用户名: 密码: 验证码:
光声成像技术的重建算法与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基于光声效应的光声成像技术在生物医学成像领域得到了快速的发展。它是以脉冲光作为激励源、超声信号作为载体,通过对采集到的一组声信号进行图像重建处理而得到组织内部结构信息的一种成像方法。该方法有机地结合了光学成像和声学成像的优点,可以提供深层组织的高分辨率和高对比度的图像,成为目前医学成像领域的研究热点。
     本论文重点在于研究光声成像的相关理论和在生物医学成像领域的应用。以组织光学和声学为基础,从光声信号的产生机理出发,对光声成像技术的信号处理、信号的时频域特性和对重建算法的修正等理论进行了深入的探讨,采取电脑仿真和实验模拟相结合的研究方法,提出了对这些问题的解决方案;改进了现有实验系统,进行了模拟样品的光声三维成像;对多种生物组织进行了光声成像实验,为光声成像的实用性研究打下了理论和实验基础。主要工作内容包括:
     1)分析了系统中反卷积问题出现病态的原因,提出依靠正则化方法可以有效地加以解决。通过电脑仿真计算,表明通过对输出信号的正则化处理,可有效的解决方程的病态问题,抑制高频噪声部分,较好地还原输入信号。
     2)通过电脑仿真对不同直径圆吸收体的多频段的信号特性进行研究。对光声信号在50KHz~300KHz、300KHz~2MHz和2MHz~6MHz这三个频段内的能量按照其对应的直径做归一化处理,得到了不同频段的光声信号的能量比例随其直径的变化曲线,以及能量比例达到最大时对应的直径值。通过模拟实验获得了与仿真相吻合的折线图。
     3)依托代数重建算法的思想,进行了有限角度测量的重建算法的研究。设计了可应用于光声成像有限角度测量的重建算法。通过模拟实验得到了有限角度测量下的光声信号,重建光声图像,对图像的分辨率进行了分析。将光声成像技术在眼成像中的应用和有限角度测量重建算法相结合,得到了理想的重建图像。
     4)首次提出利用吸声材料从硬件结构上实现非聚焦超声传感器的三维光声成像。该吸声模型不仅能够在一定程度上限制目标样本的超声辐射方向,更可有效地将非聚焦超声传感器的声接收角度限制到一很小角度的范围内。通过理论计算分析了吸声模型的层析性能,由模拟实验进行了对目标样本的层析扫描,实现了三维光声成像
     5)采用离散化方法进行了对声特性存在差异介质的重建算法的声速修正。当介质内部的声特性存在变化时,通过对重建算法中的声速进行修正,可得到实际的飞行时间,获得真实的重建图像。通过模拟实验直观地证明了该方法,并给出了系统成像的分辨率。
     6)利用二维光声成像系统,对多种生物组织包括鸡胚胎、离体猪眼球和白鼠脑部结构成功地进行了光声成像
     7)将光透明试剂应用于光声成像技术中。通过对猪肌肉组织的模拟实验验证了试剂的实用性。利用二维光声成像系统对使用光透明试剂的活体白鼠脑部结构进行了图像重建,并取得了满意的效果。
Based on photoacoustic effect, photoacoustic imaging (PAI) technology has been progressed fast in the field of bio-medical imaging in recent years. PAI is capable of mapping distribution of optical absorption within tissues, when irradiated by a pulsed laser. The technique uses the ultrasound signals as the carrier, which is excited by the transit absorption of light energy, to reconstruct the three dimensional PAI image, representative of the optical absorption distribution within the irradiated tissue. As such, PAI imaging technique combines the advantages of both optical and ultrasound imaging, providing images with high resolution and high contrast within deep tissue.
     This dissertation has a focus on the development of correlation theories for PAI imaging and the investigation of potential applications of PAI for bio-medical imaging. Based on the tissue optical properties, acoustic properties and the generation mechanism of photoacoustic signals, this thesis provides a theoretical analysis of the signal processing within both time and frequency domains, from which a modified reconstruction algorithm suitable for PAI has been proposed. By combining the numerical simulations on computer with the phantom experiments, the proposed modified reconstruction algorithm is tested and validated with considerations of some practical problems. In addition, this dissertation also deals with the improvement of PAI systems for 3D imaging of biological tissue, and the experimental approach that involves three kinds of biological tissues. All of the above make necessary basis of theories and experiments for further application study of PAI. The main tasks are summarized as below:
     1) It is found that the ill-condition of deconvolution problem in the system can be solved effectively by regularization method. Depending on numerical simulations, the regularization processing to the output signal is able to suppress the high frequency noise components and recover the input signal.
