高功率激光与材料相互作用力学效应的测试与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要从实验上全面研究了高功率激光与物质相互作用存在的力学效应、超声效应、空泡效应、等离子发射光谱以及等离子冲击波。
     首先提出了一种由负轴棱镜和球面透镜组成的光学系统,该系统可产生光斑尺寸可变的无衍射光束,指出若用该系统作为激光加工的聚焦系统,在无衍射范围内对工件位置误差的敏感度为零,对工件表面的平整度适应性强,并可通过更换普通的球面透镜来适应不同加工要求,同时指出该系统在测量方面潜在的应用价值。
     采用光学阴影同步照相法研究了激光烧蚀靶材过程中烧蚀物的空间形状及其发展过程,首次提出光场力概念,结果表明:烧蚀物离开靶材表面时的速率分布由蒸发机制决定,在作用激光作用时间内烧蚀物的传输行为由扩散机制和光场力机制共同决定,激光作用结束后,烧蚀物的传输行为由扩散机制单独决定。
     研制了基于光探针技术的测量等离子体发射光谱的装置,并用该装置研究了激发态Al原子的特征谱线的飞行谱,计算了激发态Al原子的飞行速度。
     研制了基于表面形变效应光偏转的激光超声测试仪,用其测量了Lamb波、表面波及纵波。
     研制了基于折射率效应光偏转的等离子冲击波测试仪,首次用光偏转法测量了透明固体中的冲击波。
     首次研制了基于胡克定律的光纤瞬态力学传感器,用其研究了不同激光能量下水下打靶过程中靶的力学效应,结果表明:靶依次受到三个瞬态脉冲压力;空泡射流的产生及射流冲击力的大小,由泡能和无量纲参数共同决定。实验研究了气液环境中激光打孔的效率,得到了水中激光打孔效率远高于空气中打孔效率的重要结论,并分析了原因。
     根据考虑空泡能量耗散的球形空泡动力学模型,数值计算了激光泡的脉动过程,在此基础上,基于气液两相面折射率变化引起光偏转原理,设计并研制了测量激光泡一维几何线度的实验装置,用其研究了不同激光能量下靶材表面激光泡各次脉动的最大泡半径及最小径向距离,并对数值计算与实验结果进行了分析。
     本文的研究结果对激光的应用及相关检测技术的发展有一定的促进作用。
The mechanical effect, the ultrasonic effect, laser-generated bubble dynamics, the plasma emission spectrum and the laser-induced plasma shock wave during the high-power laser and matter interaction are systemically investigated by experiments.A novel optical system including a negative axial prism and a lens system is first designed to generate a non-diffraction beam with changeable spot size. The system acts as the focusing system to laser processing. It is proposed that the system has naught sensitivity to the position error of work in the range of non-diffraction, high adaptability to the smoothness of work and can satisfy various processing requirements by replacing the general spherical lens. The potential applications of the system are also proposed.The spatial shape and the transportation of ablated material during the process of laser ablates target material is studied by the mean of synchrostep shadowgraph. Light field force is first proposed. As a result, the speed distribution of ablated materials when they leaving target material surface is determined by the mechanism of ablation. The transportation behavior of ablated materials during the action of working laser is controlled by diffusion mechanism and light field force mechanism. The transportation behavior is determined by diffusion mechanism only after the action of laser.Based on the optical probe method, a system is designed to detect the plasma emission spectrum. The characteristic spectral line flight spectrum of Al atoms in excited state is investigated by experiment and the flight velocity is calculated.By the beam deflection technique based on surface shape change effect, a laser ultrasonic detector is developed. Lamb wave, surface wave and longitudinal wave aredetected.An instrument based on the beam deflection principle by refractive index effect is designed to detect the laser-induced plasma shock wave and the shock wave in transparent solid is first measured by beam deflection technique.Based on Hooke Law, a fiber transient mechanical sensor is first proposed. And the mechanical effect of target during the action of laser with various energy working on the target under water is investigated. The result shows that three transient pulse forces stress the target in turn. The generation and the impact force of cavitation liquid-jet depend on the bubble energy and non-dimension parameters. The efficiency of laser
    
    slotting in air and water is also investigated by experiment. The experimental results show that the efficiency in water is much higher than that in air. The reasons have been analyzed.According to the spherical cavitation bubble dynamic model considering the bubble energy dissipation, the impulsive motion of laser-generated bubble is calculated numerically. Then based on beam deflection by the variation of refractive index on the boundary surface between air and water, a system is designed to measure laser-generated bubble linear dimension geometric size. The maximum radius and the minimum radial distance of the bubbles near the target surface induced by laser with different pulse energy are investigated by this system. Furthermore, the results from numerical calculation and experiment have been matched.These research results will develop laser applications and corresponding detection techniques.
