硅基微纳光电子器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电子器件是光纤通信的基础,是实现光纤通信的底层承载平台和核心技术所在。随着光纤通信技术的发展,小型化、智能化、低成本和高可靠性逐渐成为光纤通信系统的重要发展方向。硅基光电子技术,借助成熟的硅基加工工艺、廉价的材料成本、良好的光电混合集成特性,正逐步替代传统的基于Ⅲ-Ⅴ族材料光电子器件,适应光纤通信系统的发展需求。此外,硅基光电子器件与其他功能模块结合,实现高灵敏度、多功能、一体化的微纳光机电系统,被广泛应用于光纤通信领域之外的光学传感、军事侦查、空间探索等领域。因此,在硅基光电子器件方面的研究,对提高我国未来在光电子芯片产业的核心竞争力具有重要的意义。在此背景下,本论文着重研究了其中两类尺寸在微纳尺度的重要硅基光电子器件,提出并实现了三个新型硅基光电子器件的设计。
     本文的主要内容如下:
     第一部分,调研工作。首先,对目前硅基光电子器件的研究现状,进行了详细的调研工作,并对硅基光电子的发展方向、关键问题、研究思路做了相应的总结和探讨工作。然后,对硅基光电子的关键技术、关键器件进行了简要介绍。
     第二部分,有关宽带MEMS可调谐激光器的设计、加工、封装和测试。针对目前设计中存在的外腔祸合效率低和组装复杂等问题,提出了一个基于抛物面镜的新型硅基MEMS可调谐激光器设计。通过在可调谐激光器的外腔内,利用被动耦合方式集成光纤柱形透镜和深硅刻蚀的抛物面镜两个二维的光约束器件,组合实现三维方向耦合,代替传统集成外来微透镜的方式,实现了真正的硅基单片集成。并利用现有的光学MEMS加工工艺,开发出了一套完整的MEMS可调谐激光器芯片的加工工艺流程,成功制作出了可以正常工作的芯片,并进行了外腔滤波、波长调节、耦合输出等相关测试。所得芯片的完整尺寸只有3mm×3.2mm,在保持边摸抑制比大于20dB的情况下,实现了48.3nm的波长调节范围。
     第三部分,对基于NEMS技术的硅基光功率探测器的研究。在设计中,把光场梯度力引入NEMS和硅基光子学领域,利用光场梯度力作为光子能量与机械能之间的转换桥梁,并利用高精度的电子遂穿位移探测器进行位移探测,进而读出输入的光功率值。其设计不同于传统的基于光子吸收的探测原理,其意义在于成功克服了材料的限制,在硅基上实现了可以在C+L红外通信波段工作的光功率探测器件。在加工中,通过把硅基光子学工艺与NEMS工艺相结合,把响应光场梯度力的纳米悬臂梁和电子遂穿位移探测器集成在一起,加工出了尺寸仅有0.024mm2的高度集成硅基光功率探测芯片。测试结果表明,在不经过衰减器的条件下,NEMS光功率探测器的探测范围可以从0到20mW,波长响应范围超过100nm。
     第四部分,有关NEMS硅基全光逻辑门的研究。结合日前有关光子机械耦合系统的研究热点,利用光子机械调制的原理,成功实现了硅基无源全光逻辑门器件。首次提出了双悬浮微环谐振腔的设计结构,通过悬浮微环结构的位置来控制输出信号光的强弱。利用NEMS加工工艺,成功制作出了尺寸仅有40μm×45μm(长×宽)大小的硅基光电子芯片。通过对器件的静态特性进行了实验测试,证明了实现逻辑NOR运算的可能性。这种新型的硅基全光逻辑门,其原理上区别于传统的基于SOA或者非线性光纤等有源器件的全光逻辑门,提供了一种尺寸更小、集成度更高、功耗更低的纯硅基全光逻辑运算解决方案。
Optoelectronics are one of the most important elements for fiber communication development, since they are the basic components and the core technology to construct the communication systems. With the rapid development of fiber communication technology, the communication systems require more and more smart devices with high integration density, low cost and high reliability. Silicon based optoelectronics are fabricated by using low-cost silicon material and mature CMOS fabrication technology with a good optoelectronic hybrid-integration ability, which are dominating in the optoelectronics industry and taking the place of the traditional optoelectronics fabricated on III-V materials. Moreover, the silicon optoelectronics are also important to design various micro-optic devices with multi-function by integrating with other components. And they also have become a thriving field known as optical micro-electro-mechanical system (MEMS) and nano-electro-mechanical system (NEMS), which provide wide applications in optical detection, military reconnaissance and space exploration. The researches on silicon optoelectronics are highly necessary to improve our country's competence in the field of optoelectronics technology. Therefore, this dissertation focuses on the silicon optoelectronics development and their applications by discussing and developing two kinds of typical silicon optoelectronics devices.
     There are five chapters in this dissertation, and the main contents are as following.
     In the first part, the development situation and achievements on silicon optoelectronics have been reviewed, in which the development tendency, the most common techniques and research methods have been summarized. This part is concluded by looking ahead the challenges as well as the crucial devices based on these technologies.
     In the second part, a novel MEMS tunable laser have been designed, fabricated, packaged and tested. It is configured as the Littrow typed external cavity tunable laser with high output power and large tuning range. In its external cavity, a normal optical fiber acts as a rod-lens for light convergence in the vertical plane, while a deep-etched silicon parabolic mirror confines the light in the horizontal plane. Compare with previous designs, the proposed MEMS tunable laser is a real single-chip device without any external lenses. After solving the fabrication problems, such as release process, passive alignment, flip-chip gain chip bonding and roughness induced by deep-reactive-ion-etching (DRIE), we have successfully developed a process flow for MEMS tunable laser fabrication and packaging. The full-print chip size is only3mm×3.2mm, and its tuning range is tested up to48.3nm when the side-mode suppression ratio (SMSR) is higher than20dB.
     In the third part, a silicon based miniature optical power detector is designed by using NEMS technology, in which optical gradient force is used to actuate a nano-scaled cantilever beam. The optical power is detected by an integrated a high sensitive electron-tunneling displacement transducer, in which optical gradient force is employed as the bridge between optical energy and mechanical energy transition. The working wavelength covers C&L-band which is a traditional detection region of III-V materials based devices by using photon absorption phenomenon. Moreover, the proposed optical power detector has advantages of small size (0.024mm2), large detection power range (0-20mW) and low thermal noise.
     In the fourth part, a NEMS all-optical logic gate is developed. The NEMS all-optical logic gate is constructed by a pair of partially released micro-ring resonator in which the output optical signals are controlled by opto-mechanical effect. The suspended parts of the micro-ring resonators are driven by the optical gradient force between the suspended micro-ring resonator and the SiO2substrate. The device is fabricated by using NEMS technology and packaged by using laser welding technology. Compare with the traditional all-optical logic gates which are based on the semiconductor optical amplifier (SOA) or high nonlinear fibers, the proposed NEMS all-optical logic gate has the advantages of low power consumption (-0.5mW), high compact size (40μm×45μm), low cost and easy batch fabrication, which provides a potential application in silicon-photonic integration for digital signal processing.