     2) The signal properties of multiple-bandwidth of round absorber with different diameters are investigated by numerical simulations and experimental approaches by use of appropriate phantoms. According to the corresponding diameter, the energy within three different frequency bands 50KHz~300KHz、300KHz~2MHz and 2MHz~6MHz, is normalized. This normalization results in a curve that describes the relationship between the energy ratio of photoacoustic signals in different frequency band and their corresponding diameters, from which the value of diameter that corresponds to the max energy ratio can be obtained. It is reported that the proposed normalization procedure is agreed well with the experimental results by use of appropriate phantoms.
     3) By the concept of algebraic reconstruction techniques (ART), the reconstruction algorithm with measurement in limited-views is investigated. The algorithm is designed to be applicable in PAI. The photoacoustic signals measured in limited-view are used to obtain the reconstructed image. The resolution of the image is analyzed to be 0.1mm. The reconstruction algorithm with measurement in limited-view has been applied to image eye, the result of which is satisfactory.
     4) By use of sound absorption material, the three-dimensional PAI with unfocused ultrasound transducer is proposed for the first time. This model of sound absorption not only confines the radiation direction of ultrasound wave of target subject, but also restricts the receipt angle of unfocused transducer to a small range. The tomographic performance of the model of sound absorption is analyzed by theoretical computation, followed by the 3D PAI experiments.
     5) The correction for acoustic speed in reconstruction algorithm for the medium with heterogeneous acoustic properties is implemented by a discretization method. By the correction for acoustic speed, the actual time-of-flight is obtained and the image refecting the real structure is reconstructed. This modification is validated by phantom experiments, while the imaging resolution is not compromised.
     6) PAI experiments for three kinds of biological tissues including chick embryo, porcine eye in-vitro and rat brain in-vivo are conducted with satisfactory results obtained.
     7) The optical clearing agent to be applied in PAI is proposed for the first time. The agent is proved to be effective by PAI experiment with porcine muscle. Based on this agent and PAI system, the imaging of rat brain function in-vivo is performed. And the reconstruction image reflects the cerebral blood vessels of rat well.
引文
[1] Bell AG, On the Production and Reproduction of Sound by Light,”American Journal of Sciences, Third Series, 1880, XX(118):305-324
    [2]殷庆瑞,“光声光热技术及其应用”,北京:科学出版社1991.7
    [3] Viengerov, M. L., Dokl. Akad. Nauk SSSR 19 687 (1938)
    [4] A.罗森威格,光声学和光声谱学,北京:科学出版社,1986.
    [5] MacKenzie HA, Christison GB, Hodgson P, Blanc D.“A laser photoacoustic sensor for analyte detection in aqueous systems,”Sensors and Actuators B, 1993, 11:213-220
    [6] Quan KM, Christison GB, MacKenzie HA et al.“Glucose Determination by a Pulsed Photoacoustic Technique: An Experimental Study Using a Gelatin- Based Tissue Phantom,”Phys. Med. & Biol. 1993, 38: 1911-1922.
    [7] Christison GB, MacKenzie HA.“Laser photoacoustic determination of physiological glucose concentration in human whole blood,”Med. & Biol. Engineering and Computing. 1993: 31, 284-290.
    [8]吴次南,杨思根,光声谱学及其应用,贵州师范大学学报,1996, 19(1): 97-100
    [9] Duncan A, Hannigan J, Freeborn SS et al.“A portable non-invasive blood glucose monitor,”8th Int. Conf. Solid State Sensors and Actuators and Eurosensors IX; Stockholm, Sweden. 1995: 455-458.
    [10] Spanner G and Niessner R.“Laser arrays measure blood glucose levels,”Opto & Laser Europe. 1996, 32:31-32
    [11]沈耀春,王春,H. A. Mackenzie,陆祖宏,一种新型的检测血糖含量的方法,南京大学学报,2000,36(5):632-635
    [12] Rosencwaig A.“Noninvasive monitoring of glucose and other biological compounds with a thermal wave assisted technique”. Biomedical Optoacoustics, SPIE Proceedings. San Jose, CA USA, 2000, 3916: 2-8
    [13] Esenaliev RO, Larina IV, Larin KV et al. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study [J]. Applied Optics. 2002, 41(22):4722-4731
    [14] Petrov YY, Prough DS, Hilbert D et al.“Two-wavelength optoacoustic technique for accurate, noninvasive, and continuous measurement of blood oxygenation”Proceedings of the second joint EMBS/BMES Conference. Houston, TX, USA., 2002:2287-2288
    [15] L.-H. Wang, Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography, Journal of Disease Markers 2004, 19 (3):123–138
    [16] Kruger RA, Kiser Jr WL, Reinecke DR, Kruger GA ,“Application of thermoacoustic computed tomography to breast imaging,”Proc. SPIE., 3659, pp. 426-430, 1999.