引文
1.中国科学院上海光机所.我国激光发展战略研究.上海科学技术文献出版社,1988
    2.安毓英,曾小东.照亮廿一世纪之光.激光与红外.2000,30(3):131~133
    3. Dyer P E. Spectroscopic and ion probe measurements of KrF laser ablated Y-Ba-Cu-O bulk samples. Appl. Phys. Lett. 1988, 53(6): 534~536
    4. Whit RM e. Generation of elastic waves by transient heating. J. Appl. Phys. 1963, 34(12): 3559~3567
    5. Steven M B, Lawrence S B. Goldstein. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 1990, 348(22): 348~352
    6.耀辉,曾庆济.波分复用全光通信网中的放大自发辐射噪声积累效应研究.光学学报.2000,20(2):195~200
    7.张银江,方鸣岗.陶瓷激光精密打孔工艺研究.激光与红外.2001,31(3):161~162.
    8.唐立家,蔡希洁,林尊琪.“神光Ⅱ”主放大器角变反镜衰减曲线的精密测量.中国激光2002,A29(1):79~81
    9. Mcguire A, Bonenfant C P. The blueprints for optical networking. IEEE Commun. Mag. 1998, 36(2): 68~78
    10. Patricia V. H, Cheston F. WDM deployment in the local exchange network. IEEE Commun. Mag. 1998, 36(2): 56~61
    11.卢益民,郑友民.激光对潜通信系统探测信号动态范围自适应调节.激光与红外.2001,31(5):291~293
    12.马惠萍,刘丽华,杨乐民,李鹏生.平行光束反射光强调制型光纤位移传感器研究.光学学报.2003,23(2):176~181
    13. Ramsden S A, Davies W E R. Radiation scattered from the plasma produced by a focused ruby laser beam. Phys. Rev. Lett. 1964, 13(7): 227~229
    14.李祥友,曾晓雁,激光精密切割不锈钢模板割缝质量控制.中国激光.2002,A29(2):176~180
    15.曾常春,唐勇.低强度激光的生物学效应及抗自由基损伤的作用.中国激光医学杂志.2004,13(1):48~49
    16.赖金平,肖健云.纤维内镜Nd:YAG激光治疗咽喉疾病.中国激光医学杂志.2000,9(1):39~40
    17.Aiimen M V,漆海兵译.激光束与材料相互作用的物理原理与应用.第1版,科 学出版社.1994
    18
    
    18.陆建,倪晓武,贺安之.激光与材料相互作用物理学.第1版.机械工业出版社.1996
    19.强希文,张建泉,刘峰.激光等离子体的辐射与自吸收现象研究.激光杂志.1999,20(6):20~23
    20.张建泉,陈荣华,强希文.激光产生的激波在靶材中的传播及层裂效应.中国激光.2002,A29(3):197~200
    21.郭大浩,吴鸿兴,王声波.激光冲击强化机理研究.中国科学(E辑).1999,29(3):222~226
    22. Dick K, Pepin H, Martineau J. Plasma creation form thin aluminum targets by a TEA-CO_2 laser. J. Appl. Phys. 1973, 44(7): 3284~3288
    23.卞保民,陈建平,杨玲,倪晓武,陆建.空气中激光等离子体冲击波的传输特性研究.物理学报.2000,49(3):445~448
    24. Vogel A et al. Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Neodymium: YAG lasers. Ophthalmology, 1986; 93: 1259~1305
    25. Schoeffmann H. Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophone, J. Appl. Phys., 1988; 63: 46~61
    26.卞保民等.激光等离子体空气冲击波波前参量的测定及研究.中国激光.2001,A28(2):155~159
    27. Chen J P, Ni X W, Lu J et al. Laser-induced plasma shock wave and cavity on metal surface underwater. Microwave and Optical Technology Letter. 2000, 25(5): 307~311
    28. Stegman R L, Schriempf J T. Experimental studies of laser-supported absorption waves with 5 ms pulses of 10.6urn radiation. J. Appl. Phys. 1973, 44(8): 3675~3681
    29. Ni X W, Lu J, He A Z. Detection of plasma produced in the interaction between YAG and CCD. Chin. Phys. Lett. 1994, 11(3): 129~132
    30. Lu J, Ni X W, He A Z. An interferometric investigation of a laser-supported detonation wave and its propgation. Optics Comm. 1995, 120: 144~148
