碳纳米管的高分子修饰及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)自问世以来,以其独特的物理结构,优异的机械力学性能和广阔的应用前景受到人们的广泛关注,但因为它不溶解不熔融而不易加工,同时作为一种纳米材料极易发生团聚,使其进一步开发与应用受到很大的限制。从结构上来看,由sp~2碳原子组成的CNTs 可以被视为线性富勒烯分子,每个碳原子的一个垂直于骨架平面的p 轨道形成高度离域化的大π键,能与含有π电子的化合物通过π-π非共价键作用相结合,得到化学修饰的CNTs。
    本文采用分子设计的方法,利用大分子的官能团反应制备聚乙二醇/碳纳米管(PEG/CNTs)和光敏性环氧丙烯酸酯/碳纳米管(EA/CNTs);通过紫外光和热引发自由基聚合制备聚丙烯酰胺/碳纳米管(PAM/CNTs),聚乙烯醇/碳纳米管(PVA/CNTs),聚苯乙烯/碳纳米管(PSt/CNTs),反式聚异戊二烯/碳纳米管(TPI/CNTs)和丙烯腈-丁二烯-苯乙烯/碳纳米管(ABS/CNTs),七种CNTs 高分子衍生物。
    采用红外光谱(FTIR)、紫外-可见光光谱(UV-vis)和荧光发射光谱(Fluorescence)等对CNTs 高分子衍生物进行了结构表征,证明利用高分子反应方法可以实现对CNTs 的高分子修饰;透射电子显微镜(TEM)分析了CNTs 高分子衍生物在溶液中的形貌,除乳液聚合制备的PSt/CNTs 的微观形貌为小于100nm 的微球连接数百纳米长的微管,其它CNTs 高分子衍生物均为聚合物包裹在CNTs 外部,在管端头有较多聚合物聚集。PEG/CNTs、PAM/CNTs、PVA/CNTs 及PSt/CNTs 四种CNTs 高分子衍生物可方便的分散于水中,这一方面得到了可溶性CNTs,为化学工作者进一步深入研究CNTs 打开方便之门,另一方面可得到具有特定功能的CNTs 高分子衍生物,使其成为名副其实的最有前途的材料。
    采用四球摩擦试验机分别对PEG/CNTs、PAM/CNTs、PVA/CNTs 水溶液和PSt/CNTs 乳液及水溶性减磨剂壬基酚聚氧乙烯醚磷酸锌(OPZ)与CNTs 高分子衍生物的复合液,用作水基润滑液的摩擦学行为进行了研究。
    PEG/CNTs 和PAM/CNTs 的添加量分别在0.5%和0.3%时,对应最小磨斑直径D_(30)~(200)为0.68mm 和0.62mm;PVA/CNTs 水溶液和PSt/CNTs 乳液与OPZ 润滑添加剂复配后,两种添加剂的添加量分别在0.25%和1.0%时,对应最小磨斑直径D_(30)~(400)为0.38mm 和0.36mm,最大极压值分别为610N 和680N,显示了较好的减磨效果和润滑性能;润滑液的极压性能与CNTs 高分子衍生物的添加量有直接关系,浓度过大时,
Carbon nanotubes (CNTs) have been one of the hottest research topics since the discovery because of their unique architecture, mechanical properties and wide potential applications. However, the CNTs have very high thermo stability and until now it cannot dissolve in any solvent, which limits the further development and application of CNTs remarkably. The CNTs is made of sp~2 carbon atoms, each of them contributes a p-electron to construct a highly delocalized πelectron cloud along the wall, which can combine with other molecules containing πelectrons through π-πinteraction, and get chemically modified CNTs.
    In this paper, seven CNTs derivatives were prepared including poly(ethylene glycol)/carbon nanotubes (PEG/CNTs) and epoxy acrylate/carbon nanotubes (EA/CNTs) by means of polymer groups reaction, polyacrylamide/carbon nanotubes (PAM/CNTs) derivative by an in-situ ultraviolet (UV) radiation initiated polymerization, acrylonitrile–butadiene–styrene/carbon nanotubes (ABS/CNTs) and trans-polyisoprene/carbon nanotubes (TPI/CNTs) by an UV radiation grafted reaction, poly(vinyl alcohol)/carbon nanotubes (PVA/CNTs) and polystyrene/carbon nanotubes (PSt/CNTs) by in-situ free radical polymerization.
    The microcosmic structures and morphology of the derivatives were characterized by the instruments of Fourier transform infrared spectroscopy (FTIR), UV-visible absorbance spectra (UV-vis), Fluorescence spectra (FS) and Transmission electron microscope (TEM). The results show that CNTs can be modified by polymer in-situ polymerization. And TEM shows that the PSt/CNTs colloid is tubes with tiny balls in nanometer scale, but in the images of other derivatives of CNTs, polymer is coated on the surface of CNTs and much more chains are assembled at the ends of CNTs. PEG/CNTs, PAM/CNTs, PVA/CNTs and colloidal PSt/CNTs that were synthesized can be resolved in water, which can open a convenient door for other chemists in further research. At same time special functional materials with CNTs can be made by this way, which makes CNTs becoming the most promising materials be worthy of the name.