    [17] Minghua Xu, Lihong V. Wang,“Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,”IEEE Trans. on Medical Imaging, 21(7), pp. 814-822, 2002.
    [18] Valeriy G. Andreev, Alexander A. Karabutov, Alexander A. Oraevsky,“Detection of ultrawide–band ultrasound pulses in optoacoustic tomography,”IEEE Trans. on ultrasonics, ferroelectrics and frequency control, 50(10) , pp.1383-1390,2003
    [19] Yaguang Zeng, DaXing, Yi Wang,“Photoacoustic and ultrasonic coimage with a linear transducer array,”Opt. Lett., 29(16), pp.1760-1762, 2004.
    [20] Foster KR and Arkhipov NS,“Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves,”Science 185(147), pp.256-258,1974
    [21] Chou CK, Galambos R, Guy AW, and Lovely RH,“Coclear microphonics generated by microwave pulses,”Journal of Microwave Power 10, pp.361-367, 1975.
    [22] Baranski S and Czerski P,“Interaction of microwaves with living systems,”Biologic Material– Microwave Properties, Chapter 3, Warsaw, Polish Medical Publishers, 1976
    [23] Lin JC,“The microwave auditory phenomenon,”Proc. IEEE, 68, pp.67-73, 1980.
    [24] Von Gutfeld RJ,“Thermoelastic generation of elastic waves for non-destructive testing and medical diagnostics,”Ultrasonics, 18(4), pp.175-181, 1980.
    [25] Olsen RG and Lin JC,“Acoustic imaging of a model of a human hand using pulsed microwave irradiation,”Bioelectromagnetics 4, pp.397-400, 1983.
    [26] Lin JC and Chan KH,“Microwave thermoelastic tissue imaging–system design,”IEEE Trans. Microwave Theory Tech. 32, pp.854-860, 1984.
    [27] Chan KH and Lin JC,“Microwave-induced thermoacoustic tissue imaging,”Proc. Engineering in Medicine and Biology Society 10th Annual International Conference (New Orleans), 1988.
    [28] W.F. Cheong, S.A. Prahl and A.J. Welch,“A review of the optical properties of biological tissues,”IEEE J Quantum Elect 26, 2166–2185, 1990.
    [29] F.A. Marks, H.W. Tomlinson and G.W. Brooksby,“A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,”in Proc SPIE Photon Migration and Imaging in Random Media and Tissues, B. Chance and R.R. Alfano, eds, 1888, pp. 500–510, 1993.
    [30] L.-H.V. Wang, S.L. Jacques and X.-M. Zhao,“Continuouswave ultrasonic modulation of scattered laser light to image objects in turbid media,”Opt Lett 20, 629–631, 1995.
    [31] W. Leutz and G. Maret,“Ultrasonic modulation of multiply scattered light,”Physica B 204 14-19, 1995.
    [32] M. Kempe, M. Larionov, D. Zaslavsky and A.Z. Genack,“Acousto-optic tomography with multiply-scattered light,”J Opt Soc Am 4, 1151-1158, 1997.
    [33] Bowen T., Radiation-induced thermoacoustic soft tissue imaging. Proc IEEE Ultrasonics Symp, 1981, 2:817-822
    [34] Bowen T, Nasoni L, Pifer AE., Some experimental results on the thermoacoustic imaging of soft tissue-equivalent phantoms. Proc IEEE Ultrasonics Symp, 1981, 2:823-827.
    [35] Perry Sprawls,医学成像的物理原理,北京:高等教育出版社, 1993.4
    [36]侯家声汪宝林等主编,“医学影像学新进展”,济南:山东大学出版社,1996.
    [37]吴恩惠主编,“医学影像学(第四版)”,北京:人民卫生出版社,2001.
    [38]谢静霞,杜湘珂主编,“医学影像学”,北京:北京医科大学出版社,2002.
    [39]孟俊非主编,“医学影像学”,北京:高等教育出版社,2004.