引文
[1]R. Soref and J. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm," IEEE J. Quantum Electron., vol. QE-22, no.6, pp.873-879,1986
    [2]R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of EO switch in silicon," in Proc. SPIE Intergr. Opt. Circuit Eng., vol.704, pp.32-37,1986
    [3]B. Schuppert, J. Schmidtchen, and K. Petermann, "Optical channel waveguides in silicon diffused from GeSi alloy," Electron. Lett., vol.25, no.22, pp.1500-1502, Oct. 1989
    [4]R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi and Si-on-SiO2," IEEE J. Quantum Electron., vol.27, no.8, pp.1971-1974, Aug.1991
    [5]M. Finot, et al, "Thermal tuned external cavity laser with micromachined silicon etalons:Design, Progress and Reliability," in Proc. Electron. Comp. Technol. Conf., pp.818-823,2004
    [6]C. Marxer, P. Griss, and N. F. de Rooij, "A variable optical attenuator based on silicon micromechanics," IEEE Photon. Technol. Lett., vol.11, no.2, pp.233-235, Feb.1999
    [7]M. Kozhevnikov, et., al, "Compact 64 x 64 micromechanical optical cross connect," IEEE Photon. Technol. Lett., vol.15, no.7, pp.993-995, Jul.2003
    [8]W. M. Green, M. J. Rooks, et al, "Ultra-compact, low RF power,10 Gb/s silicon Mach-Zehnder modulator," Opt. Express, vol.15, no.25, pp.17106-17113,2007
    [9]http://techresearch.intel.com/ResearchAreaDetails.aspx?ld=26
    [10]王明华,“硅基光电子光子集成芯片的现有水平与研发动向”,微电子技术,第29卷,第1期,pp.6-8,2001
    [11]IBM Silicon Integrated Nanophtonics Project: http://researcher.ibm.com/view_project_subpage.php?id=2869
    [12]W. M. Duncan, et al, "Dynamic optical filtering in DWDM systems using the DMD", in Proc. Semi. Dev. Res. Sym., pp.430-430,2001
    [13]MEMSCAP (Formerly JDSU MEMS). [Online]. Available:www. memsrus.com
    [14]http://jazz.nist.gov/atpcf/prjbriefs/prjbrief.cfm?ProjectNumber=98-02-0001
    [15]Y. M. Kang, H. D. Liu, et. al., "Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product," Nature Photonics, vol.3, pp.59-63,2009
    [16]http://www.helios-project.eu
    [17]http://www.uksiliconphotonics.co.uk/Index.html
    [18]L. O'Faolain, D. M. Beggs, T. P. White, Tobias Kampfrath, Kobus Kuipers and Thomas F. Krauss, "Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals," IEEE Photon. J., vol.2, pp.404-414,2010
    [19]A. Di Falco, L. O. Faolain, and T. F. Krauss, "Chemical sensing in slotted photonic crystal heterostructure cavities," Appl. Phys. Lett., vol.94, pp.063503-1-063503-3, 2009
    [20]http://www.istis.sh.cn/hykjqb/wenzhang/list_n.asp?id=3451&sid=1
    [21]S. Itabashi, "R&D Trends in Silicon Photonics", NTT Technical Rev.,2010
    [22]http://www.jsps.go.jp/english/core_to_core/call.html
    [23]D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. V. Thourhout, and G. Roelkens, "High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform," Opt. Express, vol.18, no.17, pp.18278-18283, Aug.2010
    [24]M. Asghari, "Silicon photonics:A low cost integration platform for datacom and telecom applications," in Proc. OFC/NFOEC, NThA4,2008.
    [25]J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express, vol.17, no.6, pp. 4752-4757, Mar.2009
    [26]T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron., vol.11, no.1, pp.232-240,2005
    [27]F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A Leinse. D. Geuzebroek, and A. Borreman, "Box-shaped dielectric waveguides:a new concept in integrated optics," J. Lightw. Technol., vol.25, no.9, pp.2579-2589,2007
    [28]N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, M. J. Paniccia, "Development of CMOS-Compatible integrated silicon photonics devices," IEEE J. Sel. Top. Quantum Electron., vol.12, no.6, pp.1688-1698,2006
    [29]H. Wong, and C. K. Wong, "Silicon photonics for microelectronic optical interconnects," in Proc. IEEE-INEC, Tao-Yuan, pp.1-2, Jun.2011
    [30]F. Gao, Y. Wang, G. Cao, X. Jia, F. Zhang, "Reduction of sidewall roughness in silicon-on-insulator rib waveguides," Appl. Surf. Sci., vol.252, pp.5071-5075,2006
    [31]D. K. Sparacin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," J. Lightw. Technol., vol.23, no.8, pp. 2455-2461, Aug.2005
    [32]J. Takahashi, T. Tsuchizawa, T. Watanabe, and S. Itabashi, "Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides," J. Vac. Sci, Technol. B, vol.22, no.5, pp.2522-2525,2004
    [33]T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology," J. Lightw. Technol., vol.19, no.3, pp.371-379, Mar.2001
    [34]W. Bogaerts, P. Dumon, D. V. Thourhout, R. Baets, "Compact, low-loss waveguide crossings for high-index-contrast SOI photonic wires," in Proc. OFC/NFOEC, pp.1-3, 2007
    [35]Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, "Low loss and low crosstalk waveguide crossings designed by wavefront matching method," IEEE Photon. Technol. Lett., vol.18, no.19, pp.2005-2007, Oct.2006
    [36]T. Fukazawa, T. Hirano, F. Ohno, T. Baba, "Low loss intersection of Si photonic wire waveguides," Jap. J. Appl. Phys., vol.43, pp.646-647,2004
    [37]J. F. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Effective thermo-optical enhanced cross-ring resonator MZI interleaves on SOI," Opt. Express, vol.16, no.26, pp.21476-21482, Dec.2008
    [38]W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Compact microring-based wavelength-selective inline optical reflector," Opt. Lett., vol.32, no.19, pp. 2801-2803,2007
    [39]H. Chen, A. W. Poon, "Low-loss multimode-interference-based crossings for silicon wire waveguides," IEEE Photon. Technol., vol.18, no.21, pp.2260-2262, Nov.2006
    [40]X. G. Tu, J. F. Song, T. Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, G. Q. Lo, "Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity," Opt. Express, vol.20, no.3, pp.2640-2648,2012
    [41]M. S. Kwon, and W. H. Steier, "Microring-resonator-based sensor measuring both the concentration and temperature of a solution," Opt. Express, vol.16, no.13, pp. 9372-9377, Jun.2008
    [42]J. F. Song, X. S. Luo, X. G. Tu, M. K. Park, J. S. Kee, H. J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors," Opt. Express, vol.20, no.4, pp.4189-4197, Feb.2012
    [43]P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, "Surface plasmon interferometer in silicon-on-insulator:novel concept for an integrated biosensor," Opt. Express, vol.14, no.16, pp.7063-7072, Aug.2006
    [44]M. Li, H. X. Tang, and M. L. Roukes, "Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications," Nano Lett., vol.2, pp. 114-120, Feb.2007
    [45]X. Z. Zheng, F. Y. Liu, J. Lexau, D. Patil, G. L. Li, Y. Luo, H. D. Thacker, I. Shubin, J. Yao, "Ultralow power 80 Gb/s array CMOS silicon photonic transceivers for WDM optical links," J. Lightw. Technol., vol.30, no.4, pp.641-650, Feb.2012
    [46]F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, "Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides," J. Lightw. Technol., vol.25, no.1, pp.151-156, Jan.2007