    The tribology of behavior of CNTs derivatives and their complexes with OPZ (a type of water-soluble zinc alkoxyphosphate) as lubricant additives of water base stock was
    studied by four-ball tribotester. When the PEG/CNTs and PAM/CNTs content reach 0.5 wt.% and 0.3 wt.% respectively, the wear scar diameter (WSD) is minimum to 0.68 mm and 0.62 mm. When the PVA/CNTs and colloidal PSt/CNTs content reach 0.25 wt.% and 1.0 wt.% complexes with OPZ respectively, the WSD are minimum to 0.38 mm and 0.36 mm, and the maximum non-seized load (PB) are maximum to 610 N and 680 N. This infers that derivatives of CNTs have pretty good load carrying and anti-wear performance in water fluid. Their properties of lubrication are not proportional to its content, and excessive adding may lead descending of the lubrication properties. The worn surface in four-ball machine testing was observed by scanning electron microscope (SEM). The images demonstrated that the wear scar obviously became smaller and relatively smoother when adding the derivatives of CNTs as additive, which intuitionistically showed us their good lubrication properties. The friction signals of PEG/CNTs, PAM/CNTs and PVA/CNTs spin casting thin films could be measured at different applied loads for the same area in the friction force microcopy (FFM) map. Three derivatives have same characterization: derivative and homopolymer films exhibit stable and lower friction signals below the 100 nN load due to polymer soft chains and flat surface. However, after load of 100~140 nN, the difference in friction signals between the two films is larger. The friction coefficient decreased significantly as the CNTs addition. The results can be attributed to the additional load-bearing ability afforded by CNTs chemically bonded on the derivative chains which molecules are reasonable to consider anti-wear for its flexibilities. Based on the experimental study on water-soluble core-and-shell derivatives including CNTs additives made by our group, its lubrication mechanism was speculated preliminarily. It is supposed that derivative can penetrate into the interface and deposit there to support and isolate two relative motion surfaces during friction process, and has the possibility to cause microcosmic rolling effect between two rubbing surface. And therefore, the anti-wear performance of the base stock was improved. Further more, there are rolling effect with boundary lubrication in the complexes with the OPZ solution. UV curing coating of EA/CNTs was prepared by the molecule group reaction of CNTs with EA. The anti-infrared/ultraviolet property was characterized by UV-vis and FTIR preliminarily. The results demonstrated that, its transmittance was greater than 85%
    in visible spectrum, the transmittance was 42.3% in near infrared wave range (4000cm-1~14000 cm-1) and it shielded most of wave in ultraviolet region (< 300 nm). At same time the mechanical property of composite coating was improved. So this new nano-composite materials would be expected to be an anti-infrared/ultraviolet thin coating in functional applications. TPI/CNTs and ABS/CNTs composites were prepared by UV irradiated at room temperature. The resistivity of composites decreases 107 times with adding 5 wt.% CNTs. In the 20~100℃temperature range, the resistivity of UV irradiated composites almost keeps stability. In the 2~10GHz microwave range, the ε′′of composites are from 21 to 50. So the new composites would be potential electromagnetic shielding materials. In conclusion, the study on CNTs as functional materials is in the ascendant. Our works are based on the polymer chemically-modified CNTs, and to evaluate the tribology, optical, electrical and magnetism properties of polymer/CNTs, which will provide new ideologies and methods for tribology of CNTs.
引文
[1] Kroto H W,Heath J R,O’Brien S C,et al. C60: Buckminsterfullerene. Nature, 1985,318:162~163
    [2] Iijima S. Helical microtubes of graphite carbon. Nature,1991,354:56~58