    [40]李麟荪主编,“医学影像学”,南京:东南大学出版社,2002.
    [41]唐镇生,CT原理和医学应用,上海:科学技术文献出版社,1987.3
    [42]斯普罗斯(Sprawls,Perry)著,“医学成像的物理原理”,北京:高等教育出版社,1993.
    [43]杨国忠等编著,“医学成像技术”,北京:人民卫生出版社,1987.
    [44]霍纪文,王秀章主编,“医学成像技术”,沈阳:辽宁科学技术出版社,1994.
    [45] H. ZHAO, F. GAO, Y. TANIKAWA, K. HOMMA, and Y. YAMADA,“Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,”Appl. Opt., 2005, 43(10):1905-1916
    [46] A.H. Hielscher, A.Y. Bluestone, G.S. Abdoulaev, et al.,“Near-infrared diffuse optical tomography,”Disease Markers, 2002, 18(5-6):313-337
    [47] B. Chance, R.R. Alfano, B.J. Tromberg, M. Tamura and E.M. Sevick-Muraca, eds, Optical tomography and spectroscopy of tissue IV, Proc. 4250 SPIE-The International Society for Optical Engineering, Bellingham, WA, 2001.
    [48] Colston B, Jr, U. Sathyam, DaSilva L, and Everett MJ,“Dental OCT,”Opt. Express, 1998, 3:230–238
    [49] AF Fercher, W. Drexler, CK Hitzenberger, and T. Lasser,“Optical coherence tomography—principles and applications”, Rep. Progr. Phys. 2003, 66:239-303
    [50] R.K. Wang, High resolution visualisation of fluid dynamics with Doppler Optical Coherence Tomography, Measurement Science and Technology 2004, 15: 725-733
    [51] Ma Zhen-He, Ruikang K. Wang, Zhang Fan, Yao Jian-Quan, Spectral optical coherence tomography using two-phase shifting method, Chinese Physics Letters , 2005, 22(8):1909-1912
    [52] J. J. Niederhauser, D. Frauchiger, H. P. Weber, M. Frenz,“Real-time optoacoustic imaging using a Schlieren transducer,”Appl. Phys. Lett. 81(4), pp. 571-573, 2002.
    [53] J. J. Niederhauser, M. Jaeger, and M. Frenz,“Real-time three-dimensional optoacoustic imaging using an acoustic lens system,”Appl. Phys. Lett. 85(5), pp. 846-848, 2004.
    [54] Kornel P. Kostli, Martin Frenz, Heinz P. Weber, Gunther Paltauf, Heinz Schmidt-Kloiber,“Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,”Appl. Opt. 40(22), pp. 3800-3809, 2001.
    [55] P. C. Beard, F. Perennes, E. Draguioti, T. N. Mills,“Optical fiber photoacoustic photothermal probe,”Opt. Lett., 23(15) pp.1235-1237, 1998.
    [56] Beard PC, Mills TN,“An optical detection system for biomedical photoacoustic imaging,”Proc. SPIE, 3916, pp.100-109, 2000.
    [57] Beard PC, Mills TN,“2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom,”Proc. SPIE, 4256, pp34-42, 2001
    [58] Beard PC,“Photoacoustic imaging of blood vessel equivalent phantoms,”Proc. SPIE, 4618, pp.54-62, 2002.
    [59] Payne BP, Venugopalan V, Mikic BB, Nishioka NS, "Optoacoustic determination of optical attenuation depth using interferometric detection," J. Biomed. Opt. 2003, 8(2): 264–272
    [60] Payne BP, Venugopalan V, Mikic BB, Nishioka NS, "Optoacoustic tomography using time-resolved interferometric detection of surface displacement", J Biomed Opt. 2003, 8(2):273-80
    [61] CGA Hoelen, FFM de Mul, R. Pongers, and A. Dekker,“Three-dimensional photoacoustic imaging of blood vessels in tissue,”Opt. Lett. 1998, 23: 648-650
    [62] A.A.Oraevsky, E.V.Savateeva, S.V.Solomatin, A.A.Karabutov, Z.Gatalica, T.Khamapirad,“Diagnostic imaging of breast cancer microvasculature with optoacoustic tomography,”Proc. of the Second Joint EMBS/BMES Conference, Houston, TX, USA, Oct. 23-26, 2002.
    [63] Alexander A. Karabutov, Elena V. Savateeva, Natalia B. Podymova, Alexander A. Oraevsky,“Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,”Appl.Phys. 87(4), pp.2003-2014, 2000.
