z., Quinn B. M., Haram S. K., Pell L. E., Korgel B. A., Bard A. J., Science,2002,296, 1293.
    40.(a) Myung N., Ding Z., Bard A. J., Nano Lett.,2002,2,1315. (b) Myung N., Bae Y., Bard A. J., Nano Lett.,2003,3,1053.
    1. Kim H., Achermann M., Balet L.P., Hollingsworth J.A., Klimov V.I., J. Am. Chem. Soc., 2005,127,544
    2. Lee J., Govorov A.O., Dulka J., Kotov N.A., Nano Lett.2004,4,2323
    3. Jian D.L., Gao Q.M., Chem. Eng. J.,2006,121,9
    4. Zhang W., Govorov A.O., Bryant G.W., Phys. Rev. Lett.,2006,97,1468
    5. Lee J., Kotov N.A., Slocik J.M., Naik R.R., Nano Lett.,2006,6,984
    6. Daniel M.C., Astruc D., Chem. Rev.,2004,104,293
    7. Cao Y.W., Jin R.C., Mirkin C.A., J. Am. Chem. Soc.,2001,123,7961
    8. Gill R., Polsky R., Willner I., Small,2006,2,1037
    9. Chan S.C., Barteau M.A., Langmuir,2005,21,5588
    10. Lin H.Y., Chen Y.F., Wu J.G., Wang D.I., Chen C.C., Appl. Phys. Lett.,2006,88,1619
    11. Wang X., Kong X., Yu Y., Zhang H., J. Phys. Chem. C,2007,111,3836.
    12. Ma G.H., He J., Rajiv K., Tang S.H., Yang Y., Nogami M., Appl. Phys. Lett.,2004,84, 4684.
    13. Snitka V., Jankauskas V.,. Zunda A, Mizariene V., Seniunas G., Phys. Stat. Sol.(b),2007, 2441504
    14 Goldberger J., Sirbuly D.J., Law M., Yang P.D., J. Phys. Chem. B,2005,109,9
    15. Ingrosso C., Petrella A., Curri M.L.,. Striccoli M, Cosma P., Cozzoli P.D., Agostiano A., Appl. Surf. Sci.,2005,246,367
    16. Wang X., Kong X.G., Yu Y., Zhang H., J. Phys. Chem. C,2007,111,3836
    17. Liu Y., Zhong M., Shan G., Li Y., Huang B., Yang G., J. Phys. Chem. B,2008,112,6484
    18. Shan G., Wang S., Fei X., Liu Y., Yang G., J. Phys. Chem. B,2009,113,1468
    19. Wang X., Kong X., Yu Y., Zhang H., J. Phys. Chem. C,2007,111,3836
    20.. Chen P., Gu L., Xue X., Song Y., Zhu L., Cao X., Materials Chemistry and Physics,2010, 122,41
    21. Liu Y., Zhong M., Shan G., Li Y., Huang B., Yang G., J. Phys. Chem. B,2008,112,6484
    22. Shan G., Wang S., Fei X., Liu Y., Yang G., J. Phys. Chem. B,2009,113,1468
    23. Patole S., Islam M., Aiyer R.C., Mahamuni S., J. Mater. Sci.,2006,41,5602
    24. Wu J J., Tseng C.H., Appl. Catal. B,2006,66,51
    25. Lin J.M., Lin H.Y., Cheng C.L., Chen Y.F., Nanotechnology,2006,17,4391
    26. Zhang W.Q., Lu Y., Zhang T.K., Xu W., Zhang M., Yu S.H., J. Phys. Chem. C,2008,112, 19872
    27. Wang X., Kong X.G., Yu Y., Zhang H., J. Phys. Chem. C,2007,111 3836
    28. Sabramanian V., Wolf E.E., Kamat P.V., J. Phys. Chem. B,2003,107 7479
    29. Wood A., Giersig M., Mulvaney P., J. Phys. Chem. B,2001,105 8810
    30. Pawinrat P., Mekasuwandumrong O., Panpranot J., Catalysis Communications,2009,10 1380
    31. Ngo Y. H., Li D., Simon G. P., Gamier G. Advances in Colloid and Interface Science, 2011,163 23
    32. Vayssieres L., Keis K., Hagfeldt A., Lindquist S.E., Chem. Mater.,2001,134395.
    33. Yin S., Sato T., J. Mater. Chem.,2005,15,4584.
    34. Ahuja C., Yadava L., Singh R., J. Mol. Struct.,1982,81,229.
    35. Chang Y., Chen L.J., J. Phys. Chem. C,2007,111,1268
    36. Liu B., Zeng H.C., J. Am. Chem. Soc.,2003,125,4430
    37. Wang Z., Qian X.F., Yin J., Zhu Z.K., Langmuir,2004,20,3441
    38. Ohkubo Y., Shibata M., Kageyama S., Seino S., Nakagawa T., Kugai J., Yamamoto T. A., Materials Letters,2011, in press

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700