    [3] 曹肇基,解思深. 碳纳米管研究的最新进展. 物理,1998,27(12):707~709
    [4] 王文英. 碳纳米管的制造技术及最新研究动态. 化工新型材料,2000,1:12~16
    [5] 温诗铸,李纳. 纳米摩擦学基础研究进展. 材料研究学报,1997,11(11):1~7
    [6] 温诗铸. 世纪回顾与展望——摩擦学研究的发展趋势. 机械工程学报,2000,6(6):1~6
    [7] 薛群基,张军. 微观摩擦学研究进展.摩擦学学报,1994,14(4):359~369
    [8] 薛群基,刘维民. 摩擦化学的主要研究领域及发展趋势. 化学进展,1997,9(3):311~318
    [9] 徐康,薛群基. 纳米化学. 化学进展,2000,12(4):431~444
    [10] Thomas W Ebbesen. Self-preservation of rough-wall turbulent boundary layers. Phys Today,1996,49(6):26~31
    [11] 胡文平,刘云圻,曾鹏举. 纳米碳管. 化学通报,2000,(2):7~11
    [12] 陈卫祥,陈文录,徐铸德等. 碳纳米管的特性及其高性能的复合材料. 复合材料学报,2001,18(4):1~3
    [13] 孙晓刚. 碳纳米管的特性及应用. 中国粉体技术,2001,7:29~33
    [14] 董树荣,张孝彬,涂江平等. 新型纳米材料——纳米碳管. 材料科学与工程,1998,16(2):19~22
    [15] 胡文平,刘云圻,曾鹏举等. 纳米碳管. 化学通报,2000,2:2~6
    [16] 朱绍文,贾志杰,李钟泽. 碳纳米管及其应用前景. 科技导报,1999,12:7~9
    [17] Berber S,Kyum K,Tomanek D. Unusually high thermal conductivity of carbonnanotubes. Phys Rev Lett,2000,84:4613~4619
    [18] 沈曾民. 新型碳材料. 第一版. 北京:化学工业出版社,2003. 200~201
    [19] Zhang X F,Zhang X B,Tendeloo V J,et al. Carbon nano-tubes: their formation process and observation by electron microscopy. Cryst Growth,1993,130:368~382
    [20] Colbert P T,Zhang J,Mcclure S M,et al. Growth and sintering of fullerence nanotubes. Science,1994,266:1218~1233
    [21] 陈晓红. 热解法制备气相生长碳纤维和纳米碳管的研究. [博士学位论文],北京化工大学,1998
    [22] Endo M,Takeuchi K,Kobori K,et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon,1995,33(7):873~880
    [23] Guo T,Nikolaev P,Thess A,et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical physics letters,1995,243: 49~54
    [24] Zhang Haiyan,Ding Yu,Wu Chunyan,et al. The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature. Physics B,2003,325:224~229
    [25] Ren Z F,Huang Z P,Wu J W,et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science,1998,282:1105~1107
    [26] Biro L P,Mark G I,Gyulai J,et al. AFM and STM investigation of carbon nanotubes produced by high energy ion irradiation of graphite. Nuclear instruments and methods in physics research B,1999,147:142~147
    [27] Chernozatonskii L A,Kosakovskaja I J,Fedorov E A,et al. New carbon tubelite-orderd film structure of multi-layer nanotubes. Physics Letters A,1995,197(1):40~43
    [28] Qian W Z,Liu T,Wei F,Wang Z W,et al. Carbon nanotubes containing iron and molybdenum particles as a catalyst for methane decomposition. Carbon,2003,41(4):846~848
    [29] Laplaze D,Bernier P,Maser W K,et al. Carbon nanotubes: The solar approach. Carbon,1998,36(5/6):685~688
    [30] Anglaret Eric,Bendiab Nedjma,Guillard Tony,et al. Raman characterization of single wall carbon nanotubes prepared by solar energy route. Carbon,1998,36(12):1815~1820
    [31] Alvarez L,Guillard T,Sauvajol J L,et al. Growth mechanisms and diameter evolution of single wall carbon nanotubes. Chemical Physics Letters,2001,342:7~14
    [32] Hsu W K,Terrones M,Hare J P,et al. Electrolytic formation of carbon nanostructures. Chemical Physics Letters,1996,263:161~166
    [33] Bai J B,Hamon A L,Marraud A,et al. Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chemical Physics Letters,2002,365:184~188
    [34] Randall L,Wal V. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes. Chemical Physics Letters,2000,324:217~223
    [35] Randall L,Wal V. Flame synthesis of Ni-catalyzed nanofibers. Carbon,2002,40:2101~2107
    [36] Tsang S C,Chen Y K,Green M L H,et al. A simple chemical method of opening and filling carbon nanotubes. Nature,1994,372:159~162
    [37] Lago R M,Tsang S C,Green M L H,et al. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups. Chem Commu,1995, 1355~1356
    [38] Hiura H,Ebbesen T W,Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv Mater, 1995, 7:275~276
    [39] Liu J,Rinzler A G,Smalley R E,et al. Fullerene pipes. Science,1998,280:1253~1256
    [40] 胡平,范守善,万建伟. 碳纳米管/UHMWPE 复合材料的研究. 工程塑料应用,1998,26(1):1~3
    [41] Satish kumar , Harit Doshi , Mohan Srinivasarao , et al. Fiber from polypropylene/nanocarbon fiber composites. Polymer,2002,43:1701~1703