    [64] Rinat O. Esenaliev, Alexander A. Karabutov, and Alexander A. Oraevsky,“Sensitivity of Laser Opto-Acoustic Imaging in Detection of Small Deeply Embedded Tumors,”IEEE Journal of Selected Topics in Quantum Electronics, 5(4), pp. 981-988, 1999.
    [65] Alexander A. Oraevsky, Steven L. Jacques, and Frank K. Tittel,“Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,”Appl.Opt. 36(1), pp. 402-415, 1999.
    [66] Bowen T, Nasoni L, Pifer A E,“Some experimental results on the thermoacoustic imaging of soft tissue-equivalent phantoms,”Proc IEEE Ultrasonics Symposium 2, 823-827, 1981.
    [67] Nasoni RL, Evanoff Jr GA, Halverson PG, Bowen T,“Thermoacoustic emission by deeply penetrating microwave radiation,”Proc. IEEE Ultasonics Symposium 5,pp.633-637,1984.
    [68] S. K. Gayen, M. E. Zevallos, B. B. Das, and R. R. Alfano,“Time-sliced transillumination imaging of normal and cancerous breast tissues,”in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto and M. S. Patterson, Eds. Orlando, FL: Opt. Soc. Amer , 21, pp. 63-66, Mar. 1998.
    [69] V. Ntziachristos, X. H. Ma, M. Schnall, A. Yodh, and B. Chance,“Concurrent multi-channel time-resolved NIR with MR mammography: Instrumentation and initial clinical results,”in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto and M. S. Patterson, Eds. Orlando, FL: Opt. Soc. Amer., 21, pp. 284-288. Mar, 1998.
    [70] S. Fantini, S. A. Walker, M. A. Franceschini, A. E. Cerussi, J. Edler, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton,“Optical characterization of breast tumors by frequency-domain optical mammography,”in Advances in Optical Imaging and Photon Migration, J.G. Fujimoto and M. S. Patterson, Eds. Orlando, FL: Opt. Soc. Amer., 21, pp. 289-293, Mar. 1998.
    [71] R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini,“Time-resolved reflectance and transmittance spectroscopy from 610-nm to 1010-nm in breast tissues,”in Advances inOptical Imaging, Photon Migration and Tissue Optics, A. C. Boccara, Ed., in Tech. Dig. Biomedical Optics Conf., Munich, Germany: Opt. Soc. Amer., pp. 246, June 1999.
    [72] R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Karabutov,“Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,”in Optical Tomography II, B. Chance, R. Alfano, and A. Katzir, eds., Proc. SPIE 2979, pp.71–82 , 1997.
    [73] Kolkman RGM, Klaessens JHGM, Hondebrink E, Hopman JCW, de Mul FFM, Steenbergen W, Thijssen JM, and van Leeuwen TG,“Photoacoustic determination of blood vessel diameter,”Phys Med. Biol. 2004, 49:4745-4756
    [74] Kolkman RGM, Hondebrink E, Steenbergen W, de Mul FFM,“In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,”IEEE J Sel Top Quant, 2003, 9 (2):343-346
    [75] R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser Jr, D. R. Reinecke, G. A.Kruger,“Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz,”Radiology 216, pp.279-283, 2000.
    [76] R. A. Kruger, W. L. Kiser Jr,“Thermoacoustic CT of the breast: pilot study observations,”Proc. SPIE, 4256, pp.1-5, 2001.
    [77] R. A. Kruger, K. Stantz, W. L. Kiser Jr,“Thermoacoustic CT of the breast,”Proc.SPIE 4682, pp.521-525, 2002.
    [78] Geng Ku, Xueding Wang, George Stoica, Lihong V Wang,“Multiple-bandwidth photoacoustic tomography,”Phys. Med. Biol. 49 ,pp. 1329-1338, 2004.
    [79] Geng Ku, Lihong V. Wang,“Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,”Opt.Lett. 30(5), pp. 507-509, 2005.
    [80] Geng Ku, Xueding Wang, Xueyi Xie, George Stoica, and Lihong V. Wang,“Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,”Appl.Opt. 30(5), pp. 770-775, 2005.
    [81] Xueding Wang ,Geng Ku, Malgorzata A. Wegiel, Darryl J. Bornhop, George Stoica, Lihong V. Wang,“Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,”Opt.Lett. 29(7), pp. 730-732, 2004.
