离子影像光化学研究和超低温动力学研究装置
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由两部分组成:第一部分是气相光解动力学的研究,利用离子速度成像技术研究了甲酸分子和二硫化碳离子光解动力学过程,探讨了甲酸分子光解过程中直接解离,系间窜越及系间交叉的竞争机制,而二硫化碳离子光解过程则呈现出明显的模式选择性;第二部分介绍我们成功搭建的超低温动力学研究装置—新一代(脉冲)纳米氦液滴光谱仪,并运用该装置研究了诸如OCS分子在超流体中的光解动力学及离子—分子(N2+H2)反应等动力学过程。
     第一部分:气相光解动力学研究
     甲酸分子的光解动力学研究
     运用离子影像技术研究了甲酸分子在紫外波段的光解动力学。通过共振增强多光子电离(REMPI)和直流切片离子成像技术对甲酸分子在244-230nm波长范围内光解产生的OH自由基进行探测。OH自由基的REMPI谱显示其转动激发比较低(N≦4)。为了获得对反应机理的认识,实验过程中我们将探测激光固定在特定的转动跃迁,采集不同光解波长下甲酸分子解离生成OH自由基的影像。通过对获得的影像进行平动能分析,我们发现大约一半的可资用能都转化成了光解碎片的内能。通过与理论计算的结果进行比较,我们认为甲酸分子在244nm的光解波长下其解离是一个以内转换(IC)为主的过程。而对于230m光解过程而言,存在直接解离,系间窜越(ISC)以及内转换(IC)等相互竞争的过程。
     CS2+经由A2Πu。态解离的模式选择性的研究
     利用直流切片离子成像的方法研究了CS2+离子经过A2Πu(v1,v2,0)态不同的振动模式解离动力学。运用(3+1)共振增强多光子电离(REMPI)的方法制备纯净的CS2+X2Πg(0,0,0)离子。通过扫描解离激光的激发波长,我们获得CS2+X2Πg(0,0,0)离子经由A2Πu(v,v2,0)态解离产物碎片s+的激发谱。将解离光固定在A2Πu(v,v2,0)态的某个振动态,我们采集了通过(1+1)共振解离产生的S+影像。从影像得到的光解碎片平动能分布来看,解离过程产生的另一个产物CS碎片的振动和转动激发都很高,并且在高转动的区域,角分布呈现出各向同性的特性,而在低转动的区域,角分布趋于平行跃迁的特性。我们同时研究了激发能量与(1+1)共振解离相同的单光子解离过程,通过将单光子解离与(1+1)共振解离的结果进行比较,我们发现CS2+X2Πg(0,0,0)离子经由A2Πu(v1,v2,0)态解离具有非常明显的模式选择性。
     第二部分:超低温动力学研究装置
     纳米氦液滴装置的搭建与测试
     搭建了新一代(脉冲)纳米氦液滴装置。超流体氦液滴是通过超低温冷阀喷射高压氦气来产生的,通过控制冷阀的温度(10-30K)和氦气的压力(10-40大气压),氦液滴的平均大小在103-105个氦原子可调,氦液滴束的数密度为1015-1016/cm3。和传统的连续氦液滴束源比较起来,其强度至少强一个量级以上,这为我们提供了一个与商品化的脉冲激光器结合使用来研究氦液滴中的化学反应过程的机会。测试结果表明脉冲氦液滴的大小分布集中,时间展宽约50μs(半高全宽)。氦液滴具有很好的掺杂特性,可以通过控制掺杂压力控制氦液滴中掺杂分子的个数。仪器建成后,我们通过研究氦液滴中CH3I光解动力学及苯的损耗光谱来测试仪器的性能,这些都是在氦液滴中研究的比较清楚的体系,通过与前人的结果相比较,新建氦液滴装置的精度和稳定性都得到了证明。
     氦液滴中的OCS光解动力学研究
     运用直流切片离子成像的方法研究了氦液滴中OCS分子在230nm下的光解动力学。利用(2+1)共振增强多光子电离(REMPI)和离子影像技术探测光解产物CO。结果表明,氦液滴中CO的转动冷却比振动更有效。通过采集CO+(v=0)和CO+(v=1)的影像,我们发现CO+(v=0)和CO+(v=1)的影像在角分布上都呈现出来各向同性的特点,然而在平动能的分布上却存在很大的差异,尽管产物碎片的绝大部分平动能都丢失了,但仔细考察却会发现,对于CO(v=0)的产物,其平均平动能随着氦液滴的增大而增大,而对于振动被激发的产物CO(v=1),其平均平动能的分布与氦液滴的大小无关。在实验中观测到了一个与光解气相OCS得到的CO平动能分布相反的实验现象:振动被激发的产物CO(v=1)的平均平动能比振动基态的产物CO(v=0)的平均平动能大。我们建立了一个修正的非直接蒸发模型来解释我们的实验结果。
     氦液滴中的离子—分子反应
     通过电子轰击掺杂的氦液滴,我们研究了氦液滴中的离子—分子反应。N2++H2是大气及星际化学工作者非常感兴趣的一个化学反应,我们在超低温氦液滴中共同掺杂氮气和氢气分子,通过电子轰击,观测反应产物。实验结果表明,电子轰击时,氦原子首先被电离,然后被电离的氦原子通过电荷转移电离氮气分子。通过测量反应产物的量与反应物浓度的依赖关系,我们获得对反应机理的认识,对于离子—分子反应,其反应产物的生成和反应放热有关,反应放热较高的通道更容易发生。
This thesis consists of two parts:one is the studies of the gas phase photodissociation dynamics by the velocity map ion imaging technique. The photodissociation dynamics of the formic acid molecule and the CS2+cation were discussed in detail. The competition of direct dissociation, internal conversion, and intersystem crossing was confirmed in the formic acid photodissociation at the UV region. The mode-selective effect for the photodissociation of the GS2+cation was observed. The other is the construction of the novel (pulsed) helium nano droplets spectrometer. The photodissociation dynamics of the OCS molecule doped helium droplets and N2++H2reaction were carried on the state of art apparatus.
     Part I:Imaging detailed photodissociation dymatics of HCOOH molecule and GS2+cation
     Photodissociation dymatics of HCOOH
     The photodissociation dynamics of formic acid have been studied using the velocity map ion imaging at the230-244nm region. The OH REMPI spectrum from the photodissociation of formic acid at244nm has been recorded by resonance enhancement multiphoton ionization (REMPI). The spectrum shows low rotational excitation (N≤4). By fixing the probe laser at the specific rotational transitions, the resulting OH images from various dissociation wavelengths have been accumulated with dc slicing ion imaging. The translational energy distributions derived from the OH images imply that about half of the available energies go to the photofragments internal excitation. With combined experimental observations and previous theoretical calculations, the possible mechanism for244nm photodissociation is internal conversion(IC). For230nm photodissociation, there was the competition among the direct dissociation, intersystem crossing (ISC), and internal conversion (IC).