    [42] Jin Zhaoxia,Pranwda K P,Xu Guoqin. Dynamic mechanical behavior of melt-processed muti-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters,2001,337:43~47
    [43] Jin Z X,Pramoda K P,Xu G Q,et al. Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites. Phys Lett,2001,337:271~278
    [44] Musa I,Baxendale M,Amaratunga G A,et al. Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites. Syn Met,1999,102:1250~1257
    [45] Fournet P,Brien D F,Coleman J N,et al. A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes. Syn Met, 2001,121:1683~1688
    [46] Dalton A B,Byrne H J,Coleman J N,et al. Optical absorption and fluorescence of a multi-walled nanotube-polymer composite. Syn Met,1999,102:1176~1182
    [47] Shaffer M S P , Windle A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater,1999,11:937~941
    [48] Sandler J,Shaffer M S P,Prasse T,et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer,1999,40:5967~5971
    [49] Gong X Y,Liu J,Baskaran S,et al. Electrochemical hydrogen storage of multiwalled carbon nanotubes. Chem Mater,2000,12:1049~1053
    [50] Liu J,Rinzler A G,Dai H J. Fullerene Pipes. Science,1998,280:1253~1253
    [51] 李博,廉永福,施祖进等. 单层碳纳米管的化学修饰. 高等学校化学学报,2000,11:1633~1635
    [52] Chen Y,Haddon R C,Smalley R E,et al. Chemical attachment of organic functional groups to single-walled carbon nanotube materials. J Mater Res,1998,13(9):2423~2431
    [53] Chen J,Mamon M A,Haddon R C,et al. Solution properties of single-walled carbon nanotubes. Science,1998,282:95~98
    [54] Wong S S,Joselevich E,Lieber C M,et al. Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature,1998,394:52~55
    [55] Wong S S,Woolley A T,Lieber C M,et al. Covalently functionalized single-walled carbon nanotube probe tips for chemical force microscopy. J Am Chem Soc,1998, 120(33):8557~8558
    [56] Jin Zhaoxia,Sun Xuan,Xu GuoQin,et al. Nonlinear optical properties of some polymer/muti-walled carbon nanotube composites. Chemical Physics Letters,2000,318:505~510
    [57] 贾志杰,王正元,梁吉等. 关于尼龙-6/炭纳米管复合材料的研究. 材料工程,1999,14(2):32~35
    [58] 贾志杰,王正元,梁吉等. PA6/碳纳米管复合材料的复合方法的研究. 新型碳材料,1998,9:3~7
    [59] Zhao Qing,Frogley D Mark,Wagner H Daniel. The use of carbon nanotubes to sense matrix stresses around a single glass fiber. Composites Science and Engineering,2001,61:2139~2143
    [60] Jia Zhijie , Wang Zhengyuan , Xu Cailu , et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science and Engineering,1999,A271:395~400
    [61] Tang BenZhong,Xu HongYao. Preparation Alignment and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules,1999,32:2569~2576
    [62] Riggs J E,Guo Z X,Sun Y P,et al. Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc,2000,122:5879~5880
    [63] Czerw R,Guo Z X,Carroll D L,et al. Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett,2001,1(8):423~427
    [64] 官文超,吴春炜,卢海峰. 水溶性碳纳米管-乙烯基吡咯烷酮共聚物的合成研究. 华中科技大学学报(自然科学版),2002,30(9):114~116
    [65] 官文超,李学锋,刘斌. 水溶性聚乙烯醇-碳纳米管(PVA-CNT)的合成与润滑性能的研究.湖北省摩擦学学会第四届学术年会,(武汉),2002,6:17
    [66] O'cormell J Michael , Boul Peter , Ericson M Lars , et al. Reversible water-solubilization of single-walled carbon nan otubes by polymer wrapping. Chemical Physics Letters,2001,342:265~271
    [67] Haggenmueller R,Gommans H H,Rinzler G. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chemical Physics letters,2000,330:219~225
    [68] Dai L,Mau A W H. Controlled synthesis and modification of carbon nanotubes and C60: Carbon nanostructures for advanced polymeric composite materials. Adv Mater,2001,13:899~902
    [69] Chen Q,Dai L,Gao M,et al. Plasma activation of carbon nanotubes for chemical modification. Phys Chem B,2001,105:618~623
    [70] Balavoine F,Schultz P,Mioskowski C,et. al. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew Chem Int Ed,1999,38:1912~1915
    [71] Lii Cheng-yi,Stobinski Leszek,Tomasik Piotr,et. al. Single-walled carbon nanotube-potato amylose complex. Carbohydrate Polymers,2003,51,93~98
    [72] Stobinski Leszek,Tomasik Piotr,Lii Cheng-yi,et. al. Single-walled carbon nanotube-amylopectin complexes. 2003,51,311~316