    [47]G. Roelkens, D. Vermeulen, D. V. Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, "High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit," Appl. Phys. Lett., vol.92,131101,2008
    [48]Y. Vlasov, "Silicon photonics for next generation computing systems," present at Eur. Conf. Opt. Commun. (ECOC), Sep.2008. [Online], Tutorial Tul Al. Available: http://www.research.ibm.com/photonics
    [49]M. H. Pu, L. Liu, H. Y. Ou, K. Yvind, J. M. Hvam, "Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide," Opt. Comm., vol.283, pp. 3678-3682,2010
    [50]J. H. Song, J. Zhang, H. J. Zhang, C. Li, G. Q. Lo, "Si-photonics based passive device packaging and module performance," Opt. Express, vol.19, no.19, pp.18020-18028, Sep.2011
    [51]J. H. Song, K. H. Lee, F. H. Peters, "Modeling of high-index coating lensed fibers for silicon nanophtotonic device coupling," J. Eur. Opt. Soc, RP, vol.5,10007,2010
    [52]H.S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia "An all-silicon Raman laser," Nature, vol.433, pp.292-294,2005
    [53]H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, "A continuous-wave Raman silicon laser," Nature vol.433, pp.725-728, Feb.2005
    [54]D. Liang, J. E. Bowers, D. C. Oakley, T. Napoleone, D. C. Chapman, C.-L. Chen, P. W. Juodawlkis and O. Raday, "High-Quality 150 mm InP-to-Silicon Epitaxial Transfer for Silicon Photonic Integrated Circuits," Electrochem. Solid State Lett, vol. 12, pp. H101-H104,2009
    [55]U. Gosele, Q. Y. Tong, "Semiconductor wafer bonding," Annu. Rev. Mater. Sci., vol. 28, pp.215-241,1998
    [56]W. Pittroff, G. Erbert, G. Beister, F. Bugge, A. Klein, A. Knauer, J. Maege, P. Ressel, J. Sebastian, R. Staske, and G. Traenkle, "Mounting of high power laser diodes on boron nitride heat sinks using an optimized Au/Sn metallurge," IEEE Trans. Adv. Packag., vol.24, no.4, pp.434-441, Nov.2001
    [57]S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, '1310-nm hybrid III-V/Si Fabry-Perot Laser based on adhesive bonding," IEEE Photon. Technol. Lett., vol.23, no.23, pp.1781-1873, Dec.2011
    [58]H. Enomoto, D. N. Hai, K. Inoue, S. Sakamoto, T. Okumura, N. Nishiyama, S. Kondo, S. Arai, "Comparison of wafer bonding methods of membrane GaInAsP wired waveguides on Si substrate," Nano-optoelectronics workshop,2008, pp.289-290, 2008
    [59]D. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE, vol.97, no.7, pp.1166-1185, Jul.2009
    [60]A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y. L. Chang, P. Abraham, J. E. Bowers, E. L. Hu, "Wafer fusion:materials issues and device results," IEEE J. Sel. Top. Quantum Electron., vol.3, pp.943-951,1997
    [61]L. F. Miller, "Controlled collapse reflow chip joining," in IBM J. Res. Develop., vol. 13, pp.239-250,1969
    [62]H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang, "A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity," Opt. Express, vol.16, no.21, pp.16670-16679,2008
    [63]Q. Tan, Y. C. Lee, "Soldering technology for optoelectronic packaging," Proc.46th Electron. Compon. Technol. Conf., pp.26-36,1996
    [64]J. W. Ronnie Teo, X. Q. Shi, S. Yuan, G. Y. Li, and Z. F. Wang, "Modified face-down bonding of ridge-waveguide lasers using hard solder," IEEE Trans. Electron. Packag. Manuf., vol.31, no.2, pp.159-167,2008
    [65]J. Tian, and M. Bartek, "Study of thermal and thermo-mechanical behavior in a multi-chip-composed optoelectronic package," Proc.9th Electron. Packag. Technol. Conf., pp.886-891,2009
    [66]C. Cole, and B. Huebner, J. E. Johnson, "Photonic integration for high-volume, low-cost applications," IEEE Comm. Magazine, pp. S16-S22, Mar.2009
    [67]L. Zimmermann, G. B. Preve, T. Tekin, T. Rosin, and K. Landles, "Packaging and assembly for integrated photonics-a review of the ePIXpack photonics packaging platform," IEEE J. Sel. Top. Quantum Electron., vol.17, no.3, pp.645-651,2011
    [68]K. E. Petersen, "Micromechanical light modulator array fabricated on silicon [laser display applications]," Appl. Phys. Lett., vol.31, no.8, pp.521-523, Oct.1977
    [69]K. E. Petersen, "Silicon torsional scanning mirror," IBM J. Res. Develop., vol.24, no. 5, pp.631-637, Sep.1980
    [70]X. M. Zhang, Q. W. Zhao, A. Q. Liu, J. Zhang, J. H. Lau, and C. H. Kam, "Asymmetric tuning schemes of MEMS dual-shutter VOA," J. Lightw. Technol., vol. 26, no.5, pp.569-579, Mar.2008
    [71]C. Y. Tsai, and T. L. Chen, "Design, fabrication and calibration of a novel MEMS logic gates," J. Micromech. Microeng., vol.20,095021,2010
    [72]C. Marter, M. A. Gretillat, V. P. Jaecklin, R. Baettig, O. Anthamatten, and P. Vogel, "Megahertz opto-mechanical modulator," Sens. Actuators A. Phys., vol.52, no.1. Pp. 46-50, Mar.1996
    [73]W. M. Zhu, X. M. Zhang, A. Q. Liu, H. Cai, T. Jonathan, T. Bourouina, "A micromachined optical double well for thermo-optic switching via resonant tunneling effect," Appl. Phys. Lett., vol.92,251101,2008
    [74]Q. X. Zhang, Y. Du, C. W. Tan, J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, "A novel MEMS configuration for three dimensional fine positioning and mechanical fixing of a ball lens in the packaging of silicon photonics," Proc. Transducers Conf., Beijing, China, pp.1795-1798, Jun.2011
    [75]H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, 'Tunable dual-wavelength laser constructed by silicon micromaching," Appl. Phys. Lett., vol.92,051113,2008
    [76]O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, "Miniaturized time-scanning fourier transform spectrometer based on silicon technology," Opt. Lett., vol.24, no.23, pp.1705-1707, Dec.1999
    [77]M. C. Wu, O. Solgaard, J. E. Ford, "Optical MEMS for lightwave communication," J. Lightw. Technol., vol.24, no.12, pp.4433-4454,2006
    [78]D. Sarid, D. Lams, V. Weissenberger, L. S. Bell, "Compact scanning-force microscope using laser diode," Opt. Lett., vol.13, pp.1057-1059,1988
    [79]U. Schneider, and R. Schellin, "A phase-modulating microphone utilizing integrated optics and micromachining in silicon," Sens. Actuators A, vol.41-42, pp.695-698, 1994
    [80]P. Phska, and W. Lukosz, "Integrated-optical acoustical sensors," Sens. Actuators A, vol.41-42, pp.93-97,1994
    [81]M. C. Oh, J. W. Kim, K. J. Kim, and S. S. Lee, "Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides," IEEE Photon. Technol. Lett., vol.21, no.8, pp.501-503, Apr.2009
    [82]K. Zandi, J. Zou, B. Wong, R. V. Kruzelecky, Y. A. Peter, "VOA-based optical MEMS accelerometer," Proc. Int. Conf. OMN, Istanbul, pp.15-16, Aug.2011
    [83]X. L. Zhou, and Q. X. Yu, "Wide-range displacement sensor based on fiber-optic fabry-perot interferometer for subnanometer measurement," IEEE Sens. J. vol.11, no. 7, pp.1602-1606, Jul.2011