    [82] Bangzheng Yin, Da Xing, Yi Wang, Yaguang Zeng, Yi Tan and Qun Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 2004, 49(7):1339-1346
    [83] Diwu Yang, Da Xing, Huaimin Gu, Yi Tan, and Lüming Zeng,“Fast multi-element phase-controlled Photoacoustic imaging based on limited-field filtered back projection algorithm,”Appl. Phys. Lett.,2005, 87, 194101
    [84] Yaguang Zeng, Da Xing, Hongbo Fu and Yi Wang,“Signal process of Photoacoustic tomography,”中国激光(Chinese J. Lasers), 2005, 32(1): 97-100
    [85] Yaguang Zeng, Da Xing, Yi Wang, Bangzhen Yin and Qun Chen,“Photoacoustic and Ultrasonic Co-Image with a Linear Transducer Array,”Opt. Lett. 29(15), 2004, 1760-1762
    [86] Yi Wang, Da Xing, Yaguang Zeng and Qun Chen.“Photoacoustic imaging withdeconvolution algorithm,”Phys. Med. Biol. 2004, 49: 3117-3124
    [87] Yong Yao, Da Xing, Ken-ichi Ueda and Qun Chen,“Technique for measurement of photoacoustic waves in situ with ultrasound probe beam,”J. Appl. Phys., 2003, 94(2): 1278-1281
    [88] Markolf著,张镇西等译,“激光与生物组织的相互作用”,西安:西安交通大学出版社,1999
    [89]徐国祥主编,“实用激光医学”,广州:广东高等教育出版社,1990
    [90]王惠文编著,“激光与生命科学”,北京:北京理工大学出版社,1995
    [91]唐建民赵玉衡等主编,“实用激光医学”,重庆:科学技术出版社重庆分社,1989
    [92]朱菁主编,“激光医学”,上海:上海科学技术出版社,2003
    [93]史宏敏主编,“激光医学基础”,广州:华南理工大学出版社,1990
    [94] Valery Tuchin,“Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis,”SPIE, TT38, 2000
    [95]赵友全,范世福,曹文新,“生物组织光学特性参数及其描述”,国外医学生物医学工程分册,2000,23(2):76-79
    [96]谢树森,郑蔚,黄禄华,“激光医学中的组织光学”,光电子·激光,1994, 5(2):65-71
    [97] Svaasand L.O., Gomer C.J., Optics of Tissue. SPIE 1989, IS 5:114-132
    [98] J. L. Boulnois et al.,“Photophysical Processes in Recent Medical Laser Developments: a Review,”Lasers Med. Sci. 1986, 1: 47-66
    [99]冯若,姚锦钟,关立勋编,“超声手册”,南京:南京大学出版社,1999
    [100]白净著,“医学超声成像机理”,北京:清华大学出版社,1998
    [101]周康源著,“生物医学超声工程”,成都:四川教育出版社,1991
    [102]周永昌郭万学主编,“超声医学”,北京:科学技术文献出版社,2003
    [103]金树武主编,“医学超声”,杭州:浙江大学出版社,1992
    [104]王鸿樟编著,“声学及医学超声应用”,上海:上海交通大学出版社,1991
    [105]万明习,卞正中,程敬之,“医学超声学-原理与技术”,西安:西安交通大学出版社,1992
    [106]郑德连,“医学超声原理与仪器”,上海:上海交通大学出版社,1990
    [107] A.C. Tam,‘‘Applications of photoacoustic sensing techniques,’’Rev. Mod. Phys. 1986, 58, 381:431
    [108] S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer,‘‘Lasergenerated ultrasound: Its properties, mechanisms and multifarious applications,’’J. Phys. D 1993, 26:329-348
    [109] C. K. N. Patel and A. C. Tam,‘‘Pulsed optoacoustic spectroscopy of condensed matter,’’Rev. Mod. Phys. 1981, 53: 517–550
    [110] D. A. Hutchins,‘‘Mechanisms of pulsed photoacoustic generation,’’Can. J. Phys. 1986, 64: 1247–1264
    [111] D. A. Hutchins and A. C. Tam,‘‘Pulsed photoacoustic materials characterization,’’IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33,1986, 429–449
    [112] M. W. Sigrist,‘‘Laser generation of acoustic waves in liquids and gases,’’J. Appl. Phys. 1986, 60: R83–R121
    [113] T. Asshauer, K. Rink, and G. Delacre′taz,‘‘Acoustic transient generation by holmium-laser-induced cavitation bubbles,’’J. Appl. Phys. 1994, 76: 5007–5013
    [114] S. S. Alimpiev, Y. O. Simanovski, S. V. Egerev, and A. E. Pashin,‘‘Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,’’Laser Chem. 1995, 16: 63–73
    [115] M. H. Niemz, Interaction Mechanisms, Springer, Berlin, 1996.