    [73] Chapelle M.Lamy de la,Stephan C,Ngayen T P,et al. Raman characterization of singlewalled carbon nanotubes and PMMA-nanotubes composites. Synthetic Metals,1999,103:2510~2512
    [74] Lordi V, Yao N. Molecular mechanics of binding in carbon nanotube polymer composites. J Mater Res,2000,15(12):2770~2779
    [75] Qian D,Dickey E C,Andrews R,et al. Load transfer and deformation mechanisms in carbon polystyrene composites. Appl Phys Lett,2000,76(20):2868~2870
    [76] Tibbetts G G,Mchhhugh J,Andrews,et al. Mechanical properties of vapor grown carbon fiber composites with thermoplastic materials. J Mater Res,1999,14:2871~2879
    [77] 李中兵. 含偶氮染料与含碳纳米管非线性光学高分子的合成及表征. [硕士学位论文]. 华中科技大学. 2003
    [78] Sleypan G Ya,Maksimenko S A,Lakhtakia A,et al.Electromagnetic response of carbon nanotubes and nanotube ropes.Systhetic Metals,2001,124(1):121~123
    [79] Vivien L,Anglaret E,Riehl D,et al.Optical limiting properties of singlewall carbon nanotubes.Optical Communications,2000,174:271~275
    [80] Sun Xuan,Xiong Yuenan,Chen Ping,et al.Investigation of an optical limiting mechanism in multiwalled carbon nanotubes. Applied Optics,2000,39(12):1998~2001
    [81] Chen P,Wu X,Sun X,et al.Electronic structure and optical limiting behavior of carbon nanotubes.Physics Review Letters,1999,82(12):2548~2551
    [82] Vivien L, Anglaret E, Riehl D,et al. Single-walled carbon nanotubes for optical limitimg.Chemical Physics Letters,1999,307:317~319
    [83] Jin Zhaoxin,Huang Lei,Goh Suat Hong,et al.Size-dependent optical limiting behavior of multi-walled carbon nanotubes. Chemical Physics Letters,2002,352:328~333
    [84] Mishra S R, Rawat H S, Mehendale S C,et al. Optical limiting in single-walled carbon nanotube suspensions.Chemical Physics Letters,2000,317:510~514
    [85] Michkelson E T,Chiang J W,Margrave J L,et al.Salvation of fluorinated single-wall carbon nanotubes in alcohol solvents.J Phys Chem B,1999,103:4318~4322
    [86] Riggs Jason E,Walken David B,Carroll David L,et al. Optical limiting properties of suspended and solubilized carbon nanotubes.J Phys Chem B,2000,104:7071~7076
    [87] Sun X,Yu R Q,Xu G Q,et al. Broadband optical limiting with multiwalled carbon nanotubes. Applied Physics Letters,1998,73(25):3632~3634
    [88] Liao Kin,Li Sean.Interfacial characteristics of a carbon nanotube-polystyrene composite system.Appl Phys Lett,2001,79(25):4225~4227
    [89] Kymakis E,Amaratunga G A J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Applied Physics Letters, 2002,80(1):112~114
    [90] Coleman J N, Curran S, Dalton A B,et al. Percolation-dominated conductivity in a conjugated-polymer carbon nanotube composite.Physical Review B,1998,58(12):7492~7495
    [91] Fan JunHua,Wan Meixiang,Zhu Dalben,et al.Synthesis,characterization,and physical properties of carbon nanotubes coated by conducting polypyrrole.Journal of Applied Polymer Science,1999,74:2605~2610
    [92] Jin Zhaoxia,Huang Lei,Goh Suat Hong,et al.Characterization and nonlinear optical properties of a poly(acrylic acid)-surfactant-multi-walled carbon nanotube complex. Chemical Physics Letters,2000,332:461~466
    [93] Maser W K,Benito A M,Callejas M A,et al.Synthesis and characterization of new polyaniline/nanotube composites. Materials Science and Engineering C,2003,23:87~91
    [94] Kim Jae-Yoo,Kim Moonhee,Kim HeonMo,et al.Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opticals Materials,2002,21:147~151
    [95] Khalil El-Hami,Kazumi Matsushige. Covering single walled carbon nanotubes by the poly(VDF-co-TrFE) copolymer. Chemical Physics Letters,2003,368:168~171
    [96] Ago H,Petritsch K,Shaffer M S P,et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater,1999,11:1281~1288
    [97] Fan Junhua,Wan Meixiang,Zhu Daoben. Synthesis and properties of carbon nanotube-polypyrrole composites. Synthetic Metals,1999,102:1266~1267
    [98] Liu Z F,Shen Z Y,Zhu T,et al.Organizing sigle-walled carbon nanotubes on gold using a wet chemical self-assembling technique.Langmuir,2000,16(8):3569~3573