    31. Shaw S J, Schiffers W P, Emmony D C. Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity. J. Acoust. Soc. Am. 2000, 107(6): 3065~3072
    32. Shaw S J, Schiffers W P, Emmony D C. The interaction of a laser-generated cavity with a solid boundary. J. Acoust. Soc. Am. 2001, 110(4): 1822~182
    33.于鸿楠,张德勇,许龙江.用光偏转技术研究铜的激光烧蚀阈值.中国激光.2001,A28(12):1089~1091
    
    34. Dewhurst R J, Williams B A. Fibre optic system for the monitoring of asymmetric Lamb wave modulation in thin films. Electron. Lett. 33(21): 1813~1815
    35.张延惠,宋一中.激光烧蚀金属靶时气体电离分析.光谱学与光谱分析.2000,20(1):25~27
    36.李志勇,朱文辉,周光泉.实验研究有机玻璃约束层对激光冲击波的影响.中国激光.1997;A24(2):118~121
    37. Pirri A N, Schlier R. Momentum transfer and plasma formation above a surface with a high-power CO_2 laser. Appl. Phys. Lett. 1972, 21(3): 79~81
    38.王春奎,傅裕寿,李惠宁.强激光作用于靶材时冲量的测量.激光.1982,9(9):48~50
    39.王秀风,胡世光.激光点热源作用下试件内部热传导的实验研究.光电子激光.2004,15(2):226~229
    40.丁红胜.共焦法布里—珀罗干涉仪的共轭分析.北京科技大学学报.1998,20(6):590~593
    41.陈安健.合金钢激光焊接的研究.激光与红外.2000,30(3):166~168
    42.姚建华,陈王利.激光焊接金刚石圆锯片工艺研究.中国激光.2000,A27(8):761~764
    43.魏光辉,朱宝亮.激光束光学.北京:北京工业学院出版社,1988:138~140
    44. Dwrnin J. Diffraction-free Beam. Phgs. Rew. Lett. 1987, 58: 1499~1501
    45. Perez M V. Diffraction patterns and zone plates produced by thin linear axicons. Optica Acta. 1986, 33(9): 1161~1165
    46.黄宜军,刘金岭,胡卫东.无衍射贝塞尔光束杨氏弹性模量测量系统.激光与红外.2003,33(3):215~217
    47.张新宝,赵斌,李柱.无衍射光莫尔条纹空间直线度误差的测量方法.华中理工大学学报.2000,28(7):44~46
    48.黄宜军,刘金岭,胡卫东.应用无衍射贝塞尔光束的固体线膨胀系数测量系统.光学技术.2003,29(4):477~479
    49. Grame S. Efficient Generation of Nearly Diffraction-free Beams by Using an Axicon. Opt Eng. 1992, 31(12): 2640~2643
    50. Herman R M, Wigging T A. High-efficiency difractionless beams of constant size and intensity. Appl. Opt. 1994, 33(31): 7297~7306
    51. Cox A J, Dibble D C. Non-diffracting beam from a spatially filtered Fabry-Perot resonator. J. Opt. Soc. Am. 1992, A9: 282~286
    52.蔡邦维.旋转棱镜对激光束的变换特性,中国激光,1994,A21(1):21~25
    
    53.彭英才,傅广生,韩理.硅基纳米微粒的激光烧蚀沉积及可见光发射特性.激光与红外.2000,30(2):91~94
    54.凌浩,施维,孙剑.用脉冲激光沉积方法制备氮化铝薄膜.中国激光.2001,A28(3):272~274
    55.袁永华,刘颂豪,孙承纬.脉冲激光辐照硅材料引起表面波纹的特性研究.光学学报.2004,24(2):239~242
    56. Inam A, Wu X D. Pulsed laser etching of high T_c superconducting films. Appl. Phys. Lett. 1987, 51(14): 1112~1114
    57. Narayan J, Biunno N. Formation of thin superconducting films by the laser processing method. Appl. Phys. Lett. 1987, 51(22): 1845~1847
    58. Ashkin A, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24(4): 156~159
    59. Ashkin A, Dziedzic J M. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987, 330(31): 769~771
    60. Steven M, Block. Making light work with optical tweezers. Nature. 1992, 360(3): 493~495
    61. Shunichi S, Yoshio W. Optical trapping of microscopic metal particles. Opt. Lett. 1994, 19(22): 1807~1809