     Photodissociation dynamics studies of CS2+via the A2Ⅱu(v1,v2,0)state
     The vibrationally mediated photodissociation of CS2+cations via the A2Ⅱu(v1,v2,0)state and the corresponding UV one-photon photodissociation have been studied by means of the velocity map ion imaging technique. The pure CS2+X2Ⅱg (0,0,0) cations were prepared by a (3+1) resonance enhanced multiphoton ionization process. The photo-fragment excitation spectrum of S+was recorded by scanning the photolysis laser via the A2Πu(v1,v2,0) state. The (1+1) photodissociation images of S+photofragments by the mode-selected A2Πu(v1,v2>0) levels, by fixing the photolysis laser wavelength at the specific vibrational state, from numerous vibrationally mediated states have been accumulated. The translational energy release spectra derived from the resulting images imply that the co-fragments, CS radicals, are both vibrationally and rotationally excited. The β parameters in the dominating TER regions with high J rotational distributions are nearly isotropic, while those in the low J rotational distribution regions have parallel characters. In the scheme of UV onephoton excitation that reaches the same energy region as in the (1+1) photo-excitation scheme, we obtained S+images. Comparing the vibrationally mediated photodissociation with one-photon photodissociation observations, clear evidence of vibrational state control of the photodissociation process is observed.
     Part Ⅱ:Novel (pulsed) helium nano droplets spectrometer
     Construction of the novel (pulsed) helium droplets apparatus
     We constructed a new pulsed helium nano droplets machine. The droplets were generated by expansion of the pure helium through the cryogenic valve attached to a closed-cycle cryostat. The mean size of helium droplets can be controlled between103to105helium atoms by tuning the backing pressure (10-40bar) and temperature (10-30K) and the number density is1015-1016/cm3. Compared with the continuous-flow beam source, the density of droplet is at least one order of magnitude higher, which offers the opportunity to combine the system with the commercial pulsed laser to study chemical reactions inside of the superfluid helium at ultra-low temperature. The performance for the system has been checked by studying the photodissociation of CH3I doped droplets with the velocity map imaging technique and the depletion spectrum of benzene doped helium droplets.
     Photodissociation Dynamics of OCS in Helium Droplets
     The photodissociation dynamics of carbonyl sulfide in helium droplets has been studied by means of time-sliced velocity map imaging. The CO fragments were detected by (2+1) resonance enhanced multiphoton ionization. It is found that in the helium-droplets environment rotational cooling is much more efficient than vibrational cooling. The velocity map images for both CO+(v=0) and CO+(u=1) exhibit nearly isotropic angular distributions. The kinetic energy distributions show that most of the translational energies are relaxed in the finite-sized superfluid helium system. However, the average translational energies of the CO (v=1) images are higher than those of the CO (v=0) images.The relevant mechanism has been briefly discussed.
     Ion molecule reaction N2++H2in helium droplets
     Using the electon impact (El) ionization of the doped helium droplets, we studied the ion-moleule reactions inside the helium droplets. The N2++H2reaction is the benchmark system which is more related to the upper atmosphere and interstellar medium. By co-doping the nitrogen and hydrogen molecules inside the droplets, we studied the reaction products followed by the El ionization of the doped droplets. The preliminary experimental results indicate that the helium atom firstly ionized with the election impact. Then the nitrogen molecules are ionized with the charge transfer from the helium ions. In order to obtain the insight of the reaction dynamics, we studied the dependence of the reaction products with the concentration of the reactants. The results imply that the reaction channel is more favorable with the exothermic.
引文
[1]E.H. Taylor, S. Datz, J. Chem. Phys.,23 (1955) 1711-1718.
    [2]J. Matthews, A. Sinha, J.S. Francisco, Proc. Nat. Acad. Sci. U.S.A.,102 (2005) 7449-7452.
    [3]D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden, Y.T. Lee, J. Chem. Phys.,82 (1985) 3045-3066.
    [4]R.H. Page, Y.R. Shen, Y.T. Lee,J. Chem. Phys.,88 (1988) 4621-4636.
    [5]J.C. Polanyi, K.B. Woodall, J. Chem. Phys.,56 (1972) 1563.
    [6]J.C. Polanyi, W.H. Wong, J. Chem. Phys.,51 (1969) 1439.
    [7]G.C. Schatz, A. Kuppermann, J. Chem. Phys.,65 (1976) 4642-4667.
    [8]G.C. Schatz, A. Kuppermann,J. Chem. Phys.,65 (1976) 4668-4692.
    [9]W.H. Miller, N.C. Handy, J.E. Adams, J. Chem. Phys.,72 (1980) 99-112.
    [10]W.H. Miller, S.D. Schwartz, J.W. Tromp,J. Chem. Phys.,79 (1983) 4889-4898.
    [11]H. Talezer, R. Kosloff, J. Chem. Phys.,81 (1984) 3967-3971.
    [12]R.A. Marcus,J. Chem. Phys.,24 (1956) 966-978.
    [13]R. Kosloff, J. Phys. Chem.,92 (1988) 2087-2100.
    [14]A.H. Zewail,J. Phys. Chem. A,104 (2000) 5660-5694.
    [15]B. Friedrich, D.R. Herschbach, Nature,353 (1991)412-414.
    [16]R.N. Zare, D.R. Herschbach, Proc. IEEE,51 (1963) 173.
    [17]M.N.R. Ashfold, J.D. Howe, Annu. Rev. Phys. Chem.,45 (1994) 57-82.
    [18]A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instrum.,68 (1997) 3477.
    [19]J.J. Lin, J. Zhou, W. Shiu, K. Liu, Rev. Sci. Instrum.,74 (2003) 2495.
    [20]D. Townsend, M.P. Minitti, A.G. Suits, Rev. Sci. Instrum.,74 (2003) 2530.
    [21]R.N. Zare., Mol. Photochem.,4 (1972).
    [22]C. Jonah, J. Chem. Phys.,55 (1971) 1915-&.
    [23]G.E. Busch, K.R. Wilson, J. Chem. Phys.,56 (1972) 3638-&.
    [24]A.I. Chichinin, P.S. Shternin, N. Godecke, S. Kauczok, C. Maul, O.S. Vasyutinskii, K.H. Gericke,J. Chem. Phys.,125 (2006) 034310.034311-034314.
    [25]J.H.M. Bonnie, P.J. Eenshuistra, J. Los, H.J. Hopman, Chem. Phys. Lett.,125 (1986) 27-32.
    [26]W. Li, S.A. Lahankar, C.S. Huang, P.S. Shtemin, O.S. Vasyutinskii, A.G. Suits, Phys. Chem. Chem. Phys.,8 (2006) 2950-2957.
    [27]C.H. Greene, R.N. Zare,J. Chem. Phys.,78 (1983) 6741-6753.
    [28]M.A. Ohalloran, H. Joswig, R.N. Zare, J. Chem. Phys.,87 (1987) 303-313.
    [29]A.S. Bracker, E.R. Wouters, A.G. Suits, O.S. Vasyutinskii, J. Chem. Phys.,110 (1999) 6749-6765.
    [30]A.G Suits, O.S. Vasyutinskii, Chem. Rev.,108 (2008) 3706-3746.
    [31]J.C. Polanyi, D.C. Tardy, J. Chem. Phys.,51 (1969) 5717.
    [32]H.L. Kim, M.A. Wickramaaratchi, X.N. Zheng, GE. Hall, J. Chem. Phys.,101 (1994) 2033-2050.
    [33]M. Kawasaki, S J. Lee, R. Bersohn, J. Chem. Phys.,66 (1977) 2647-2655.