    [84]R. Waters, C. Tally, B. Dick, H. Jazo, M. Fralick, M. Kerber, A. Wang, "Design and analysis of a novel electro-optical MEMS gyroscope for navigation applications," IEEE Sens., pp.1690-1695,2010
    [85]T Tekin, "Review of packaging of optoelectronic, photonic, and MEMS components," IEE J. Sel. Top. Quantum Electron., vol.17, no.3, pp.704-719,2011
    [86]O. Basarir, S. Bramhavar, and K. L. Ekinci, "Motion transduction in nanoelectromechanical systems arrays using near-field optomechanical coupling," Nano Lett., vol.12, pp.534-539,2012
    [87]C. A. Zorman, M. Mehregany, "Silicon carbide for MEMS and NEMS-an overview," Proc. IEEE Sens., vol.2, pp.1109-1114,2002
    [88]M. Li, W. H. P. Pernice, H. X. Tang, "Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities," Appl. Phys. Lett., vol.97,183110,2010
    [89]X. Y. Chew, G. Y. Zhou, H. B. Yu, F. S. Chau, J. Deng, Y. Ch. Loke, and X. S. Tang, "An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities," Opt. Express, vol.18, no.21, pp.22232-22244, Oct. 2010
    [90]O. Basarir, S. Bramhavar, K. L. Ekinci, "Monolithic integration of a nanomechanical resonator to an optical microdisk cavity," Opt. Express, vol.20, no.4, pp.4272-4279, Feb.2012
    [91]C. H. Metzger, and K. Karrai, "Cavity cooling of a microlever," Nature, vol.432, pp. 1002-1005,
    [92]I. Favero, and K. Karrai, "Optomechanics of deformable optical cavities," Nature Photonics, vol.3, pp.201-205, Apr.2009
    [93]F. Marquardt, and S. M. Girvin, "Trend:Optomechanics," Physics 2,40,2009
    [94]J. Rosenberg, Q. Lin, O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nature Photonics, vol.3, pp.478-483, Aug.2009
    [95]J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, A. Q. Liu, "A nanomachined optical logic gate driven by gradient optical force," Appl. Phys. Lett., vol.100,113104,2012
    [96]D. N. Hutchison, and S. A. Bhave, "Z-axis optomechanical accelerometer," Proc. MEMS Conf., Paris, France, pp.615-619,29 Jan-2 Feb.2012
    [97]J. Buus and E. J. Murphy, "Tunable lasers in optical networks," J. Lightw. Technol., vol.24, no.1, pp.5-11, Jan.2006
    [98]M. Bouda, M. Matsuda, K. Morito, S. Hara, T. Watanabe, T. Fujii, and Y. Kotaki, "Compact high-power wavelength selectable lasers for WDM applications," in Conf. of Optical Fiber Communication (OFC), Baltimore, MD. vol.1, pp.178-180, Mar. 2000
    [99]L. A. Johansson, Z. Y. Hu, D. J. Blumenthal, L. A. Coldren, Y. A. Akulova, G. A. Fish, "50-GHz dual-mode-locked widely tunable sampled-grating DBR laser," IEEE Photon. Technol. Lett., vol.17, no.2, pp.285-287, Feb.2005
    [100]M. Peters, V. Rossin, M. Everett, E. Zucker, "High power, high efficiency laser diodes at JDSU," Proc. of SPIE, vol.6456,64560G,2007
    [101]M. Finot, M. Mcdonald, B. Bettman, J. Sell, A. Daiber, W. B. Chapman, and W. J. Kozlovsky, "Thermally tuned external cavity laser with micromachined silicon etalons:design, process and reliability," Proc. of Electron. Compon. & Technol. Conf., pp.818-823,2004
    [102]T. Day, "External cavity tunable laser for network deployment," Digest of the LEOS Summar Topica, Copper Mountain, Co, US,30 Jul-01 Aug.2001
    [103]K. Sato, J. De Merlier, K. Mizutani, S. Sudo, S. Watanabe, K. Tsuruoka, K. Naniwae, and K. Kudo, "A compact external cavity wavelength tunable laser without an intracavity etalon," IEEE Photon. Technol. Lett., vol.18, no.10, pp.1191-1193,2006
    [104]T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, R. Takahashi, "Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing," IEEE J. Quantum. Electron., vol.45, no.7, pp.892-899, Jul.2009
    [105]S. Matsuo, H. Ishii, T. Sato, R. Sato, K. Kasaya, A. Ohki, Y. Shibata, and H. Oohashi, "Monolithically integrated tunable DFB laser array and Mach-Zehnder modulator," Proc. ECOC, Torino, Italy,19-23, Sep.2010
    [106]K. Tsuzuki, Y. Shibata, N. Kikuchi, M. Ishikawa, T. Yasui, H. Ishii, and H. Yasaka, "Full C-band tunable DFB laser array copackaged with InP Mach-Zehnder modulator for DWDM optical communication system," IEEE J. Sel. Top. Quantum Electron., vol.15, no.3, pp.521-527,2009
    [107]K. Takabayashi, S. Sekiguchi, A. Hayakawa, S. Tomabechi, A. Uetake, and H. Kuwatsuka, "Mode-hop-free and electrically wavelength-tunable laser array with 39.5 nm tuning range using tunable distributed amplification DFB structure," Proc. Semiconductor Laser Conf., pp.27-28,2006
    [108]P. Kozodoy, T. A. Strand, Y. A. Akulova, C. Schow, P. C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, "Thermal effects in monolithically integrated tunable laser transmitters," IEEE Trans. Compon. Packag. Technol., vol.28, no.4, pp. 651-657, Dec.2005
    [109]A. J. Ward, D. J. Robbins, D. C. J. Reid, N. D. Whitbread, G. Busico, P. J. Williams, J. P. Duck, D. Childs, and A. C. Carter, "Realization of phase grating comb reflectors and their application to widely tunable DBR lasers," IEEE Photon. Technol. Lett., vol. 16, no.11, pp.2427-2429, Nov.2004
    [110]S. Jatta, B. Kogel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meiβner, "Bulk-micromachined VCSEL at 1.55 m with 76-nm single-mode continuous tuning range," IEEE Photon. Technol. Lett., vol.21, no.24, pp.1822-1824, Dec.2009
    [111]P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett., vol.10, no.12, pp.1679-1681, Dec.1998
    [112]E. Muller, W. Reichert, C. Ruck, and R. Steiner, "External-cavity design and wavelength calibration," Hwelett-Packard J., pp.20-27, Feb.1993
    [113]K. Sato, J. De Merlier, K. Mizutani, S. Sudo, S. Watanabe, K. Tsuruoka, K. Naniwae, and K. Kudo, "Over 50-mW fiber coupled power and 40-nm tuning range of an extremely compact external cavity wavelength tunable laser," Proc. ECOC, vol.4, pp. 889-892,2005
    [114]R. Wyatt, W. J. Devlin, "10 kHz linewidth 1.5 mm InGaAsP external cavity laser with 55 nm tuning range," Electron. Lett., vol.19, no.3, pp.110-112, Feb.1983
    [115]F. Wang, A. Hermerschmidt, H. J. Eichler, "Narrow-bandwidth high-power output of a laser diode array with a simple external cavity," Opt. Comm., vol.218, pp. 135-139,2003
    [116]D. Anthon, J. D. Berger, A. Tselikov, "C+L band MEMS tunable external cavity semiconductor laser," Proc. OFC, CA, USA, pp.761, Feb.2004
    [117]B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, R. King, X. Hong, M. Sherback, V. Agrawal, and T. Razazan, '12 element multi-wavelength DFB arrays for widely tunable laser modules," Proc. OFC, ThGG71,2002
    [118]D. Anthon, J. D. Berger, J. Drake, S. Dutta, A. Fennerna, J. D. Grade, S. Hrinya, F. Ilkov, H. Jerman, D. King, H. Lee, A. Tselikov, and K. Yasumura, "External cavity diode lasers tuned with silicon MEMS," Proc. OFC, Tu07,2002
    [119]A. Q. Liu, X. M. Zhang, V. M. Murukeshan, C. Lu, and T. H. Cheng, "Micromachined wavelength tunable laser with an extended feedback model," IEEE J. Sel. Top. Quantum Electron., vol.8, no.1, pp.73-79,2002