    62.陈晓源.脉冲激光沉积法制备薄膜的机制.南京大学博士论文,1998
    63. Anderson D R, Smith A T. Depth profile using laser-induced plasma emission spectrometry. Appl. spectrosc. 1995, 49(6): 691~701
    64. Aden M, Kreutz E W. Laser-induced plasma formation during pulsed laser deposition. J. Phys. D: Appl. Phys. 1993, 26: 1545~1531
    65.成金秀,温天舒,朱宗元.激光等离子体喷射空间特性实验观测.光学学报.1997,17(10):1327~1331
    66. Gu H P, Lou Q H, Cheng N H et al. Experimental study of enhanced emission of the laser-ablatedplume in backing gas. Appl. Phys. B. 1994, 58(2): 143~148
    67. Kumuduni W K A, Nakada Y, Okada T et al. Spatial distribution of YO moiwcules elected from laser-ablated YBa_2 Cu_2 O_(7-x). Appl. Phys. B1994, 58(4): 289~294
    68. Golovyov V V, Eseualiev R O. Ablation of an optically homogeneous absorbing medium by scattered pulsed laser radiation. Appl. Phys. B. 1993, 57(5): 451~457
    69.Paul J W. The plasma properties of laser-ablated SiO_2. J. Appl. Phys. 1992; 74(4): 1280~1289
    
    70. Xia Y Y, Mei L M, Tan C Y et al. Laserablation of copper and aluminium in air. Appl. Phys.(A) 1991, 52(6): 425~432
    71.别尔凯维奇著.张叙又等译.金属光谱分析指导.科学出版社,1956
    72.满宝元,王象泰.激光烧蚀金属表面产生的发射光谱分析.光学学报.1991,17(2):161~165
    73.张树东,冯旺军,陈冠英等.激光诱导Al等离子体的时间分辩光谱.应用激光.2000,20(4):155~158
    74.安承武,王又青,宋文栋.影响激光诱导等离子体喷射速度的因素.中国激光.1996,A23(8):715~718
    75.朱士尧.等离子体物理学基础.科学出版社,1956
    76.马腾才.等离子体物理原理.中国科技大学出版社,1986
    77.张延惠,宋一中.激光烧蚀金属靶时气体电离分析.光谱学与光谱分析.2000,20(1):25~27
    78.王公堂,王象泰,张怿慈等.激光烧蚀硅所生成的等离子体发射光谱特性.中国激光.1996,A23(1):64~67
    79.应崇福.超声学.北京:科学出版社,1993
    80.袁易全.超声换能器.江苏:南京大学出版社,1989
    81. McDonal A F. On the precursor in laser-generated ultrasound waveforms in metals. Appl. Phys. Lett. 1990, 56(3): 230~232
    82. Rose L R F. Point-source representation for laser-generated ultrasound. J. Acoust. Soc. Am. 1984, 75(4): 723~732
    83. Cheng J C, Zhang S Y. Quantitative theory for laser-generated Lamb waves in orthotropic thin plates. Appl. Phys. Lett. 1999, 74(22): 2087~2091
    84.应崇福.激光超声的原理及其在固体中的应用.物理.1996,25(6):321~327
    85.苏琨,任大海,李建,尤政.基于激光超声的微裂纹检测技术的研究.光学技术.2002,28(6):518~522
    86. Rose L R F. Point-source representation for laser-generated ultrasound. J. Acous. Soc. Am. 1984, 75(3): 723~732.
    87. Zhang X R, Zhang W, Wang X D et al. Laser ultrasound characterization of chemically prepared nano-structured silver. Appl. Phys., A. 2000, 70: 573~580.
    88. Aussel J D, Brun A L, Baboux J C. Generating acoustic waves by laser: theoretical and experimental study of the emission source. Ultrasonics. 1988, 26: 245~255.
    89. Farson D F, Kim K R. Generation of optical and acoustic emission in laser weld plumes. J. Appl. Phys. 1999, 85(3): 1329~1338
    
    90.钱梦騄.激光超声检测技术及其应用.上海计量测试.2003,30(1):4~7
    91.袁易全,陈思忠.近代超声原理与应用[M].南京:南京大学出版社,1996.