    [99] Buzaneva E,Karlash A,Yakovkin K,et al.DNA nanotechnology of carbon nanotube cells:physico-chemical models of self-organization and properties.Mater Sci Eng C,2002,C19:41~45
    [100] McCarthy B, Coleman J N, Czerw R,et al.Complex nano-assemblies of polymers and carbon nanotubes.Nanotechnology,2001,12(3):187~190
    [101] Cassell M Alan,Meyyappan M,Han Jie.Multilayer film assembly of carbon nanotubes.Nanoparticle Research,2000,2:387~389
    [102] Jung Dae-Hwan,Ko Young Koan,Jung Hee-Tae. Aggregation behavior of chemically attached poly(ethylene glycol) to single-walled carbon nanotubes (SWNTs) ropes. Materials Science and Engineering C,2004,24:117~121
    [103] Gao Xia,Hu Tengjiao,Liu Luqi,et al.Self-assembly of modified carbon nanotubes in toluene. Chemical Physics Letters,2003,370:661~664
    [104] Li Xiaohong,Zhang Jin,Li Qingwen,et al.Polymerization of short single-walled carbon nanotubes into large strands. Carbon,2003,41:579~625
    [105] Ebbesen T W,Lezec H J,Hiura H,et al. Electrical conductivity of individual carbon nanotubes. Nature,1996,382:54~56
    [106] Wildoer J W G,Venemal L C,Rinzler A G,Electronic structure of atomically resolved carbon nanotube. Nature,1998,391:59~62
    [107] Odom T W,Huang J L,Kim P,et al. Atomic structure and electronic properties of single walled carbon nanotubes. Nature,1998,391:62~64
    [108] Wei Jingquan,Li Yanhui,Xu Cailu,et al. Structure and superconductivity of MgB2-carbon nanotube composites. Materials Chemicals and Physics,2003,78:785~790
    [109] Xiao Qiangfeng,Zhou Xiao. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Elcetrochimica Acta,2003,48:575~580
    [110] Carthy Mc Brendan , Dalton B Alan, Coleman N Jonathan. Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interaction. Chemical Physics Letters,2001,350:27~32
    [111] 孙晓刚. 碳纳米管的特性及应用. 中国粉体技术,2001,7:29~33
    [112] Panhuis M in het,Munn R W,Blau W J. Optimal polymer characteristics for nanotube solubility. Synthetic Metals,2001,121:1187~1188
    [113] 官文超,卢海峰,吴春炜. 水溶性碳纳米管-乙烯基吡咯烷酮聚合物的润滑性能的研究. 摩擦学学报,2002,22(8):86~89
    [114] Cai Hui,Yan Fengyuan,Xue Qunji. Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Materials Science and Engineering A,2004,364:94~100
    [115] Chen X,Li D,Li X,et al. Morphology and Wear Behavior of Ni-Carbon nanotube Composite Coating. Tribology,2002,22:6~8
    [116] Dong S,Zhang X. Sliding Wear Property of Cu-Based Composite Materials Reinforced by carbon Nanotube. Tribology,1999,19:1~6
    [117] Dong S R, Tu J P, Zhang X B. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Materials Science and Engineering,2001,A313:83~87
    [118] Zhang Z J,Xue Q J,Zhong J. Synthesis, structure and lubricating properties of dialkyldithiophosphate-modified Mo-S compound nanoclusters. Wear,1997,209:8~12
    [119] Lim D S,An J W,Lee H J. Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites. Wear,2002,252:512~517
    [120] 危峰. 无机纳米粒子(SiO_2、TiO_2)的化学修饰及润滑性能研究. [硕士学位论文]. 华中科技大学. 2003
    [121] 陆瑞征,黄丽菊,裴正洲. 从经典摩擦到纳米摩擦. 工科物理,1998,(2):35~38
    [122] 温诗铸,雒建斌. 纳米薄膜润滑研究. 清华大学学报(自然科学版),2001,41(4/5):63~68
    [123] 温诗铸. 纳米摩擦学(Nanotribology)研究现状和展望. 仪器仪表学报,1995,16(1):32~37
    [124] 温诗铸,纳米摩擦学,北京:清华大学出版社,1998,第1 版
    [125] Zhang Z J,Xue Q J,Zhang J. Synthesis, structure and lubricating properties of dialkyldithiophosphate-modified MoS2 compound nanoclusters. Wear,1997,209:8~12
    [126] Chen S,Liu W M,Yu L G,Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin. Wear. 1998,218:153~158
    [127] Chen S, Liu W M. An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin. Wear,2000,238:120~124.
    [128] Xu Tao,Chen Jianmin, Zhao Jiazheng,et al. Pore-enlargement and self-lubrication treatment of anodic oxide film of aluminum. Wear,1996,196(1-2):214~218
    [129] 赵彦保, 周静芳, 张治军. 聚合物纳米微球的合成及摩擦学行为. 应用化学,1999,16(4):33~36
    [130] Bhushan B,Gupta B K,Van Cleef,et al. Sublimed C60 films for tribology. Appl. Phys Lett, 1993,62(25):3253~3255
    [131] Gupta B K,Bhushan B. Fullerene particles as an additive to liquid lubricants and greases for low friction and wear. Lubr Eng,1994,50(7):524~528