    [120]A. Q. Liu, X. M. Zhang, D. Y. Tang, and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett., vol. 85, no.17, pp.3684-3686, Oct.2004
    [121]W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, "Precision MEMS flexure mount for a Littman tunable external cavity laser," IEEE Proc. Sci. Meas. Technol., vol.151, no.2, pp.67-75, Mar.2004
    [122]J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, "Tunable external cavity laser based on polymer waveguide platform for WDM access network," IEEE Photon. Technol. Lett., vol.17, no.9, pp.1956-1958, Sep. 2005
    [123]Y. O. Noh, H. J. Lee, J. J. Ju, M. S. Kim, S. H. Oh, and M. C. Oh, "Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings," Opt. Express, vol.16, no.22, pp.18194-18201,2008
    [124]R.J.Manning, I.D.Phillips, A.D.Ellis, et al.,10 Gbit/s all-optical regenerative memory using single SOA-based logic gate, IEE Electronics Letters, Vol.35, Issue2, pp.158-159, Jan.1999
    [125]C.Bintjas, N.Pleros, K.Yiannopoulos, et al., All-optical packet address and payload separation, IEEE Photonics Technology Letters, Vol.14, Issue 12, pp.1728-1730, Dec. 2002
    [126]H. K. Buning, T. Lettmann, Book:Propositional logic:deduction and algorithms, Cambridge University Press, pp.2,1999
    [127]D.Wolfson, P. B.Hansen, A.Kioch, et al., All-optical 2R regeneration based on interferometric structure incorporating semiconductor optical amplifiers, IEE Electronics Letters, Vol.35, Issuel, Jan.1999, pp.59-60
    [128]E. Jahn, N. Agrawal, M. Arbert, et al.,40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers, IEE Electronics Letters, Vol.31, Issue 21, Oct.1995, pp.1857-1858
    [129]N. S.Patel, K. A. Rauschenbach., and K. L.Hall,40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI), IEEE Photonics Technology Letters, Vol.8, Issue 12, Dec.1996, pp.1695-1697
    [130]Q. F. Xu, and M. Lipson, "All-optical logic based on silicon micro-ring resonators," Opt. Express, vol.15, no.3, pp.924-929, Feb.2007
    [131]G. S. Wiederhecker, L. Chen, A. Gondarenko, M. Lipson, "Controlling photonic structures using optical forces," Nature Letters, vol.462, pp.633-636, Dec.2009
    [132]D. V. Thourhout, and J. Roels, "Optomechaincal device actuation through the optical gradient force," Nature Photonics, vol.4, pp.211-217, Apr.2010
    [133]A. Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on metal-oxide-semiconductor capacitor," Nature, vol.427, pp.615-618, Feb.2004
    [134]L. Liao, A. Liu, J. Basak, H. Nguyen, M. Paniccia, D. Rubin, Y. Chetrit, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for highspeed applications," Electron. Lett., vol.43, no.22, pp.1196-1197, Oct.2007
    [135]S. Manipatruni, Q. F. Xu, B. Schmit, J. Shakya, M. Lipson, "High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator," IEEE Proc. Lasers and Electro-Optics Soc, pp.537-538,2007
    [136]Q. F. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature Letters, vol.435, pp.325-327, May,2005
    [137]G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nature Photonics, vol.4, pp.518-526, Aug.2010
    [138]P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Z. Feng, G. L. Li, X. Z. Zheng, A. V. Krishnamoorthy, and M. Asghari, "Wavelength-tunable silicon microring modulator," Opt. Express, vol.18, no.11, pp.10941-10946,2010
    [1]J. Buus and E. J. Murphy, "Tunable lasers in optical networks," J. Lightw. Technol., vol.24, no.1, pp.5-11, Jan.2006
    [2]M. Bouda, M. Matsuda, K. Morito, S. Hara, T. Watanabe, T. Fujii, and Y. Kotaki, "Compact high-power wavelength selectable lasers for WDM applications," in Conf. of Optical Fiber Communication (OFC), Baltimore, MD. vol.1, pp.178-180, Mar. 2000
    [3]H. Halbritter, F. Riemenschneider, B. Kogel, E. Feldmeier and P. Merssner, "Optical channel switching algorithm for continuously tunable lasers," Electron. Lett., vol.40, no.24, Nov.2004
    [4]E. Muller, W. Reichert, C. Ruck, and R. Steiner, "External-cavity laser design and wavelength calibration," J. Hewlett-Packard, pp.20-27, Feb.1993
    [5]H. Ukita, Y. Uenishi and H. Tanaka, "A photomicrodynamic system with a mechanical resonator monolithically integrated with laser diodes on gallium arsenide," Science, vol.260, no.5109, pp.786-789,1993
    [6]A. Q. Liu, X. M. Zhang, V. M. Murukeshan and Y. L. Lam, "A novel device level micromachined tunable laser using polysilicon 3D mirror," IEEE Photon. Technol. Lett., vol.13, pp.427-429,2001
    [7]J. K. Aikio and P. Karioja, "Wavelength tuning of a laser diode by using a micromechanical Fabry-Perot interferometer," IEEE Photon. Technol. Lett., vol.11, pp. 1220-1222,1999
    [8]J. D. Berger and D. Anthon, "Tunable MEMS devices for optical networks," Opt. Photon. News, vol.14, pp.42-46,2003
    [9]A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett., vol.85, pp.3684-3686, 2004
    [10]X. M. Zhang, A. Q. Liu, C. Lu and D. Y. Tang, "Continuous wavelength tuning in micromachined Littrow external-cavity lasers," IEEE J. Quantum Electron., vol.41, pp. 187-197,2005
    [11]D. Authon, J. D. Berger, J. Drake, S. Dutta, A. Fennema, J. D. Grade, S. Hrinya, F. Ilkov, H. Jerman, D. King, H. Lee, A. Tselikov, and K. Yasumura, "External cavity diode lasers tuned with silicon MEMS," Conf. of Optical Fiber Communication (OFC), Anaheim, CA. pp.97-98, Mar.2002
    [12]J. De, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, "Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror," IEEE Photon. Technol., vol.17, pp.681-683,2005
    [13]A. Lohmann and R. R. A. Syms, "External cavity laser with a vertically etched silicon balzed grating," IEEE Photon. Technol., vol.15, pp.120-122,2003
    [14][J. F. Tao, J. F. Tao, J. Wu, K. Xu, J. T. Lin and A. Q. Liu, et al, "Ultra-high Coupling Efficiency of MEMS Tunable Laser via 3-Dimentional Micro-optical Coupling System," IEEE-MEMS Conference 2011, Pp:13-16, Cancun, Mexico, Jan.2011
    [15]http://en.wikipedia.org/wiki/Kramers%E2%80%93Kronig_relations
    [16]L.A.Coldren, S.W.Corzine, "Analysis and design of coupled-cavity lasers-I: Threshold gain analysis and design guidelines," IEEE J. Quantum Electron., vol. QE-20, no.6, pp.659-670, June 1984
    [17]K.Y.Liou, "Single-longitudinal-mode operation of injection laser coupled to a Grin Rod cavity", Electron. Lett., Vol.19.,pp.750-751, Sept.1983.
    [18]P. W. Smith, "Mode selection in lasers." Proc. IEEE, vol.60, pp.422-440, Apr.1972.
    [19]Peterman K, "Laser Diode Modulation and Noise", chapter.9, London, Kluwer,1988
    [20]A. Q. Liu, X. M. Zhang, V. M. Murukeshan, C. Lu and T. H. Cheng, Micromachined wavelength tunable laser with an extended feedback model, IEEE J. Sel. Top. Quantum Electron., vol.8, no.1, pp.73-79, January/February 2002.