    92.徐晓东,张淑仪.利用光差分检测激光激发声表面波定征薄膜材料.声学学报.2003,28(3):201~206
    93. Coufal H, Kevin M, Robert K. G. Precision measurement of the surface acoustic wave velocity on silicon single, crystals using optical excitation and detection. J. Acous. Soc. Am. 1994, 95(2): 1158~1160
    94. Ready J F. Effect of high-power laser radiation. 1st ed. New York: Academic Press Inc, 1971
    95. Krehl P, Schwirke F, Cooper A W. Lithium neodymium tetraphosphate laser. J. Appl. Phys. 1975, 46(10), 4600~4601
    96. Wooh S C, Zhou Q L. Behavior of laser induced ultrasonic waves radiated from a wet surface, Part Ⅰ: Theory Part Ⅱ: Experimental work[J]. J. Appl. Phys. 2001, 89(6): 3469~3477; 3478~3485.
    97.何存富.用作超声接收器得共焦Fabry-Perot干涉仪.光学技术.1998,(2):4~6
    98. Dewhurst R J, Edwards C E, Mckie A D W. Palmer S B. Estimate of the thickness of thin metal sheet using laser generated ultrasound. Appl. Phys. Lett, 1987, 51: 1066~1071.
    99. Weaver R M, Pao Y H, Axisymmetric elastic wave excited by a point source in a plate. J. Appl. Mech. 1982, 49: 821~825.
    100.金长善.超声工程.黑龙江:哈尔滨工业大学出版社,1989
    101.张春生,凝聚材料中矩形脉冲的衰减.爆轰波与冲击波.1986,1:43~53
    102. John F, Read Y. Laser-produced Shocks and Their Relation to Material Damage. IEEE J. Q. E. 1978, QE-14(2): 79~84
    103. Berthe L, Fabbro R et al. Shock wave from a water-confined laser-generated plasma. J. Appl. Phys. 1997, 82(6): 2826~2832
    104.孙承伟,陆启生,范正修,陈裕泽,李成富等.激光辐照相应.第1版.北京:国防工业出版社,2002
    105.鲍姆.X.A.等著.爆炸物理学.科学出版社,1963
    106.泽尔道维奇.莱依捷尔.激波和高温流体动力学现象物理学.科学出版社,1980
    107.段志勇.激光冲击波及激光冲击处理技术的研究.中国科学技术大学硕士学位论文,2000
    108.李维新.一维不定常流与冲击波.国防工业出版社,2003
    109. Vogel A, Noack J. Shock wave energy and acoustic energy dissipation after laser-induced breakdown. SPIE. 1998, 3254: 180~189
    
    110. Staudentaus J, Eisenmenger W. Fibre-optic probe hydrophone for ultrasonic and shock wave measurements in water. Ultrasonics. 1993, 31(4): 267~273
    111.陈建平.激光等离子体冲击波及其诊断技术.南京理工大学博士学位论文,2000
    112. Azzeer A M, Al-Dwayyan A S et al. Optical probing of laser-induced shock waves in air. Appl. Phys. B. 1996, 63: 307~310
    113. Ward B, Emmony D C. Interferometric studies of the pressures developed in a liquid during infrared-laser-induced cavitation bubble oscillation. Infrared Phys. 1991, 32: 489~515
    114. Reza A, Najaf-Zadeh. Inerferometric measurement of gas densities behind the shock front of a laser-triggered air spark in the nanosecond regime. J. Appl. Phys. 2000; 87(6): 3180~3182
    115.任乃飞,张永康.金属材料激光冲击强化实验研究.应用激光.1997,17(5):201~204
    116.范勇,王声波等.航空铝合金材料激光冲击强化实验研究.激光技术.2003,27(4):273-275
    117.顾援,倪元龙等.激光驱动高压冲击波的实验观察.物理学报.1988,37(10):1690-1693
    118.李志勇,朱文辉,程经毅.铜中强激光冲击波衰减规律的实验研究.科学通报,1996,41(19):1747~1749
    119.段志勇,王声波,吴鸿兴等.约束层材料及靶材表面特征对激光冲击波的影响.激光杂志.2000,21(2):19~21
    120.陈时胜.利用光学高速阴影照相研究激光等离子体相互作用的波长及强度定标律.物理学报.1987,36(11):1395~1399
    121. Cottet F, Romain J P. Formation and decay of laser-generated shock waves. Phys. Rev. A. 1982, 25(1): 576~579
    122.傅思祖,顾援等.超高压状态方程中激光驱动冲击波稳定性.物理学报.1995,44(7):1108~1112
    123.洪昕,王声波等.激光冲击波在铝靶中衰减特性研究,量子电子学报,1998,15(5):474~478
    124.张德勇,于鸿楠等.对金属激光烧蚀时空气中产生冲击波的研究,青岛海洋大学学报,2000,30(4):697~700
    李志勇,朱文辉等.铜中强激光冲击波衰减规律的实验研究.科学通报,1996,41(19):1747~1749
    125.中国物理学会,水声学,科学出版社,1960
    
    126.张旭东等.光学传感器对水下Nd:YAG深熔激光焊接过程检测的研究.应用激光,22(2):177~180
    127. Luxon J L, Parker D E. Industrial laser and their application(second edition, Prentice Hall, Englewood Cliffs) 1992