    [116] C. G. A. Hoelen and F. F. M. de Mul,“A new theoretical approach to photoacoustic signal generation,”J. Acoust. Soc. Am. 1999, 106 (2): 695-706
    [117]邵惠民编,“数学物理方法”,南京:南京大学出版社,1991.5
    [118]唐世敏编,“数学物理方法”,北京:高等教育出版社,1992.9
    [119] Minghua Xu, Lihong V. Wang,“Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,”IEEE Transactions on Medical Imaging, 21(7) , pp.814-822,2002
    [120]谭毅,邢达,王毅等,超声换能器带宽对光声成像的影响,光学学报,2005,Vol.25, No.1,:41-44
    [121]庄天戈,“CT原理与算法”,上海:上海交通大学出版社,1992.8
    [122] Kruger RA. ,“Photo-acoustic ultrasound ,”Medical Physics 1994; 21(1):127-131.
    [123] Kruger RA, Liu P,“Photoacoustic ultrasound: Pulse production and detection in 0.5% liposyn,”Medical Physics, 21(7), pp.1179-1184, 1994.
    [124] Kruger R, Liu P, Fang R.,“Photoacoustic ultrasound (PAUS)– reconstruction tomography,”Medical Physics 22(10), pp.1605-1609, 1995.
    [125] Kruger RA, Kopecky KK, Aisen AM, Reinecke DR, Kruger GA, Kiser Jr W. ,“Thermoacoustic computed tomography– a medical imaging paradigm,”Radiology, 211, pp.275-278. 1999.
    [126] Kruger RA, Reinecke DR, Kruger GA.,“Thermoacoustic computed tomography– technical considerations,”Medical Physics 26(9):1832-1837, 1999.
    [127] Kiser Jr W and Kruger RA.,“Thermoacoustic computed tomography–imaging simulations,”Proc SPIE 3659:895-904, 1999.
    [128] Y. Xu, D. Feng, and L.-H. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography—I: Planar geometry," IEEE Transactions on Medical Imaging, 2002, 21 (7):823–828
    [129] Y. Xu, M. Xu, and L.-H. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography—II: Cylindrical geometry," IEEE Transactions on Medical Imaging 2002, 21 (7): 829–833
    [130] K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,“Optoacoustic imaging using a three-dimensional reconstruction algorithm,”IEEE J. Sel. Top. Quantum Electron. 7, pp.918-923, 2001.
    [131] Kornel P. Kostli and Paul C. Beard,“Two-dimensional photoacoutic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,”Appl.Opt, 42(10), pp. 1899-1908, 2003.
    [132] Mouyan Zou, Deconvolution and Signal Recovery, pp. 56-96, 2001.
    [133] Miller K,“Least squares methods for ill-posed problems with a prescribed bound,”SIAM J. Math., 1, 52~74, 1970.
    [134] Croetseh C W, The Theory of Tikhonvn regularization for Fredholm Equations of the first kind, pp. 20~60, 1984.
    [135] Nashed MZ,“Operator-theoretical and computational approaches to ill-posed problems with application to antenna theory,”IEEE Trans. On Antenna and Propog, 29(2), 220~231, 1981.
    [136] Philips DL,“A technique for the numerical solution of certain integral equation of the first kind,”J.A.C.M., 9, 84~97, 1962.