    [21]PAUL W. A. MclLROY, "Calculation of the mode suppression ratio in Fabry-Perot, DBR, and external cavity lasers", IEEE J. Quantum Electron., vol.26, no.6, pp. 991-997,1990
    [22]A. Q. Liu, X. M. Zhang, "A review of MEMS external-cavity tunable lasers", J. Micromech. Microeng.17 (2007) R1-R13
    [23]H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang, J. Wu, and Q. X. Zhang, "Tunable dual-wavelength laser constructed by silicon micromachining," App. Phys. Lett., vol.92,051113,2008
    [24]P. Heremans, J. Genoe, M. Kuijk, R. Vounckx, and G. Borghs, "Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist," IEEE Photon. Technol. Lett., vol.9, no.10, pp.1367-1369, Oct.1997
    [25]S. I. Chang and J. B. Yoon, "A 3-D planar microlens for an effective monolithic optical interconnection system," IEEE Photon. Technol. Lett., vol.18, no.7, pp.814-816, 2006
    [26]R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J Quantum Electron., vol. QE-16, no.3, pp.347-355, Mar.1980
    [27]B. Tromborg, J. H. Osmundsen, and H. Olesen, "Stability analysis for a semiconductor laser in an external cavity," IEEE J. Quantum Electronics, vol. QE-20, no.9, pp. 1023-1032, Sep.1984
    [28]P. McNicholl and H. J. Metcalf, "Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings," Appl. Opt., vol.24, no.17, pp. 2757-2761,1985
    [29]M. De Labachelerie and G. Passedat, "Mode-hop suppression of Littrow grating-tuned lasers:Erratum," Appl. Opt., vol.33, no.18, pp.3817-3819,1994
    [30]A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair," IEEE Photon. Technol. Lett., vol.19, pp.692-694,2007
    [31]X. M. Zhang, H. Cai, C. Lu, C. K. Chen, and A. Q. Liu, "Design and experiment of 3-dimensional micro-optical system for MEMS tunable lasers," in Conference of MEMS 2006, Istanbul, Turkey, pp.830-833,2006
    [32]W. R. Trutna, Jr. and L. F. Stokes, "Continuously tuned external cavity seminconductor laser," J. Lightw. Technol., vol.11, no.8, pp.1279-1286
    [33]K. Sato, J. De Merlier, K. Mizutani, S. Sudo, S. Watanabe, K. Tsuruoka, K. Naniwae, and K. Kudo, "A compact external cavity wavelength tunable laser without an intracavity etalon," IEEE Photon. Technol. Lett., vol.18, no.10, pp.1191-1193, May, 2006
    [34]B. Moeyersoon, G. Morthier, R. Bockstaele, and R. Baets, "Improvement of the wavelength switching behavior of semiconductor tunable lasers through optical feedback from a periodic reference filter based on a novel prism-based implementation of a fox-smith resonator," IEEE Photon. Technol. Lett., vol.17, no.10, pp.2032-2034, Oct.2005
    [35]SMF-28:http://www.corning.com/WorkArea/showcontent.aspx?id=41243
    [36]M. Malak, N. Pavy, Y. Peter, A. Q. Liu, T. Bourouina, "Stable, high-Q fabry-perot resonators with long cavity based on curved, all-silicon, high reflectance mirrors," MEMS Conference, pp.720-723,2011
    [37]X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, C. Lu, "Retro-axial VOA using parabolic mirror pair," IEEE Photon. Technol. Lett., vol.19, no.9, pp.692-694, May 2007
    [38]A. V. Gitin, "Optimal two-mirror system for laser radiation focusing," Quantum. Electron., vol.39, no.10, pp.977-980,2009
    [39]H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang, "A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity," Opt. Express, vol.16, no.21, pp.16670-16679, Oct.2008
    [40]R. R. A. Syms, and A. Lohmann, "MOEMS tuning element for a Littrow external cavity laser," J. Microelectromech. Syst., vol.12, no.6, pp.921-928,2003
    [41]R. R. A. Syms and A. Lohmann, "Tuning mechanism for a MEMS external cavity laser," Conf. IEEE/LEOS, Lugano, Switzerland, Aug.20-23,2002
    [42]X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, "A real pivot structure for MEMS tunable lasers," J. Microelectromech. Syst., vol.16, no.2, pp.269-278, Apr.2007
    [43]J. Li, Q. X. Zhang, A. Q. Liu, "Advanced fiber optical switches using deep RIE (DRIE) fabrication," Sens. Actuators A, vol.102, pp.286-295,2003
    [44]W. H. Juan, Y. H. Kao, and S.W. Pang, "High reflectivity micromirrors fabricated by coating high aspect ratio Si sidewalls," J. Vac. Sci, Technol. B, vol.15, no.6, pp. 2661-2665,1997
    [45]H. C. Liu, Y. H. Lin, W. Hsu, "Sidewall roughness control in advanced silicon etch process," J. Microsystem Technol., vol.10, pp.29-34,2003
    [46]S. W. Zhao, A. Chen, A. Revzin and T. R. Pan, "Stereomask lithography for multi-object bio-patterning," in Conf. MEMS, Cancun, Mexico, pp.336-339, Jan. 23-27,2011
    [47]J. W. Shin, Y. K. Kim, H. J. Shin, "A proposal of vertical spring as a mechanical element for MEMS and fabrication of vertical spring using simple shadow evaporation process," IEEE/LEOS Summer Topical Meetings, pp. Ⅱ/101-II/102,1998
    [48][48] J. H. Yeom, Y. Wu, M. A. Shannon, "Critical aspect ratio dependence in deep reactive ion etching of silicon," in Conf. Transducers, Boston, US, pp.1631-1634, 2003
    [49]J. Li, A. Q. Liu, X. M. Zhang, and T. Zhong, "Light switching via thermo-optic effect of micromachined silicon prism," Appl. Phys. Lett., vol.88, no.24,243501, Jun.2006
    [50]F. Gao, Y. Wang, G. Cao, X. Jia, F. Zhang, "Reduction of sidewall roughness in silicon-on-insulator rib waveguides," Appl. Suf. Sci., vol.252, pp.5071-5075,2006
    [51]J. Li, Q. X. Zhang, A. Q. Liu, W. L. Goh, and J. Ann, "Technique of preventing stiction and notching effect on silicon-on-insulator microstructure," J. Vac. Sci. Technol. B, vol. 21, no.6, pp.2530-2539,2003
    [52]H. B. Liu, C. Franck, "Layout controlled one-step dry etch and release of MEMS using deep RIE on SOI wafer," J. Microelectromech. Sys., vol.15, no.3, pp.541-547,2006
    [53]C. C. Liu, Y. K. Lin, M. P. Houng, and Y. H. Wang, "The microstructure investigation of Flip-chip laser diode bonding on silicon substrate by using Indium-gold solder," IEEE Trans. Comp., Packag. Technol., vol.26, no.3, pp.635-641, Sep.2003
    [54]J. W. R. Tew, Z. F. Wang, X. Q. Shi, G.Y. Li, "An optimized face-down bonding process for laser diode packages," in Electron. Packag. Technol. Conf., pp.390-395, 2004
    [55]J. F. Tao, J. Tamil, J. Wu, K. Xu, J. T. Lin, A. Q. Liu, "Thermal management and alignment strategies in MEMS tunable laser packaging," Adv. Materials Research, vol. 74, pp.319-322,2009
    [56]L. Lin, "MEMS post-packaging by localized heating and bonding," IEEE Trans. Adv. Packag., vol.23, no.4, pp.608-616, Nov.2000
    [57]S. Wei, V. Bader, G Azdasht, P. Kasulke, E. Zakel, H. Reichl, "Fluxless die bonding of high power laser bars using the AuSn-Metallurgy," in Electron. Comp. and Technol. Conf., pp.780-787,1997
    [58]X. M. Zhang, A. Q. Liu, D. Y. Tang, C. Lu, J. Z. Hao, and A. Asundi, "Tunable external-cavity laser using MEMS technology," in Conf of Transducers, Boston, US, pp.1502-1505, Jun.8-12,2003
    [59]D. Schicketanz and J. Schubert, "Coupling losses between laser diodes and multimode glass fibers," Opt. Comm., vol.5, no.4, pp.291-292,1972
    [60]K. Shuke, T. Yoshida, M. Nakano, A. Kawatani, and Y. Uda, "1.5-M to 622-Mb/s fiber-optic transmitters and receivers packaged in reflow solderable surface mount housings,", IEEE J. Sel. Top. Quantum Electron., vol.5, no.2, pp.217-223,1999