    [34]J.J. Lin, D.W. Hwang, S. Harich, Y.T. Lee, X.M. Yang, Rev. Sci. Instrum.,69 (1998) 1642-1646.
    [35]L. Schnieder, K. SeekampRahn, E. Wrede, K.H. Welge,J. Chem. Phys.,107 (1997) 6175-6195.
    [36]L. Schnieder, K. Seekamprahn, J. Borkowski, E. Wrede, K.H. Welge, F.J. Aoiz, L. Banares, M.J. Dmello, V.J. Herrero, V.S. Rabanos, R.E. Wyatt, Science,269 (1995) 207-210.
    [37]D.W. Chandler, P.L. Houston, J. Chem. Phys.,87 (1987) 1445.
    [38]D.H. Parker, A.T.J.B. Eppink, J. Chem. Phys.,107 (1997) 2357.
    [1]D.W. Chandler,P.L. Houston,J. Chem. Phys.,87(1987) 1445.
    [2]A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instrum.,68 (1997) 3477.
    [3]D.H. Parker, A.T.J.B. Eppink,J. Chem. Phys.,107 (1997) 2357.
    [4]B.-Y. Chang, R.C. Hoetzlein, J.A. Mueller, J.D. Geiser, P.L. Houston, Rev. Sci. Instrum.,69 (1998) 1665.
    [5]A.T.J.B. Eppink, D.H. Parker, J. Chem. Phys.,109 (1998) 4758.
    [6]T. Gougousi, P.C. Samartzis, T.N. Kitsopoulos,J. Chem. Phys.,108 (1998) 5742.
    [7]A.S. Bracker, E.R. Wouters, A.G Suits, O.S. Vasyutinskii, J. Chem. Phys.,110 (1999) 6749.
    [8]M. Takahashi, J.P. Cave, J.H.D. Eland, Rev. Sci. Instrum.,71 (2000) 1337.
    [9]C.R. Gebhardt, T.P. Rakitzis, P.C. Samartzis, V. Ladopoulos, T.N. Kitsopoulos, Rev. Sci. Instrum.,72 (2001) 3848.
    [10]E. Wrede, S. Laubach, S. Schulenburg, A. Brown, E.R. Wouters, AJ. Orr-Ewing, M.N.R. Ashfold,J. Chem. Phys.,114 (2001) 2629.
    [11]D. Xu, J.S. Francisco, J. Huang, W.M. Jackson,J. Chem. Phys.,117 (2002) 2578.
    [12]J.J. Lin, J. Zhou, W. Shiu, K. Liu, Rev. Sci. Instrum,,74 (2003) 2495.
    [13]D. Townsend, M.P. Minitti, A.G. Suits, Rev. Sci. Instrum.,74 (2003) 2530.
    [14]M.N.R. Ashfold, N.H. Nahler, A.J. Orr-Ewing, O.P.J. Vieuxmaire, R.L. Toomes, T.N. Kitsopoulos, I.A. Garcia, D.A. Chestakov, S.-M. Wu, D.H. Parker, Phys. Chem. Chem. Phys., 8 (2006) 26.
    [15]K.T. Lorenz, Science,293 (2001) 2063-2066.
    [16]K. Tonokura, T. Suzuki, Chem. Phys. Lett.,224 (1994) 1.
    [17]L. Dinu, A.T.J.B. Eppink, F. Rosca-Pruna, H.L. Offerhaus, W.J. van der Zande, M.J.J. Vrakking, Rev. Sci. Instrum.,73 (2002) 4206.
    [18]B.Y. Chang, R.C. Hoetzlein, J.A. Mueller, J.D. Geiser, P.L. Houston, Rev. Sci. Instrum.,69 (1998) 1665-1670.
    [19]G Wu, W. Zhang, H. Pan, Q. Shuai, B. Jiang, D. Dai, X. Yang, Rev. Sci. Instrum.,19 (2008) 094104.
    [1]S.R. Leone, Annu. Rev. Phys. Chem.,35 (1984) 109-135.
    [2]M. Schwell, F. Dulieu, H.W. Jochims, J.H. Fillion, J.L. Lemaire, H. Baumgartel, S. Leach, J. Phys. Chem. A,106 (2002) 10908-10918.
    [3]L. Shen, P.C. Singh, M. Kim, B.L. Zhang, A.G. Suits, J. Phys. Chem. A,113 (2009) 68-74.
    [4]R.I. Kaiser, Chem. Rev. (Washington, D.C.) 102 (2002).
    [5]H.A. Khwaja, Atmos. Environ.,29 (1995).
    [6]E.G. Chapman, D.V. Kenny, K.M. Busness, J.M. Thorp, C.W. Spicer, Geophys. Res. Lett.,22. (1995).
    [7]J.7W. C. Gardiner, Combustion Chemistry (Springer-Verlag, Berlin,1984). (1984).
    [8]H.M. Su, Y. He, F.N. Kong, W.H. Fang, R.Z. Liu, J. Chem. Phys.,113 (2000) 1891-1897.
    [9]F. Ioannoni, D.C. Moule, D.J. Clouthier, J. Phys. Chem.,94 (1990) 2290-2294.
    [10]H. Abe, H. Hayashi, J. Phys. Chem.,98 (1994) 2797-2802.
    [11]M. Brouard, J.P. Simons, J.X. Wang, Faraday Discuss.,91 (1991).
    [12]E. Martinez-Nunez, S. Vazquez, G. Granucci, M. Persico, C.M. Estevez, Chem. Phys. Lett., 412 (2005) 35-40.
    [13]S.R. Langford, A.D. Batten, M. Kono, M.N.R. Ashfold, J. Chem. Soc., Faraday Trans.,93 (1997).
    [14]M.C. Lin, K.J. Laider., Trans. Faraday Soc.,64 (1968).
    [15]K. Saito, T. Kakumoto, H. Kuroda, S. Torii, A. Imamura, J. Chem. Phys.,80 (1984) 4989-4996.
    [16]L. Khriachtchev, E. Macoas, M. Pettersson, M. Rasanen,J. Am. Chem. Soc.,124 (2002) 10994-10995.
    [17]G.S. Jolly, D.J. Mckenney, D.L. Singleton, G. Paraskevopoulos, A.R. Bossard, J. Phys. Chem., 90 (1986) 6557-6562.
    [18]G.S. Jolly, D.L. Singleton, G. Paraskevopoulos,J. Phys. Chem.,91 (1987) 3463-3465.
    [19]D.L. Singleton, G. Paraskevopoulos, R.S. Irwin, J. Phys. Chem.,94 (1990) 695-699.
    [20]M. Brouard, J.X. Wang, J. Chem. Soc., Faraday Trans.,88 (1992).
    [21]T. Ebata, T. Amano, M. Ito, J. Chem. Phys.,90 (1989) 112-117.
    [22]T. Ebata, A. Fujii, T. Amano, M. Ito, J. Phys. Chem.,91 (1987) 6095-6097.
    [23]H.Y. He, W.H. Fang,J. Am. Chem. Soc.,125 (2003) 16139-16147.
    [24]E. Martinez-Nunez, S.A. Vazquez, I. Borges, A.B. Rocha, C.M. Estevez, J.F. Castillo, F.J. Aoiz,J. Phys. Chem. A,109 (2005) 2836-2839.