    [137]邹谋炎著,“反卷积和信号复原”,北京:国防工业出版社,2001
    [138]谭毅,刑达,王毅,曾亚光等,“基于不同频率成份衰减矫正的光声成像方法”,光子学报,2005,34(7):1019-1022
    [139]杨迪武,刑达,王毅,谭毅,尹邦政,“基于代数重建算法的有限角度扫描的光声成像”,光子学报,2005,25(6):772-776
    [140] Yuan Xu, Lihong V. Wang,“Reconstructions in limited-view thermoacoustic tomography”, Med. Phys., 2004 31(4):724-733
    [141]瞿中,邹永贵,沈宽,王珏,徐问之,“工业CT窄角扇束扫描下的代数迭代图像重建算法研究”,计算机研究与发展,2005,42(11):1882-1888
    [142]瞿中,周海燕,唐甜甜,徐强,“ART图像重建算法在ICT窄角扇束中的研究”,计算机工程与设计,2004,25(6):896-898
    [143]李志鹏,丛鹏,邬海峰,“代数迭代算法进行CT图像重建的研究”,核电子学与探测技术,2005,25(2):184-186
    [144] Xueding Wang, Yongjiang Pang, and Geng Ku,“Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact”, OPTICS LETTERS, 2003, 28(19):1739-1741
    [145] Kwang Hyun Song, George Stoica, Lihong V. Wang,“In vivo three-dimensional photoacoustic tomography of a whole mouse head”, OPTICS LETTERS, 2006, 31(16):2453-2455
    [146] Xing Jin, Lihong V. Wang,“Thermoacoustic tomography with correction foracoustic speed variations”, Physics in Medicine and Biology, 2006, 51:6437-6448
    [147] Y. Xu and L.-H. Wang, "Effects of acoustic heterogeneity on thermoacoustic tomography in the breast," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2003, 50 (9):1134-1146
    [148]王朝英,冯新喜编著,“信号处理原理”,清华大学出版社;北京交通大学出版社,北京,2005
    [149] http://omlc.ogi.edu/spectra/
    [150]陈胜锋,王丙云,计慧琴,“鸡胚胎干细胞及其应用研究进展”,动物医学进展,2006,27(1):9-13
    [151]李碧春,赵东伟,王克华,陈国宏,“鸡胚胎及其部分组织器官生长发育的研究”,江苏农业研究,2001,22(2):39-43
    [152]向良忠,邢达,谷怀民,杨迪武,杨思华,曾吕明,“改进的同步迭代算法在光声血管成像中的应用”,物理学报,2007,56(7):3911-3916
    [153]车轶,崔勇华,朱玉芳,孙华英,马原野,“吗啡对鸡胚胎发育的影响”, China J. Appl. Physiol, 2007, 23(4):500-504
    [154]刘磊主编,“眼超声生物显微镜诊断学”,北京科学技术出版社,北京,2002
    [155]石忠鑫,李冬育,岳向东编著,“眼科超声生物显微镜检查图谱”,天津科学技术出版社,2002
    [156]周爱泉,“彩色眼超声及眼外伤部分眼底血流观察”,中国超声诊断杂志,2003,4(4):245-247
    [157] Tao Lu, Zhiyuan Song, Yixiong Su,“Feasibility of photoacoustic tomography for opthalmology”, Chinese Optics Letters, 2007, 5(8):475-476
    [158]中华人民共和国卫生部,GBZ2-2002,工作场所有害因素职业接触限值,中华人民共和国国家标准,北京:中华人民共和国卫生部,2002
    [159] Jingying Jiang, Kexin XU,“Fundamentals and developments of biological tissue optical clearing”, Proc. of SPIE, 6047,44:1-6
    [160] Xiangqun Xu, Qiuhong Zhu,“Sonophoretic Delivery for Contrast and Depth Improvement in Skin Optical Coherence Tomography”, IEEE J. of Selected Topics in Quan. Electronics, 14(1):56-61
    [161] Yonghong He, Ruikang K. Wang,“Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography”, J. of Biomedical Optics, 9(1):200-206
    [162] Yonghong He, Ruikang K. Wang,“Enhanced sensitivity and spatial resolution for in vivo imaging with low-level light-emitting probes by use of biocompatible chemical agents”, Optics Letters, 28(21):2076-2078
    [163]徐向群,吴柳,“不同结构生物组织光透明作用比较”,中国激光,2006,33(7):998-1002
    [164]徐向群,吴柳,“近红外反射光谱研究光透明剂渗透特性对胃组织光学透明的影响”,中国激光,2005,32(5):717-722
    [165] Mazurchuk R,Zhou R,Robert M,et al.,“Functional magnetic resonance(MR) imaging of a rat brain tumor model:implications for evaluation of tumor microvasculature and therapeutic response”, [J].Magn Reson Imaging,1999,17(4):537-548
    [166] Barth M, Jurgen R, Reichenbach,et al.,“High-resolution,multiple gradient-echo functional MRI at 1.5”T[J].Magn Reson Imaging, 1999, 17(3):321-329
    [167]岑建,朱萏,骆清铭,曾绍群,“渗透剂对小鼠皮肤光学特性影响的实时动态监测”,光学学报,2004,24(7):873-876
    [168] M. Xu and L.-H. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Physical Review E, 2003, 67 (5), 056605, 1-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700