    [61]W. T. Chen, and L. A. Wang, "Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating," IEEE Photon. Technol. Lett., vol.12, no.5, pp.501-503,2000
    [62]V. Heikkinen, K. Tukkiniemi, J. Vahakangas and T Hannula, "Packaging considerations of fibre optic laser sources," Prof of SPIE, vol.1533, pp.115-121,1991
    [1]G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, "Controlling photonic structures using optical forces," Nature, vol.462, pp.633-637, Dec.2009
    [2]X. Y. Chew, G. Y. Zhou, F. S. Chau, J. Deng, X. S. Tang, Y. C. Loke, "Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities," Opt. Lett., vol.35, no.15, Aug.2010,2517
    [3]Kerry J. Vahala, "Optical microcavities," Nature, vol.424, pp.839-846,2003
    [4]J. F. Tao, J. Wu, H. Cai, Q. X. Zhang, J. M. Tsai, J. T. Lin, and A. Q. Liu, "A Nanomachined Optical Logic Gate Driven by Gradient Optical Force," Appl. Phys. Lett., vol.100,113104,2012
    [5]P. F. V. Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, "A MEMS-based projection display," Proc. The IEEE, vol.86, no.8, pp.1687-1704,1998
    [6]H. Cai, K. J. Xu, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, and D. L. Kwong, "A nano-optical switch driven by optical force using a laterally coupled double-ring resonators," IEEE-MEMS Conf.2012, pp.1297-1300,2012
    [7]K. L. Ekinci, M. L. Roukes, "Nanoelectromechanical systems," Rev. Sci. Instruments, vol.76,061101,2005
    [8]C. H. Metzger and K. Karrai, "Cavity cooling of a microlever," Nature, vol.432, pp. 1002-1005, Dec.2004
    [9]I. Favero, and K. Karrai, "Optomechanics of deformable optical cavities," Nature Photonics, vol.3, pp.201-205,2009
    [10]M. Li, W. H. P. Pernice, and H. X. Tang, "Tuanble bipolar optical interactions between guided lightwaves," vol.3, pp.464-468,2009
    [11]M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, "Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation," Nature Nanotechnology, vol.6, pp. 726-732,2011
    [12]D. N. Hutchison, and S. A. Bhave, "Z-axis optomechanical accelerometer," Proc. MEMS Conf., Paris, France, pp.615-619,2012
    [13]M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett., vol.30, no.22, pp.3042-3044,2005
    [14]A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett., vol.11, pp.288-290, 1986
    [15]A. Shkin, "History of optical trapping and manipulation of small-neutral particle, atom, and molecules," IEEE J. Sel. Top. Quantum Electron., vol.6, pp.841-856, 2000
    [16]http://www.rsoftdesign.com/products.php
    [17]M. Eichenfield, C. P. Michael, R. Perahia and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nature Photonics, vol.1, pp.416-422, vol.1, Jul.2007
    [18]M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic circuits," Nature Letters, vol.456, pp.480-484,2008
    [19]M. Li, W. H. P. Pernice, and H. X. Tang, "Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides," Phys. Rev. Lett., vol.103, 223901,2009
    [20]M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, J. D. Joannopoulos, "High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators," Opt. Express, vol.13, no.20, pp.8286-8295,2005
    [21]K. Y. Fong, W. H. P. Pernice, M. Li, H. X. Tang, "Tunable optical coupler controlled by optical gradient forces," Opt. Express, vol.19, no.16,15098-15108,2011
    [22]L. Novotny, and B. Hecht, "Principle of nano-optics," Chapter 13, Cambridge Univ. Press,2006
    [23]S. Mandal, X. Serey, and D. Erickson, "Nanomanipulation using silicon photonic crystal resonators," Nano Lett., vol.10, pp.90-104,2010
    [24]M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature Letters, vol.462,08524, Nov.2009
    [25]T. W. Kenny, W. J. Kaiser, J. A. Podosek, H. K. Rockstad, J. K. Reynolds, and E. C. Vote, J. Vac. Sci. Technol. A.11,797,1993
    [26]M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, L. C. Kimerling, "Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators", J. Lightw. Technol., vol.27, no.12, pp.2015-2110,2009
    [27]C. H. Liu, T. W. Kenny, "A high-precision, wide-bandwidth micromachined tunneling accelerometer," J. Microelectromech. Syst., vol.10, no.3, pp.425-433, Sep.2001
    [28]J. F. Tao, H. Cai, A. B. Yu, W. M. Zhu, Q. X. Zhang, J. Wu, K. Xu, J. T. Lin, G. Q. Lo, D. L. Kwong, and A. Q. Liu, "On-chip optical power measurement by optical force,' in Proc. Transducers'11 Conf. Beijing China, pp.1911-1914, Jun.2011
    [29]M. H. Bao, "Analysis and design principles of MEMS devices," p.50, Elsevier, Amsterdam,2005
    [30]M. S. Rasras, et al, "Demonstration of a tunable microwave-photonic notch filter using Low-loss silicon ring resonators", J. Lightw. Technol., vol.27, no.12, pp. 2105-2110,2009
    [31]K. L. Seaward, J. E. Turner, K. Nauka, and A. M. E. "Nel, "Role of ions in electron cyclotron resonance plasma-enhanced chemical vapor deposition of silicon dioxide," J. Vac. Sci. Technol. B, vol.13, no.1, pp.118-124,1995
    [32]S. M. Han, and E. S. Aydil, "Study of surface reactions during plasma enhanced chemical vapor deposition of SiO2 from SiH4, O2 and Ar plasma" J. Vac. Sci. Technol. A, vol.14, no.4, pp.2062-2070,1996
    [33]W. Lu, J. Zheng, J. Sudijuno, H. Yap, K. Fam, C. Leong, M. Liao, Y. Lin, "Characterization of High Density Plasma CVD USG Film", Chartered in "Multilevel Interconnect Technology",, SPIE, vol.3214 pp.94,1997
    [34]http://www.enigmatic-consulting.com
    [35]I, Jafri, H. Busta, and S. Walsh, "Critial point drying and cleaning for MEMS technology," Proc. SPIE,3880,51,1999
    [36]G. L. Weilel, C. K. Ober, "An overview of supercritical CO2 applications in microelectronics processing," Microelectron. Engineering, vol.65, pp.145-152, Jan. 2003
    [37]W. I. Jang, C. A. Choi, M. L. Lee, C. H. Jun, Y. T. Kim, "Fabrication of MEMS devices by using anhydrous HF gas-phase etching with alcoholic vapor," J. Micromech. Micromoeng., vol.12, pp.297-306,2002
    [38]M. Mita, H. Kawara, H. Toshiyoshi, J. Endo, H. Fujita, "Bulk micromachined tunneling tips integrated with positioning actuators," J. Microelectromech. Syst., vol. 14, no.1, pp.23-28, Feb.2005
    [39]H. K. Rockstad, T. W. Kenny, J. K. Reynolds, and W. J. Kaiser, "A miniature high-sensitivity broad-band accelerometer based on electron tunneling transducers,' Sens. Actuators A, vol.43, pp.107-114,1994
    [40]G. Dehlinger, J. D. Schaub, S. J. Koester, Q. C. Ouyang, J. Q. Chu, and A. Grill, "High-speed germanium-on-insulator photodetector," Proc. Annu. Meeting IEEE-LEOS, pp.321-322,2005
    [41]S. Miura, H. Kuwatsuka, T. Mikawa, and O. Wada, "Planar embedded InP/GaInAs p-i-n photodiode for very high-speed operation," J. Lightw. Techol., vol. LT-5, no.10, pp.1371-1376,1987
    [42]B.A. Walker, X. K. Yi, "Resonant optothermal detector for use as an optical power meter," Proce, IEEE-ICSPCC, pp.1-6,2011
    [43]T. W. Kenny, W. J. Kaiser, J. A. Podosek, H. K. Rochstad, J. K. Reynolds, and E. C. Vote, "Micromachined tunneling displacement transducers for physical sensors," J. Vac. Sci. Technol. A, vol.11, no.4, pp.797-802, Jul.1993