    [25]K.W. Lee, K.S. Lee, K.H. Jung, H.R. Volpp, J. Chem. Phys.,117 (2002) 9266-9274.
    [26]H. Okabe, Photochemistry of Small Molecules (Wiley, New York 1994). (1994).
    [27]E. Debeer, M.P. Koopmans,, C.A. Delange, Y.M. Wang, W.A. Chupka, J. Chem. Phys.,94 (1991) 7634-7639.
    [28]C. McRaven, J. Alnis, B. Furneaux, N. Shafer-Ray, J. Phys. Chem. A,107 (2003) 7138-7141.
    [29]M.E. Greenslade, M.I. Lester, D.C. Radenovic, A.J.A. van Roij, D.H. Parker, J. Chem. Phys., 123 (2005).
    [30]T.L. Ng, S. Bell, J. Mol. Spectrosc,50 (1974).
    [31]S.K. Shin, E.J. Han, H.L. Kim, J. Photochem Photobiol, A,118 (1998).
    [32]R. Schinke, Photodissociation Dynamics (Cambridge University Press,Cambridge,1993). (1993).
    [33]J.R. Huber, R. Schinke,J. Phys. Chem.,91 (1993) 3463-3474.
    [34]C.X.W. Qian, A. Ogai, L. Iwata, H. Reisler, J. Chem. Phys.,92 (1990) 4296-4307.
    [35]S. Hennig, V. Engel, R. Schinke, M. Nonella, J.R. Huber,J. Chem. Phys.,87 (1987) 3522-3529.
    [36]R. Schinke, M. Nonella, H.U. Suter, J.R. Huber, J. Chem. Phys.,93 (1990) 1098-1106.
    [37]D. Solter, H.J. Werner, M. Vondirke, A. Untch, A. Vegiri, R. Schinke, J. Chem. Phys.,97 (1992) 3357-3374.
    [38]GE. Busch, K.R. Wilson,J. Chem. Phys.,56 (1972) 3626.
    [39]R.C. Mitchell, J.P. Simons, Discuss. Faraday Soc,44 (1967).
    [40]A.D. Sappey, D.R. Crosley, J. Chem. Phys.,93 (1990) 7601-7608.
    [1]F.F. Grim, Science,249 (1990) 1387-1392.
    [2]F.F. Crim,J. Phys. Chem.,100 (1996) 12725-12734.
    [3]R. Vasudev, R.N. Zare, R.N. Dixon, J. Chem. Phys.,80 (1984) 4863.
    [4]R.N. Zare, Science,279 (1998) 1875-1879.
    [5]J J. Lin, Science,300 (2003) 966-969.
    [6]F. Wang, J.S. Lin, K. Liu, Science,331 (2011) 900-903.
    [7]R. D. Guettler, G. C. Jones, L.A. Posey, R.N. Zare, Science,266 (1994) 259-261.
    [8]S.L. Anderson, Acc. Chem. Res.,30 (1997) 28-36.
    [9]B. Uselman, J.B. J. B. Liu, S. Anderson,J. Phys. Chem. A,110 (2005) 1278-1287.
    [10]M. Beckert, S.J. Greaves, M.N.R. Ashfold, Phys. Chem. Chem. Phys.,5 (2003) 308-314.
    [11]O. P. J. Vieuxmaire, M. G. D. Nix, J. A. J. Fitzpatrick, M. Beckert, R.N. Dixon, M.N.R. Ashfold, Phys. Chem. Chem. Phys.,6 (2004) 543-554.
    [12]R. Weinkauf, U. Boesl,J. Chem. Phys.,101 (1994) 8482.
    [13]R. Weinkauf, K. Walter, U. Boesl, E.W. Schlag, Chem. Phys. Lett,141 (1987) 267-276.
    [14]S. K. Lee, R. Silva, M. H. Kim, L. Shen, A.G Suits,J. Phys. Chem. A,111 (2007) 6741-6745.
    [15]C. S. Chang, C.-Y. Luo, K. P. Liu, J. Phys. Chem. A,109 (2005) 1022-1025.
    [16]L.P. Blanchard, P.L. Goff, Can. J. Chem.,35 (1957).
    [17]V.H. Dibeler, J.A. Walker,J. Opt. Soc. Am.,57 (1967) 1007-1012.
    [18]B. Brehm, J. H. D. Eland, R. Frey, A. Ku" stler, Int. J. Mass Spectrom. Ion Phys.,12 (1973) 213-224.
    [19]J. Momigny, G. Mathieu, H. Wankenne, M.A. Ferreira, Chem. Phys. Lett.,21 (1973) 606-610.
    [20]W.J. Balfour, Can. J. Phys.,54 (1976) 1969-1978.
    [21]M.J. Hubinfranskin, R. Locht, J. Katihabwa, Chem. Phys. Lett,37 (1976) 488-493.
    [22]M. J. Hubin-Franskin, D. Huard, P. Marmet, Int. J. Mass Spectrom. Ion Phys.,,27 (1978) 263-270.
    [23]R. V. Manvelyan, S.E. Kupriyanov, A. A. Perov, Theor. Exp. Chem.,14 (1978) 207-209.
    [24]P. Coppens, J.C. Reynaert, J. Drowart,J. Chem. Soc, Faraday Trans.2,75 (1979) 292-301.
    [25]F. Carnovale, A.P. Hitchcock, J.P.D. Cook, C.E. Brion, Chem. Phys.,66 (1982) 249-259.
    [26]P.O. Danis, T. Wyttenbach, J.P. Maier,J. Chem. Phys.,88 (1988) 3451.
    [27]D. D. Evard, T. Wyttenbach, J.P. Maier,J. Phys. Chem.,93 (1989) 3522-3525.
    [28]D. Mathur, F.M. Harris, Mass Spectrom. Rev.,8 (1989) 269-291.
    [29]I. Tokue, H. Shimada, A. Masuda, Y. Ito, H. Kume,J. Chem. Phys.,93 (1990) 4812.
    [30]D.A. Prinslow, P.B. Armentrout,J. Chem. Phys.,94 (1991) 3563.
    [31]I. Fischer, A. Lochschmidt, A. Strobel, G. Niednerschatteburg, K. Mullerdethlefs, V.E. Bondybey, Chem. Phys. Lett.,202 (1993) 542-548.
    [32]J. Baker, M. Konstantaki, S. Couris, J. Chem. Phys.,103 (1995) 2436.
    [33]A. K. Shukla, R. E. Tosh, Y.B. Chen, J.H. Futrell, Int. J. Mass Spectrom. Ion Processes, 146-147 (1995) 323-338.
    [34]R.A. Morgan, M.A. Baldwin, A.J. Orr-Ewing, M.N.R. Ashfold, W.J. Buma, J.B. Milan, C.A. de Lange, J. Chem. Phys.,104 (1996) 6117.
    [35]P. Baltzer, B. Wannberg, M. Lundqvist, L. Karlsson, D.M.P. Holland, M.A. MacDonald, M.A. Hayes, P. Tomasello, W. vonNiessen, Chem. Phys.,202 (1996) 185-209.