    128. Shannon G J, Naught W M, Deans W F, Watson J. High power laser welding in hyperbaric gas and water environment. Journal of Laser Applications. 1997, 9: 129~134
    129. Hong M H, Koh M L, Zhu S, Lu Y F, Chong T C, Steam-assisted laser ablation and its signal diagnostics, Applied Surface Science. 2001, 197: 911~914
    130. Berthe L, Sollier A, Peyre P, Fabbro R, Bartnicki E. Generation of laser shock waves in a water-confinement regime with 50ns and 150ns XeCl excimer laser pulses. Journal of Phusics D: Applied Physics. 2003, 33(17): 2124~2145
    131.李彦文等.45#钢筒外表面水下加工刻槽工艺研究.中国激光.1999,26(5):455~460
    132.黄峰等.高分子材料的准分子激光表面处理.中国激光.1999,26(8):745~748
    133. Raleigh J W. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag. 1917, 34: 94~98
    134. Noltingk B E, Neppiras E A. Cavitation produced by ultrasonics. Proc Phys Soc. London, 1950, 63B: 674~685
    135. Gilmore F R. The growth and collapse of a spherical bubble in a viscous compression liquid, Hydro Lab Calif Inet Tech Report, 1952: 26~41
    136. Hickling R, Plesset M S. Collapse and rebound of a spherical bubble in water. Phys. Fluid. 1964, 7: 7~14.
    137. Boguslavski Y Y, Loffe A I, Naugol'nykh K A. Sound radiation by a cavitation zone. Sov. Phys. Acoustic 1970, 16: 17~20
    138. Hinsch K, Brinkmeyer E. Investigation of Very Short Cavitation Shock Waves by Coherent Optical Methods. SPIE. 1994, 97: 116~171
    139. Ellis A T, Staret J E. A Study of Cabitaion Bubble Dynamic and Resultant Pressure on Adjacent Solid Boundaries. J Mech. E, London Proc. 2nd Intl conf On Cavitation paper c1983, 190(3),
    140. Kyuichi Y. Effects Thermal Conduction on Bubble Dynamic near the Somolumince Threshold. J. Acoust. Soc. Am. 1995, 98(5): 2772~2782
    141. Plesset M S, Chapman R B. Collapse of an initially spherical vapour cavity in the neighborhood of a solid boundary. J Fluid Mech. 1971, 47: 283~290
    
    142.Plesset M S, Zwick S A. Bubble dynamics and cavitaion. Ann Rev Fluid Mech. 1977,9:145-185
    143.Benjamin T B, Ellis A T. The collapse of cavitaion bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. A. 1966, 260:221-240
    144.Shima A. The behavior of a spherical bubble in the vicinity of a solid wall. J Basic Eng. 1968,90:75-89
    145.Mitchell T M, Hammitt F G. Asymmetric cavitation bubble collapse. J Fluids Engag trans. ASME. 1973,195:29-37
    146.Hsieh D Y. Variation method and dynamic of non-spherical bubbles and liquid drops, Firut-Amplitude Wave Effects in Fluids. Proceedings of the 1973 Symposium, Copenhagen, 1974
    147.Bevor M K, Fielding P J. Numerical solution of incompressible bubble collapse with jetting in moving boundary problems in heat flow and diffusion. Clarendon Press, 1974
    148.Rottray M. Perturbation effects on Cavitation Bubble dynamics. Ph. D. thesis, Calif Inst. of Technology, Pasadena Calif, 1951
    149.Naude C F , Ellis A T. On the mechanisms of cavitation damage by non-hemispherical cavities collapsing in contact with a solid boundary. J. Basic Engng, Trans. ASMED 1961, 83: 648-656
    150.Plesset M S, Chapman R. B. Collapse of a Vapor Cavity in the Neighborhood of a solid wall, Calif. Inst of Tech. Div, Of Engr. And Appl. Sci. 1969, 85-48,
    151.Mitchell T M, Hammitt F G. A Photograph Study of Spark Induced Cavitation Bubble Collapse, Trans. ASME, J. Basic, Engr. D. 1970,94(4): 293-307