    [132] Bhushan B,Gupta B K,Van Cleef Garrett W,et al. Fullerene (C60) films for solid lubrication. Tribology Transaction,1993,16(4):573~580
    [133] Zhang J,Xue Q J,Du Z L,et al. Lubrication Characteristics of C60-SA Langmuir-Blodgett Film. Chinese Science Bulletin,1994,39(14):1184~1187
    [134] Rapopor L,Lvovsky M,Lapsker I. Friction and wear of bronze powder composites including fullerene-like WS2 nanoparticles. Wear,2001,249:150~157
    [135] Rapoport L,Leshchinsky V,Lvovsky M,et al. Load bearing capacity of bronze, iron and iron-nickel powder composites containing fullerene-like WS2 nanoparticles. Tribology International,2002,35:47~53
    [136] Guan Wenchao,Sheng Chunying,Wu Chunwei. Synthesis of fullerene-itaconic acid copolymer nanoball and its lubrication properties study. Science in China (Series A), 2001,44 Supp:136~141
    [137] 官文超, 段标. 富勒烯(C60/C70)-丙烯酸的自由基共聚. 高等学校化学学报,1998,19(3):492~494
    [138] Lei Hong, Guan Wenchao, Liao Daoxun. Experimental Study on tribological properties of fullerene copolymer nanoball. Chinense Journal of Mechanical Engineering,2000,13(3):201~205
    [139] 官文超,雷洪,廖道训. C60-苯乙烯-顺丁烯二酸酐的三元自由基共聚. 高等学校化学学报,2000,21(7):1149~1150
    [140] 雷洪,官文超. 富勒烯-苯乙烯-顺丁烯二酸酐三元共聚物的摩擦学行为. 应用化学,2000,17(2):180~182
    [141] 官文超,王姗姗,李仕民. 水溶性C60/衍生物的合成及润滑性能研究. 材料保护,2001,34(10):60~63
    [142] 王姗姗,官文超. 水溶性富勒烯/丙烯酰胺共聚物的润滑性能. 摩擦学学报, 2002,22(8)sup:79~81
    [143] 王姗姗. 富勒烯衍生物纳米微球的合成及性能研究. [硕士学位论文]. 华中科技大学. 2003
    [144] 雷洪. 水溶性富勒烯共聚物纳米微球润滑添加剂的合成及其摩擦学特性研究. [博士学位论文]. 华中科技大学. 2001
    [145] 卢海峰. 碳纳米管的高分子化学修饰及其性能研究. [硕士学位论文]. 华中科技大学. 2004
    [146] Homola A M,Israelachvilli J N,Gee M L,et al.,Measurements of and relation between the adhesion and friction of two surfaces separated by molecularly thin liquid films. Journal of Tribology,1989,111(10):675~682
    [147] Xue Q J,Liu Weimin,Zhang Zhijun. Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear,1997,213:29~32
    [148] 陈爽,刘维民. 表面修饰PbS 纳米微粒的合成及其抗摩性能. 摩擦化学学报,1997,17(3):260~262
    [149] Wang Q H,Xue Q J,Shen W C,et al. Friction and wear properties of nanometer ZrO2-filled polyetheretherketone. J Appl Polm Sci,1998,69(1):135~141
    [150] Wang Q H,Xue Q J,Shen W C. Friction and wear properties of nanometre SiO2 filled polyetheretherketone. Tribology Intern,1997,30(3),193~197
    [151] Dong J X,Chen G X,Lou X M, et al. A new concept-formation of permeating layer from nonactive antiwear additives. Lubrication Engineering,1994,(22):124~128
    [152] 温诗铸,雒建斌,黄平等. 润滑理论的新进展——薄膜润滑. 润滑与密封,1994,6:7~14
    [153] 段标. 聚合物微球润滑添加剂的合成及摩擦学特性研究. [博士学位论文]. 华中科技大学. 1998
    [154] Ludema K C,Maurice G.. The 22nd Leeds Lyon Symposium “The Third Body”,Lyon,1995
    [155] Hu Z S,Dong J X. Study on antiwear and reducing friction additive of nanometer titanium borate. Wear,1998,21(6):87~91
    [156] Hu Z S, Dong J X. Study on antiwear and reducing friction additive of nanometer titanium oxide. Wear,1998,216:92~96
    [157] 张军,薛群基. Langmiur-Blodgett 膜及其摩擦行为. 摩擦学学报,1992,12(4):97~104
    [158] 张平余,薛群基. 脂肪酸及表面修饰MoS2 纳米微粒LB 膜在摩擦过程中结构变化的XPS 研究. 摩擦学学报,2000(3):199~205
    [159] Xue Q J , Zhang J. Friction and wear mechanisms of C60/stearic-acid Langmuir-Blodgett films. Tribology Intern,1995,28(5),287~289
    [160] Yu Laigui, Zhang Pingyu, Du Zuliang. Tribological behavior and structural change of the LB film of MoS2 nanoparticles coated with dialkyldithiophosphate. Surface and Coatings Technology,2000,130:110~115
    [161] 陈小华,李德意,李学谦等. 碳纳米管增强镍基复合镀层的形貌及摩擦磨损行为研究. 摩擦学学报,2002,22(1):6~9
    [162] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Science,1997,277:1232~1237
    [163] Li J W,Wang C,Shang G Y,et al. Friction coefficients derived from apparent height variations in contact mode atomic force microscopy. Langmuir,1999,15:7662~7669
    [164] Huang L,Luo G,Zhao X,et al. Self-assembled multiplayer films based on diazoresins studied by atomic force microscopy/friction force microscopy. J Appl Polym Sci,2000,78:631~638