    [36]J.C. Huang, Y.S. Cheung, M. Evans, C.X. Liao, C.Y. Ng, C.W. Hsu, P. Heimann, H. Lefebvre-Brion, C. Cossart-Magos, J. Chem. Phys.,106 (1997) 864.
    [37]W.G. Hwang, H.L. Kim, M.S. Kim, J. Chem. Phys.,113 (2000) 4153.
    [38]D. Aitchison, J.H.D. Eland, Chem. Phys.,263 (2001) 449-457.
    [39]J. B. Liu, M. Hochlaf, G. Chambaud, P. Rosmus, C. Y. Ng, J. Phys. Chem. A,105 (2001) 2183-2191.
    [40]L. Zhang, J. Chen, H. Xu, J. Dai, S. Liu, X. Ma, J. Chem. Phys.,114 (2001) 10768.
    [41]J. Liu, M. Hochlaf, C.Y. Ng,J. Chem. Phys.,118 (2003) 4487.
    [42]L. M. Zhang, F. Wang, Z. Wang, S. Q. Yu, S.L. Liu, X.X. Ma, J. Phys. Chem. A,108 (2004) 1342-1347.
    [43]X. Zhuang, L. Zhang, J. Wang, Y. Ma, M. Yang, S. Yu, X. Ma, Chem. Phys. Lett.,432 (2006) 74-77.
    [44]X. J. Zhuang, L. M. Zhang, J. T. Wang, Y. C. Ma, S. Q. Yu, S.L. Liu, X.X. Ma, J. Phys. Chem. A,110 (2006) 6256-6260.
    [45]J. Li, C. Zhang, Q. Zhang, Y. Chen, C. Huang, X. Yang,J. Chem. Phys.,134 (2011) 114309.
    [46]J. Li, C. Zhang, Q. Zhang, Y. Chen, C. Huang, X. Yang, J. Chem. Phys.,135 (2011) 116102.
    [47]K. Sohlberg, Y. Chen,J. Chem. Phys.,101 (1994) 3831.
    [48]M. Hochlaf, J. Phys. B:At. Mol. Opt. Phys.,37 (2004).
    [49]H.-B. Chang, M.-B. Huang, Chem. Phys. Lett.,478 (2009) 139-143.
    [50]J.H. Callomon, Proc R Soc Lon Ser-A,244 (1958) 220-&.
    [51]S.Leach, Soc. Chim. Phys,74 (1969).
    [52]C. Huang, C. Zhang, X. Yang, J. Chem. Phys.,132 (2010) 154306.
    [53]H. Wang, X. Zhou, S. Liu, B. Jiang, D. Dai, X. Yang, J. Chem. Phys.,132 (2010) 244309.
    [54]R.N. Zare., Mol. Photochem.,4 (1972).
    [55]R. Schinke, Photodissociation Dynamics, Cambridge University Press, New York, (1995.).
    [1]J. F. Allen, A.D. Misener, Nature 141 (1938) 75.
    [2]P. Kapitza, Nature,141 (1938) 74.
    [3]Eric Whittle, David A. Dows, GC. Pimentel,/. Chem. Phys.,22 (1954) 1943.
    [4]M.E. Jacox, J. Phys. Chem. Ref. Data,13 (1984) 945-1068.
    [5]M.E. Jacox, J. Phys. Chem. Ref. Data,17 (1988) 269-511.
    [6]M.E. Jacox, J. Phys. Chem. Ref. Data,27 (1998) 115-393.
    [7]M.E. Jacox, Chem.Phys.,189(1994) 149-170.
    [8]A. Scheidemann, J.P. Toennies, J.A. Northby, Phys. Rev. Lett.,64 (1990) 1899-1902.
    [9]Gary E. Douberly, Paul L. Stiles, Roger E. Miller, Roman Schmied, K.K. Lehmann, J. Phys. Chem. A,114 (2010) 3391.
    [10]P.L. Raston, D.D. Kelloway, W. Jager, J. Chem. Phys.,137 (2012) 014302.
    [11]H. Schobel, C. Leidlmair, P. Bartl, A. Aleem, M. Hager, O. Echt, T.D. Mark, P. Scheier, Phys. Chem. Chem. Phys,13 (2011) 1092.
    [12]S.A. Krasnokutski, F. Huisken,J. Phys. Chem. A,115 (2011) 7120.
    [13]L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov,.J. Chem. Phys.,135 (2011) 154201.
    [14]K. Kuyanov-Prozument, M.Y. Choi, A.F. Vilesov,.J. Chem. Phys.,132 (2010) 014304.
    [15]D. Pentlehner, R. Riechers, B. Dick, A. Slenczka, U. Even, N. Lavie, R. Brown, K. Luria, Rev. Sci. Instrum.,80 (2009) 043302.
    [16]E. Loginov, A. Braun, M. Drabbels, Phys. Chem. Chem. Phys.,10 (2008) 6107.
    [17]G Aubock, J. Nagl, C. Callegari, W. Ernst, Phys. Rev. Lett.,101 (2008).
    [18]J.M. Merritt, J. Kopper, R.E. Miller, Phys. Chem. Chem. Phys.,9 (2007) 401.
    [19]Gary E. Douberly, R.E. Miller, J. Phys. Chem. A,111 (2007) 7292.
    [20]A. Lindinger, J.P. Toennies, A.F. Vilesov, Chem. Phys. Lett.,429 (2006) 1-7.
    [21]S. Yang, S.M. Brereton, A.M. Ellis, Rev. Sci. Instrum.,76 (2005) 104102.
    [22]M.N. Slipchenko, A.F. Vilesov, Chem. Phys. Lett.,412 (2005) 176-183.
    [23]S. Krasnokutski, G. Rouille, F. Huisken, Chem. Phys. Lett.,406 (2005) 386-392.
    [24]M. Farnik, J.P. Toennies, J. Chem. Phys.,122 (2005) 14307.
    [25]P.L. Stiles, D.T. Moore, R.E. Miller, J. Chem. Phys.,121 (2004) 3130.
    [26]G.I. Rouille,S. Krasnokutski, F. Huisken, T. Henning, O. Sukhorukov, A. Staicu, J. Chem. Phys.,120 (2004) 6028.
    [27]D.T. Moore, R.E. Miller, J. Chem. Phys.,119 (2003) 4713.
    [28]M.N. Slipchenko, S. Kuma, T. Momose, A.F. Vilesov, Rev. Sci. Instrum.,73 (2002) 3600.
    [29]M. Hartmann, A. Lindinger, J.P. Toennies, A.F. Vilesov, Phys. Chem. Chem. Phys.,4 (2002) 4839.
    [30]J.A. Northby, J. Chem. Phys.,115 (2001) 10065.
    [31]C. Callegari, K.K. Lehmann, R. Schmied, G. Scoles, J. Chem. Phys.,115 (2001) 10090.
    [32]Slava Grebenev, Boris Sartakov, J. Peter Toennies, A.F. Vilesov, Science,289 (2000) 1532.
    [33]K. Nauta, R.E. Miller, Science,287 (2000) 293.
    [34]S. Grebenev, M. Havenith, F. Madeja, J.P. Toennies, A.F. Vilesov, J. Chem. Phys.,113 (2000) 9060.
    [35]S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys.,112 (2000).
    [36]S. Grebenev, Science,289 (2000) 1532-1535.