    152.Nakajama K, Shima A. Analysis of the Behavior of a Bubble in a viscous incompressible Liquid by Finite Element Method. Ingenievr-Archiv, Bd. 46,1977
    153.Gibson D C, Blake J R. Growth and collapse of cavitation bubble near flexible boundaries. Proc 7th Austral Hydraulics and Fluid Mech. Conf Brisbane, Institution of Engineers Snyder, Australia. 1980,283-286
    154.Blake J R, Gibson D C. Growth and collapse of a cavity near free surface. J Fluid Mech. 1981,111:123-140
    155.Guerri L, Lucca G, Prosperetti A. A numerical method for the dynamic of non-spherical cavitation bubble. Proc 2nd Intl Colloq on drops and bubbles, Califorina. 1981,175-181
    156.Cenone P, Blake J R. A note on the instantaneous streamlines path lines and pressure contours for a cavitation bubble near a rigid boundary. J Austral Math Soc. 1984, B26: 31~44
    15
    
    157. Blake J R, Taib B, Doherty G. Transient cavities near boundaries, Partl rigid boundary. J Fluid Mech. 1986, 170: 474~497
    158. Blake J R, Taib B, Doherty G, Transient cavities near boundaries, part2 free surface. J Fluid Mech. 1987, 181: 197~212,
    159. Chanine G L, Perdue T O. Simulation of the three-dimension behavior of an unsteady large bubbled near a structure. In Drops and Bubbles. Third intl Colloq, Monterey, CA(ed. Wang, T G), American Institute of Physics. 1988, 188~199
    160. Charine G L. Dynamics of the interaction of non-spherical cavities. Mathematical Approaches in Hydrodynamics(ed. T. Melon), SLAM, 1991
    161. Rogers J C W, Szymczak W G, Berger A E, Solomon J M. Numerical solution of hydrodynamic free boundary problems. Intl. Serif, Number Maths. 1990, 95: 241~266
    162. Szymczak W G, Rogers J C W, Solomon J M, Berger A E. A numerical algorithm for hydrodynamic free boundary problems. J Fluid Mech. 1986, 169: 535~564
    163. Lundgrer T S, Mansour N. Vortex ring bubbles. J Fluid Mech. 1991, 224: 177~190
    164. Best J. The formation of toroidal bubbles upon the collapse of transient cavities. J Fluid Mech. 1993, 251: 79~107
    165. Zhang, Duncan H, Chanine L. The final stage of the collapse a cavitation bubble near a rigid wall. J Fluid Mech. 1993, 257: 147~181
    166. Zhang, Duncan H. on the non-spherical collapse and rebound of a cavitation bubble, Phys. Fluids. 1994, 6(7): 2352~2361
    167. Lu C J, He Y S, Zhu S Q. Transient cavity collapse in the vicinity of a flexible boundary. Hydrodynamics. 1996, 1305~1310
    168. Lu C J. 3-D numerical simulation of underwater explosion bubble. Chinese Journal of Aeronautic s. 1996, 9(1): 38~42
    169.鲁传敬,Prosoeretti A.缓变主流中三维气泡的非线性振动.力学学报.1996,28(3):270~280
    170.鲁传敬,水平均流中细管排放气泡的三维数值模拟,应用力学学报,1996,13(4):1~7
    171. Kodama T, Tomita Y, Cavitation bubble behavior and bubble-shock wave interaction near a gelation surface as a study of in vivo bubble dynamics, Appl. Phys. B. 2000, 70: 139~149
    172. Gibson D C. Cavitation adjacent to plane boundaries. Proc 3rd Conf Hydraulic Fluid Mech. Sydney: P R Austr. Lnst Engrs, 1968, 210~214
    17
    
    173. Kling C L, Hammitt F G. A photographic study of spark-induced cavitation bubble collapse. Trans ASME D: J. Basic Engng, 1972, 94: 825~833
    174. Lauterborn W. Kavitation durch laserlicht. Acustica. 1974a, 31: 51~78(in Germany)
    175. Lauterborn W. General and basic aspects of cavitation. In Proc 1973 Syrup Finit-Amplitude Wave Effects in Fluids, Copenhagen(ed. L.Bj φ m φ ), 1974b: 195~202