    [165] Huang L,Hou X R,He Y K,et al. Fabrication and AFM/FFM studies of C60-containing polyelectrolyte self-assembled films. Chinese Journal of Polymer Science,2002,20(3):197~203
    [166] Bhushan B,Jacob N,Landman U. Nanotribology: friction, wear and lubrication at the atomic scale. Nature,1995,374(13):607~616
    [167] Theoclitou Maria-Elena,Rayment Trevo,Abell Chris. Chiral discrimination by chemical force microscopy. Nature,1998,391:566~568
    [168] Carpick R W,Salmeron M. Scratching the surface: Fundamental investigation of tribology with atomic force microcopy. Chem Rev,1997,97:1163~1194
    [169] Shaffer M S P,Koziol K. Polystyrene grafted multi-walled carbon nanotubes. Chem Commun,2002,18:2074~2075
    [170] Sun Y P,Zhou B,Henbest K,et al. Luminescence anisotropy of functionalized carbon nanotubes in solution. Chem Phys Lett,2002,351(17):349~353
    [171] 官文超,雷洪. 水溶性烷基硫代磷酸锌在钢球磨斑表面形成的润滑薄膜的分析研究. 摩擦学学报,1998,18(1):75~79
    [172] Lei H,Guan W,Luo J. Tribological behavior of fullerene –styrene sulfonic acid copolymer as water-based lubricant additive. Wear,2002,252:345~350
    [173] Duan B,Lei H. The effect of particle size on the lubricating properties of colloidal polystyrene used as water based lubrication additive. Wear,2001,249:528~532
    [174] 温诗铸. 纳米摩擦学(Nanotribology)研究现状和展望. 仪器仪表学报,1995,16(1):32~36
    [175] 雒建斌,张朝辉,温诗铸. 薄膜润滑研究的回顾与展望. 中国工程科学,2003,5(7):84~89
    [176] Wan Rosli W D,Kumar R N,Mek Zah S, et al. UV radiation curing of epoxidized palm oil–cycloaliphatic diepoxide system induced by cationic photoinitiators for surface coatings. European Polymer Journal,2003,39:593~600
    [177] Crivello J V. UV and electron beam-induced cationic polymerization. Nuclear Instruments and Methods in Physics Research B,1999,151:8~21
    [178] Wang W. Synthesis and characterization of UV-curable polydimethylsiloxane epoxy acrylate. European Polymer Journal,2003,39:1117~1123
    [179] Farsari M,Huang S,Young R C D,et al. Holographic cure monitoring of the DuPont SomosTM 7100 stereolithography resin. Optics and Lasers in Engineering, 1999,31:239~246
    [180] Decker C. High-speed curing by laser irradiation. Nuclear Instruments and Methods in Physics Research B,1999,151:22~28
    [181] 傅玉成. 杜仲胶记忆材料的性质与应用. 高分子材料科学与工程,1992,8(4): 123~126
    [182] 李学锋,闫晗,彭少贤等. 杜仲胶的提取与热记忆材料制备的研究. 塑料科技,1999,(2):18~22
    [183] 胡海军,林傅玲,许桂林等. 机载雷达波导天线杜仲胶密封材料. 中国发明专利,CN1054998.1991
    [184] Ioannis Arvanitoyannis,Richard Heath. Diffusion and Permeation of Gases in Undrawn and Rapidly Drawn Films of Native and Commercial Gutta-Percha (trans-polyisoprene). Polymer International,1992, 29(3):165~171
    [185] 鲁得平,管蓉. 紫外光辐照聚丙烯与绢英粉共混增容作用的研究. 高分子材料科学与工程,2001,17(5):129~132
    [186] 李学锋,王刚,彭少贤. 杜仲胶的溶剂-沉淀法提取. 湖北化工,1997,(1):35~38
    [187] 叶锡生,沙健,陈斌等. 纳米α-Fe_2O_3 的介电特性研究. 浙江大学学报,1997, 31(4):421~425
    [188] 于仁光,乔小晶,张同来等. 新型雷达波吸收材料研究进展. 兵器材料科学与工程,2004,27(2):63~67
    [189] 郭伟凯,李家俊,赵乃勤等. 纤维类雷达波吸收剂的研究进展. 宇航材料工艺,2003,(6):12~16
    [190] 冯则坤,何华辉. 宽频带橡胶复合铁氧体电磁波吸波材料研究. 功能材料,2004,34(5):532~534
    [191] 何山. 雷达吸波材料性能测试. 材料工程,2003,(6):25~28
    [192] 王结良,黄英,梁国正. 雷达吸波涂层用材料的研究进展. 现代涂料与涂装,2003,(2):28~33
    [193] De G,Kundu D. Silver-nanocluster-doped inorganic-organic hybrid coatings on polycarbonate substrates. Journal of Non-crystalline solids,2001,288:221~225
    [194] Jacob S,Cochet S,Poinsignon C,et al. Proton conducting inorganic/organic matrices based on sulfonyl-and styrene derivatives functionalized polycondensates via sol-gel processing. Electrochimica Acta,2003,48:2181~2186
    [195] 周克省,黄可龙,孔德明等. 纳米无机物/聚合物复合吸波功能材料. 高分子材料科学与工程,2002,18(3):15~19
    [196] 王国强,章平,王绍明. 掺杂聚苯胺的电磁损耗与吸波性能的研究. 哈尔滨师 范大学自然科学学报,2003,19(3):31~33
    [197] 吴键,李兵,张焰. 超薄吸波结构材料的制备. 2003,17(7):45~48
    [198] 甘治平,官建国,王维. 单层均匀吸波材料电磁参数的匹配研究. 航空材料学报,2002,22(2):37~41
    [199] 徐国亮,罗洁,刘波等. 碳团簇型雷达隐身涂料环境稳定性研究. 原子与分子物理学报,2003,20(1):103~106
    [200] 赵乃勤,曹婷,师春生等. 碳纤维(碳毡)/树脂复合吸波材料的研究. 复合材料学报,2003,20(5):63~67
    [201] 赵东林,沈曾民,迟伟东. 炭纤维及其复合材料的吸波性能和吸波机理. 新型炭材料,2001,16(2):66~72
    [202] 曹茂盛,高正娟,朱静. CNTs/Polyester 复合材料的微波吸收特性研究. 材料工程,2003,(2):34~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700