    [37]Evgeni Lugovoj, J. Peter Toennies, A. Vilesov,J. Chem. Phys,112 (2000) 8217
    [38]K. Nauta, R.E. Miller, Science,283 (1999) 1895.
    [39]A. Lindinger, J.P. Toennies, A.F. Vilesov,J. Chem. Phys.,110 (1999) 1429.
    [40]J. Harms, M. Hartmann, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys.,110 (1999) 5124.
    [41]M. Hartmann, A. Lindinger, J.P. Toennies, A.F. Vilesov, Chem. Phys.,239 (1998) 139-149.
    [42]S. Grebenev, Science,279 (1998) 2083-2086.
    [43]E.L. Knuth, J. Chem. Phys.,107 (1997) 9125.
    [44]J.D. Close, F. Federmann, K. Hoffmann, N. Quaas, Chem. Phys. Lett.,276 (1997) 393-398.
    [45]J.P. Toennies, A.F. Vilesov, Angew. Chem., Int. Ed.,43 (2004) 2622-2648.
    [46]J. P. Toennies, Andrei F. Vilesov, Annu. Rev. Phys. Chem.,49 (1998) 1.
    [47]M. Hartmann, F. Mielke, J. P. Toennies, A.F. Vilesov, Phys. Rev. Lett,76 (1996) 4560.
    [48]L. Fechner, B. Griiner, A. Sieg, C. Callegari, F. Ancilotto, F. Stienkemeier, M. Mudrich, Phys. Chem. Chem. Phys.,14 (2012) 3843.
    [49]X. Zhang, N.B. Brauer, G. Berden, A.M. Rijs, M. Drabbels, J. Chem. Phys.,136 (2012) 044305.
    [50]M.Y. Choi, G.E. Douberly, T.M. Falconer, W.K. Lewis, C.M. Lindsay, J.M. Merritt, P.L. Stiles, R.E. Miller, Int. Rev. Phys. Chem.,25 (2006) 15.
    [51]S. Curtis, A. Boatwright, R.R. Wright, A.J. Stace, Chem. Phys. Lett.,401 (2005) 254-258.
    [52]M. Hartmann, N. Portner, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys.,110 (1999) 5109.
    [53]S. Grebenev, E. Lugovoi, B.G Sartakov, J. Peter Toennies, A.F. Vilesov, Faraday Discuss., 118 (2001) 19-32.
    [54]J.D. Close, F. Federmann, K. Hoffmann, N. Quaas, Chem. Phys. Lett.,276 (1997) 393-398.
    [55]K. Nauta, Science,283 (1999) 1895-1897.
    [56]M. Farnik, J.P. Toennies, J. Chem. Phys.,122 (2005) 014307.
    [57]A. Braun, M. Drabbels,J, Chem. Phys.,127 (2007) 114303.
    [58]A. Braun, M. Drabbels, J. Chem. Phys.,127 (2007) 114304.
    [59]A. Braun, M. Drabbels, J. Chem. Phys.,127 (2007) 114305.
    [1]D. Pentlehner, R. Riechers, B. Dick, A. Slenczka, U. Even, N. Lavie, R. Brown, K. Luria, Rev. Sci. Instrum.,80 (2009) 043302.
    [2]A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instrum.,68 (1997) 3477.
    [3]D.H. Parker, A.T.J.B. Eppink,J. Chem. Phys.,107 (1997) 2357.
    [4]J. Peter Toennies, Andrei F. Vilesov, Annu. Rev. Phys. Chem.,49 (1998) 1.
    [5]L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov,J. Chem. Phys.,135 (2011) 154201.
    [6]O.F. Hagena, W. Obert, J. Chem. Phys.,56 (1972) 1793.
    [7]E.L. Knuth, J. Chem. Phys.,107 (1997) 9125.
    [8]S. Yang, S.M. Brereton, A.M. Ellis, Rev. Sci. Instrum.,76 (2005) 104102.
    [9]A.T.J.B. Eppink, D.H. Parker, M.H.M. Janssen, B. Buijsse, W.J. van der Zande, J. Chem. Phys., 108(1998)1305.
    [10]M. Brouard, F. Quadrini, C. Vallance, J. Chem. Phys.,127 (2007) 084305.
    [11]M. Laura Lipciuc, M.H.M. Janssen, Phys. Chem. Chem. Phys.,8 (2006) 3007.
    [12]B.D. Leskiw, M.H. Kim, G.E. Hall, A.G. Suits, Rev. Sci. Instrum.,76 (2005) 104101.
    [13]A.J. van den Brom, T.P. Rakitzis, J. van Heyst, T.N. Kitsopoulos, S.R. Jezowski, M.H.M. Janssen, J. Chem. Phys.,117 (2002) 4255.
    [14]A.M. Rijs, E.H.G Backus, C.A. de Lange, M.H.M. Janssen, N.P.C. Westwood, K. Wang, V. McKoy, J. Chem. Phys.,116,(2002) 2776.
    [15]N. Thire, R. Cireasa, D. Staedter, V. Blanchet, S.T. Pratt, Phys. Chem. Chem. Phys.,13 (2011) 18485.
    [16]G Gitzinger, M.E. Corrales, V. Loriot, G.A. Amaral, R. de Nalda, L. Banares, J. Chem. Phys., 132(2010)234313.
    [17]A.T.J.B. Eppink, D.H. Parker, J. Chem. Phys.,109 (1998) 4758.
    [18]A. Braun, M. Drabbels,J. Chem. Phys.,127 (2007) 114305.
    [19]A. Braun, M. Drabbels,J. Chem. Phys.,127 (2007) 114303.
    [20]A. Braun, M. Drabbels,J. Chem. Phys.,127 (2007) 114304.
    [21]F. Lackner, G Krois, M. Theisen, M. Koch, W.E. Ernst, Phys. Chem. Chem. Phys.,13 (2011) 18781.
    [22]L. Fechner, B. Gruner, A. Sieg, C. Callegari, F. Ancilotto, F. Stienkemeier, M. Mudrich, Physical chemistry chemical physics:PCCP,14 (2012) 3843-3851.
    [23]E. Loginov, M. Drabbels, J. Chem. Phys.,136 (2012) 154302.
    [24]X. Zhang, N.B. Brauer, G Berden, A.M. Rijs, M. Drabbels, J. Chem. Phys.,136 (2012) 044305.
    [25]H.W. Hermann, J. Chem. Phys.,76 (1982) 4766.
    [26]M.G. Gonzalez, J.D. Rodriguez, L. Rubio-Lago, A. Garcia-Vela, L. Banares, Phys. Chem. Chem. Phys.,13 (2011) 16404.
    [27]M.N. Slipchenko, S. Kuma, T. Momose, A.F. Vilesov, Rev. Sci. Instrum.,73 (2002) 3600.
    [28]S. Curtis, A. Boatwright, R.R. Wright, A.J. Stace, Chem. Phys. Lett,401 (2005) 254-258.
    [29]E. Loginov, A. Braun, M. Drabbels, Phys. Chem. Chem. Phys.,10 (2008) 6107.
    [30]R. Schmied, P. Carcabal, A.M. Dokter, V.P.A. Lonij, K.K. Lehmann, G. Scoles,J. Chem. Phys.,121 (2004) 2701.