    176. Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble in the neighborhood of a solid boundary. J Fluid Mech. 1975, 72: 391~399
    177. Vogel A, Lauterborn W. Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics. Appl. Optics. 1988, 27(9): 1869~1876
    178. Vogel A, Lauterborn W. Acoustic transient generation by laser-produced cavitaion bubble near Solid boundaries. J Acoust Soc. Am. 1988, 84(2): 719~731
    179. Kocera A, Blake J R. Computional modelling of cavitaion bubbles near boundaries in computational techniques and applications. CATC-83 Ced Noycc, J & Hetcher, North-Holland. 1988, C: 391~400
    180. Shima A, Takayama K, Tomita Y. Mechanisms of the Bubble collapse near a solid Wall and the induced Impact Pressure Generation. Rep. Inst, High Speed Mech., Tōhoku Univ. 1984, 48
    181.陆力.固液两相流中的空泡溃灭研究.博士论文.清华大学水电系,1988
    182. Hinsch K, Brnkmeyer E. Investigation of very short cavitation shock waves by coherent optical methods. SPIE. 1976, 97: 116~171
    183. Ebeling K J, Zum verhalten Kugelformiger. Laserezeugter, Kavitaion Sblasen in Wasser Acustica. 1978: 511~517(in Germany)
    184. Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles, Journal of Fluid Mechanics, 1998, 361: 75~116
    185. Tomita Y, Shima A. Mechanism of impulsive pressure generated and damage pit formation by bubble collapse. Journal of Fluid Mechanics. 1986, 169: 535~564
    186. Ohl C D, Kurz T, Geisler R, Lindau O, Lauterborn W. Bubble dynamics, shock wave and sonoluminesence, Phil. Trans. R. Soc. Lond A, 1999, 357: 269~294
    187. Noack J, Hammer D X, Noojin G D, Rockwell B A, Vogel A. Influence of pulse duration on mechanical effects after laser-induced breakdown in water. J. Appl. Phys.1998, 83(12): 7487~7495
    188. Bourne N K, Field J E. A high-speed photographic study of cavitation damage. J. Appl. Phys. 1995, 78(7): 4423~4427
    18
    
    189. Shaw A. Studies on bubble dynamics. Shock wave. 1997, 7: 33~42
    190. Philipp A, Lauterborn W. Cavitation erosion by single-laser produced bubbles. J. Fluid Mech. 1998, 361: 75~116
    191. Niemz M H. Laser-tissue interactions: fundamentals and application, Springer-verlag, Germany, 1996, 140~143
    192. Kodama T, Tomia Y. Cavitation bubble behavior and bubble-shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics, Appl. Phy. B: Lasers and Optics, 2000, 70: 139~149
    193. Vogel A et al. Minimization of cavitation effects in pulsed laser ablation illustrated on laser angioplasty. Applied Physics B. 1996, 62: 173~182
    194.何枫等.激波和剪切层相互作用下的超音速射流.物理学报.2002,51(9):1918~1923
    195. Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble collapse in the neighborhood of a solid boundary. J. Fluid Mech. 1975, 72(2): 391~399
    196. Shaw A, Studies on bubble dynamics. Shock Waves, 1997, 7: 33~42
    197. Ohl C D et al. Bubble dynamics. Shock waves and sonoluminescence. Phil. Trans. R. Soc. Lond. A. 1999, 357: 269~294
    198. Vogel A et al. shock wave emission and cavitation bubble generation by Pico second and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 1996, 100: 148~165
    199. Vogel A et al. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 1988, 84(2), 719~731
    200. Vogel A et al. Optical and acoustic investigation of the dynamic of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 1989, 206: 299~338
    201.戚定满等.单空泡溃灭辐射噪声的实验研究.声学学报.2000,25(6):532~536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700