    [31]M.V. Rama Krishna, K.B. Whaley, J. Chem. Phys.,93 (1990) 6738.
    [32]M. Barranco, E. Hernandez, Phys. Rev. B,49 (1994) 12078-12086.
    [33]S. Chin, E. Krotscheck, Phys. Rev. B,52 (1995) 10405-10428.
    [34]M. Lewerenz, J. Chem. Phys.,106 (1997) 4596.
    [35]Robert G. Neuhauser, Klaus Siglow, H.J. Neusser, J. Chem. Phys.,106 (1997) 896.
    [1]J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed.,43 (2004) 2622.
    [2]S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys.,112 (2000) 4485.
    [3]M. Hartmann, N. Portner, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys.,110 (1999) 5109.
    [4]J. P. Toennies, Andrei F. Vilesov, Annu. Rev. Phys. Chem.,49 (1998) 1.
    [5]M.Y. Choi, G.E. Douberly, T.M. Falconer, W.K. Lewis, C.M. Lindsay, J.M. Merritt, P.L. Stiles, R.E. Miller, Int. Rev. Phys. Chem.,25 (2006) 15.
    [6]M. Hartmann, R. Miller, J. Toennies, A. Vilesov, Phys. Rev. Lett.,75 (1995) 1566-1569.
    [7]J. Harms, M. Hartmann, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys.,110 (1999) 5124.
    [8]E. Loginov, M. Drabbels, J. Chem. Phys.,136 (2012) 154302.
    [9]X. Zhang, N.B. Brauer, G. Berden, A.M. Rijs, M. Drabbels, J. Chem. Phys.,136 (2012) 044305.
    [10]Szymon Smolarek, Nils B. Brauer, Wybren J. Buma, M. Drabbels, J. Am. Chem. Soc,132 (2010)14086-14091.
    [11]William K. Lewis, Brian E. Applegate, B.l.S.r. Judit Szta'ray, Tomas Baer, Raymond J. Bemish, R.E. Miller,J. Am. Chem. Soc,126 (2004) 11283-11292.
    [12]A. Braun, M. Drabbels, J. Chem. Phys.,127 (2007) 114304.
    [13]A. Braun, M. Drabbels, J. Chem. Phys.,127 (2007) 114303.
    [14]A. Braun, M. Drabbels, J. Chem. Phys., 127 (2007) 114305.
    [15]H.W. Hermann, J. Chem. Phys.,76 (1982) 4766.
    [16]A.T.J.B. Eppink, D.H. Parker,J. Chem. Phys.,109 (1998) 4758.
    [17]G. Gitzinger, M.E. Corrales, V. Loriot, G.A. Amaral, R. de Nalda, L. Banares, J. Chem. Phys., 132(2010)234313.
    [18]M.G. Gonzalez, J.D. Rodriguez, L. Rubio-Lago, A. Garcia-Vela, L. Banares, Phys. Chem. Chem. Phys.,13 (2011) 16404.
    [19]N. Thire, R. Cireasa, D. Staedter, V. Blanchet, S.T. Pratt, Phys. Chem. Chem. Phys.,13 (2011) 18485.
    [20]K.Q. Lao, M.D. Person, P. Xayariboun, L.J. Butler, J. Chem. Phys.,92 (1990) 823.
    [21]Y. Amatatsu, K. Morokuma, S. Yabushita, J. Chem. Phys.,94 (1991) 4858.
    [22]T. Suzuki, H. Kanamori, E. Hirota, J. Chem. Phys.,94 (1991) 6607.
    [23]M. Zahedi, J.A. Harrison, J.W. Nibler,J. Chem. Phys.,100 (1994) 4043.
    [24]O.V. Rattigan, D.E. Shallcross, R. Anthony Cox,J. Chem. Soc, Faraday Trans.,93 (1997) 2839-2846.
    [25]D. Pentlehner, J.H. Nielsen,, A. Slenczka, K. Molmer, H. Stapelfeldt, Phys. Rev. Lett.,110 (2013)093002-093001.
    [26]M. Brouard, F. Quadrini, C. Vallance, J Chem Phys,127 (2007) 084305.
    [27]Yoshihiro Sato, Yutaka Matsumi, M. Kawasaki, K. Tsukiyama, R. Bersohn, J. Phys. Chem,99 (1995)16307.
    [28]Hideki Katayanagi, T. Suzuki, Chem. Phys. Lett.,360 (2002) 104.
    [29]A.M. Rijs, E.H.G. Backus, C.A. de Lange, M.H.M. Janssen, N.P.C. Westwood, K. Wang, V. McKoy, J. Chem. Phys.,116 (2002) 2776.
    [30]T. Suzuki, H. Katayanagi, S. Nanbu, M. Aoyagi,J. Chem. Phys.,109 (1998) 5778.
    [31]A. Sugita, M. Mashino, M. Kawasaki, Y. Matsumi, R. Bersohn, G. Trott-Kriegeskorte, K.-H. Gericke, J. Chem. Phys.,112 (2000) 7095.
    [32]M.H. Kim, W. Li, S.K. Lee, A.G Suits, Can. J. Chem.,82 (2004) 880.
    [33]T.P. Rakitzis, Science.,303 (2004) 1852.
    [34]M. Brouard, A.V. Green, F. Quadrini, C. Vallance, J. Chem. Phys., 127 (2007) 084304.
    [35]Y. Kwon, K.B. Whaley, J. Chem. Phys.,115 (2001) 10146.
    [36]Y. Kwon, P. Huang, M.V. Patel, D.r. Blume, K.B. Whaley, J. Chem. Phys.,113 (2000) 6469.
    [37]S. Grebenev, M. Havenith, F. Madeja, J.P. Toennies, A.F. Vilesov, J. Chem. Phys.,113 (2000) 9060.
    [38]F. Paesani, F.A. Gianturco, KB. Whaley,J. Chem. Phys.,115 (2001) 10225.
    [39]A.J. van den Brom, T.P. Rakitzis, J. van Heyst, T.N. Kitsopoulos, S.R. Jezowski, M.H.M. Janssen, J. Chem. Phys.,117(2002) 4255.
    [40]Y.X. Mo, H. Katayanagi, M.C. Heaven, T. Suzuki, Phys. Rev. Lett,77 (1996) 830.
    [41]H. Katayanagi, Y.X. Mo, T. Suzuki, Chem. Phys. Lett.,247 (1995) 571.
    [42]A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instrum.,68 (1997) 3477.
    [43]A. Braun, M. Drabbels, Rev. Sci. Instrum.,76 (2005) 113103.
    [44]William K. Lewis, Brian E. Applegate, Judit Sztaray, Balint Sztaray, Tomas Baer, Raymond J. Bemish, R.E. Miller, J.Am. Chem. Soc,126 (2004) 11283.
    [45]Michal Farnik, Ulrich Henne, Bjorn Samelin, J.P. Toennies, Phys. Rev. Lett.,81 (1998) 3892.
    [46]E. Loginov, C. Callegari, F. Ancilotto, M. Drabbels, J. Phys. Chem. A,115 (2011) 6779-6788.
    [47]F. Stienkemeier, J. Higgins, W.E. Ernst, G. Scoles, ZPhys B Con Mat,98 (1995) 413-416.
    [48]F. Stienkemeier, J. Higgins, W. Ernst, G Scoles,Phys. Rev. Lett.,74 (1995) 3592-3595.
    [49]F. Ancilotto, P.B. Lerner, M.W. Cole, J. Low Temp. Phys.,101 (1995) 1123.
    [50]Szymon Smolarek, Nils B. Brauer, Wybren J. Buma, M. Drabbels, J. Am. Chem. Soc,132 (2010) 14086.
    [1]V.G. Anicich,J. Phys. Chem. Ref. Data,22 (1993) 1469.
    [2]E. Herbst, W. Klemperer, The Astrophysical Journal,185 (1973) 505.
    [3]J.B. Marquette, B.R. Rowe, G Dupeyrat, E. Roueff, Astron. Astrophys. Rev.,147 (1985) 115.
    [4]W.D. Watson, The Astrophysical Journal,183 (1973) L17.
    [5]A.GGM. Tielens, W. Hagen, Astrophys. Space Sci.,114 (1982) 245.
    [6]M.O. SHIMIZU, Astrophys. Space Sci.,36 (1975) 353.
    [7]A. Borysow, L. Frommhold, The Astrophysical Journal,303 (1986) 495.
    [8]V.G Anicich, M.J. McEwan, Planet. Space Sci,45 (1997) 897.
    [9]A. Ricard, G Cernogora, M. Fitaire, L. Hochard, N. Kouassi, C. Speller, J.R. Vacher, Plrmt. Spuw Sci,43 (1995)41.
    [10]J-C Legrand, A-M Diamy, R, Hrachb, V. Hrachova', L.d.C.Gn.r.e.d.C. des, Vacuum,50 (1998) 491.
    [11]J C Legrand, A M Diamy, R Hrach, V Hrachova, L.d.C.Ge.e.d.C. des, Vacuum,48 (1997) 671
    [12]Esther Carrasco, Miguel Jime'nez-Redondo, I. Tanarro, V.c.J. Herrero, Phys. Chem. Chem. Phys,13 (2011) 19561.
    [13]Graham B. I. Scott, David A. Fairley, Colin G Freeman, M.J. McEwan, V.G Anicich, J. Chem. Phys,109 (1998) 9010.
    [14]D. Smith, N. G Adams, T.M. Miller, J. Chern. Phys.,69 (1978) 308.
    [15]J.A. Luine, GH. Dunn, The Astrophysical Journal,299 (1985) L67.
    [16]M. Womack, L.M. Ziurys, S. Wyckoff, The Astrophysical Journal,393 (1992) 188.
    [17]P. Bletzinger, B.N. Ganguly, Chem. Phys. Lett,247 (1995) 584.
    [18]D.M. Bell, J.M. Boyle, S.L. Anderson, J. Chem. Phys.,135 (2011) 044305.
    [19]E. Tatarova, F.M. Dias, B. Gordiets, C.M. Ferreira, Plasma Sources Sci. Technol.,14 (2005) 19.
    [20]T. FUJⅡ, N. ARAI, The Astrophysical Journal,519 (1999) 858.
    [21]J. R. Vacher, E.L. Due, M. Fitaire, Planet. Space Sci.,45 (1997) 1407.
    [22]H. Bohringer, F. Arnold, Int. J. Mass Spectrom. Ion Processes,49 (1983) 61-83.
    [23]S.E. Barlow, GH. Dunn, M. Schauer, Phys. Rev. Lett,52 (1984) 902-905.
    [24]B.R. Rowe, J.B. Marquette, G Dupeyrat, E.E. Ferguson, Chem. Phys. Lett.,113 (1985) 403-406.
    [25]T.L. Mazely, M.A. Smith, Chem. Phys. Lett.,144 (1988) 563-569.
    [26]S. Jaksch, A. Mauracher, S.D. A. Bacher, H.S. F. Ferreira da Silva, O. Echt, T. D. Mark, M. Probst, D. K. Bohme, P. Scheier, J. Chem. Phys.,129 (2008) 224306.
    [27]S. Yang, S.M. Brereton, A.M. Ellis, Int. J. Mass spectrom.,253 (2006) 79.
    [28]S.A. Krasnokutski, F. Huisken, J. Phys. Chem. A,115 (2011) 7120.
    [29]Shengfu Yang, Scott M. Brereton, M.D. Wheeler, A.M. Ellis, Phys. Chem. Chem. Phys.7 (2005) 4082.
    [30]H. Schobel, C. Leidlmair, P. Bartl, A. Aleem, M. Hager, O. Echt, T.D. Mark, P. Scheier, Phys. Chem. Chem. Phys.,13 (2011) 1092.
    [31]M. Goulart, P. Bartl, A. Mauracher, F. Zappa, A.M. Ellis, P. Scheier, Phys. Chem. Chem. Phys.,15 (2013) 3577.
    [32]S. Denifl, F. Zappa, I. Mahr, F.F.d. Silva, A. Aleem, A. Mauracher, M. Probst, J. Urban, P. Mach, A. Bacher, O. Echt, T.D. Mark, P. Scheier, Angew. Chem., Int. Ed.,48 (2009) 8940.
    [33]M. Faraik, J.P. Toennies, J. Chem. Phys.,122 (2005) 014307.
    [34]Adrian Boatwright, Jay Jeffs, A.J. Stace,J. Phys. Chem. A,111 (2007) 7481.
    [35]S.A. Krasnokutski, F. Huisken, J. Phys. Chem. A,114 (2010) 7292.
    [36]S. Muller, S. Krapf, T. Koslowski, M. Mudrich, F. Stienkemeier, Phys. Rev. Lett.,102 (2009) 183401-183401.
    [37]T. Ruchti, K. Forde, B.E. Callicoatt, H. Ludwigs, K.C. Janda, J. Chem. Phys.,109 (1998) 10679-10687.
    [38]B.E. Callicoatt, K. Forde, L.F. Jung, T. Ruchti, K.C. Janda,7. Chem. Phys.,109 (1998) 10195-10200.
    [39]B.E. Callicoatt, K. Forde, T. Ruchti, L.L. Jung, K.C. Janda, N. Halberstadt, J. Chem. Phys., 108 (1998) 9371-9382.
    [40]B.E. Callicoatt, D.D. Mar, V.A. Apkarian, K.C. Janda, J. Chem. Phys.,105 (1996) 7872-7875.
    [41]M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys.,102 (1995) 8191-8207.
    [42]A. Scheidemann, B. Schilling, J.P. Toennies, J. Phys. Chem.,97 (1993) 2128-2138.
    [43]D. Dhuicq, B. Jugi, C. Benoit, V. Sidis,J. Chem. Phys.,109 (1998) 512.
    [44]M.M. Schauer, S.R. Jefferts, S.E. Barlow, G.H. Dunn, J. Chem. Phys.,91 (1989) 4593.
    [45]E.G. Jones, R.L.C. Wu, B.M. Hughes, T.O. Tiernan, D.G. Hopper, J. Chem. Phys.,73 (1980) 5631.
    [46]N.G. Adams, D. Smith,J. Phys. B.,9 (1976) 1439.
    [47]C.J.GJ. Uiterwaal, J. van Eck, A. Niehaus,J. Chem. Phys.,102 (1995) 744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700