    [44]A. O. Ong, and F. E. H. Tay, "Motion characterizations of lateral micromachined sensor based on stroboscopic measurements," IEEE J. Sens., vol.7, no.2, pp.163-171, Feb.2007
    [45]N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, "Cantilever transducers as a platform for chemical and biological sensors," Rev. Sci. Instrum., vol.75, no.7, 2229-2253
    [46]D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. V. Thourhout, and G. Roelkens,"High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform," Opt. Express, vol.18, no.17, pp.18278-18283,2010
    [47]J. H. Song, J. Zhang, H. J. Zhang, C. Li, and G. Q. Lo, "Si-photonics based passive device packaging and module performance," Opt. Express, vol.19, no.19, pp. 18020-18028, Sep.2011
    [48]Q. F. Xu, and M. Lipson, "All-optical logic based on silicon micro-ring resonators," Opt. Express, vol.15, no.3, pp.924-929,2007
    [49]R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express, vo.17, no.18, pp.15726-15735,2009
    [50]K. Watanable, Y. Hashizume, Y. Nasu, M. Kohtoku, M. Itoh, and Y. Inoue, "Ultralow power consumption silica-based PLC-VOA/Switch," J. Light. Technol., vol.26, no. 14, pp.2235-2244, Jul.2008
    [51]S. H. Tao, B. C. Yang, H. Xia, H. Wang, and G. Q. Lo, "An optical power splitter with variable power splitting ratio," IEEE Photon. Technol. Lett., vol.23, no.14, pp. 1004-1006, Jul.2011
    [1]K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett., vol.28, no.18, pp.1663-1664, Sep.2003
    [2]C. Gunn, "CMOS photonics for high-speed interconnects," IEEE Micro, vol.26, no. 58-66, Mar/Apr.2006
    [3]J. F. Song, Q. Fang, X. S. Luo, H. Cai, T. Y. Liow, M. B. Yu, G. Q. Lo, D. L. Kwong, "Thermo-optical tunable planar ridge microdisk resonator in silicon-on-insulator," Opt. Express, pp.11220-11227, Jum.2011
    [4]M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, "Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth," IEEE Photon. Technol. Lett., Vol. 17, pp.1510-1512,2005
    [5]A. S. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, M. Paniccia, "Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform," IEEE J. Sel. Top Quantum. Electron.,vol.16, pp.23-32,2010
    [6]H. Z. Wei, J. Z. Yu, Z. L. Liu, X. F. Zhang, W. Shi, C. S. Fang, "Fabrication of 4 ×4 tapered MMI coupler with large cross section," IEEE Photon. Technol.Lett., vol.13, no.5, pp.466-468, May.2001
    [7]S. Saito, "Silicon quantum well light-emitting diode," Proc. IEEE International. Conf on IC Design and Technology, Kaohsiung, pp,1-4, May,2011
    [8]Kotura Inc. products:http://www.kotura.com
    [9]J. F. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, D. L. Kwong, "Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI," Opt. Express, vol.16, no.26, pp.21476-21482,2008
    [10]P. T. Rakich, M. A. Povovic, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, "Ultrawide tuning of photonic microcavities via evanescent field perturbation," Opt. Lett., vol.31, no.9, pp.1241-1243, May.2006
    [11]Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature, vol.435, pp.325-327, May 2005
    [12]G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nature Photonics, vol.4, pp.518-526,2010
    [13]Q. F. Xu, M. Lipson, "All-optical logic based on silicon micro-ring resonators," Opt. Express, vol.15, no.3, pp.924-929,2007
    [14]F.F. Liu, Q. Li, Z. Y. Zhang, M. Qiu, Y. K. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top, Quantum. Electron., vol.14, no.3, pp.706-712,2008
    [15]X. Y. Chew, G. Y. Zhou, F. S. Chau, J. Deng, X. S. Tang, Y. C. Loke, "Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities," Opt. Lett., vol.35, no.15, pp.2517-2519, Aug.2010
    [16]L. J. Kauppinen, S. M. C. Abdulla, M. Dijkstra, M. J. de Boer, E. Berenschot, G. J. M. Krijnen, M. Pollnau, and R. M. de Ridder, "Micromachanically tuned ring resonator in silicon on insulator," Opt. Lett., vol.36, no.7, pp.1047-1049, Apr.2011
    [17]M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A pictogram-and nanometer-scale photonic-crystal optomechanical cavity," Nature Letters, vol.459, pp.550-556, May 2009
    [18]G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, "Controlling photonic structures using optical forces," Nature, vol.462, pp.633-637, Dec.2009
    [19]X. L. Zhao, Y. Z. Xu, C. Li, "Thermal strain analysis in optical planar waveguides," IEEE Photon. Technol. Lett., vol.15, no.3, pp.398-400, Mar.2003
    [20]M. C. M. Lee, M. C. Wu, "MEMS-Actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett., vol.17, no.5, pp.1034-1036, May 2005
    [21]G. Keiser, book:Optical fiber communication,3rdedition, by McGraw-Hill Comp. Inc.,2000
    [22]W. H. P. Pernice, M. Li, and H. X. Tang, "Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate," Opt. Express, vol.17, no.3, pp.1806-1816, Jan.2009
    [23]F. Riboli, A. Recati, M. Antezza, and I. Carusotto, "Radiation induced force between two planar waveguides," Eur. Phys. J. D, vol.46, pp.157-164,2008
    [24]J. Ma, M. L. Povinelli, "Large tuning of birefringence in two strip silicon waveguides via optomechanical motion," Opt. Express, vol.17, no.20, pp. 17818-17828
    [25]M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett., vol.30, no.22, pp.3042-3044, Nov.2005
    [26]P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, corralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics, vol.1, pp.658-665,2007
    [27]X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. Zhang, "Optical forces in hybrid plasmonic waveguides," Nano Lett.,vol.11, pp.321-328,2011
    [28]M. H. Bao, "Analysis and design principles of MEMS devices," pp.52, Elsevier, Amsterdam,2005
    [29]Y. F. Yu, J. B. Zhang, T. Bourouina, A. Q. Liu, "Optical-force-induced bistability in nanomachined ring resonator systems," Appl. Phys. Lett., vol.100,093108,2012
    [30]C. Bintjas,N. Pleros,K. Yiannopoulos, et al., "All-optical packet address and payload separation", IEEE Photon. Technol.Lett., vol.14, pp.1728-1730, Dec.2002
    [31]R. J. Manning, I. D. Phillips, A. D. Ellis, et al., "10 Gbit/s all-optical regenerative memory using single SOA-based logic gate," IEEE Electron. Lett., vol.35, no.2, pp. 158-159, Jan.1999
    [32]M. Jinno, T. Matsumoto, "Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams," Opt. Lett., vol.16, no.4, pp.220-222, Feb. 1991 pp.220-
    [33]N. A. Whitaker, J. H. Avramopoulos, P. M. W. French, et al., "All-optical arbitrary demultiplexing at 2.5 Gbits/s with tolerance to timing jitter," Opt.Lett., vol.16, no.23, pp.1838-1840, Dec.1991
    [34]K. J. Blow, N. J. Doran, and B. P. Nelson, "Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer," IEEE Electron. Lett., vol.26, no.14, pp.962-964, Jul.1990,
    [35]Y. F. Zhou, J. Wu, J. T. Lin, "Novel Ultrafast All-optical XOR Scheme Based on SagnacInterferometric Structure," IEEE J. Quantum.Electron.,vol.41, no.6, pp.823-827,Jun.2005
    [36]T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, H. K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun., vol.265, no.1, pp. 171-174, Sep.2006
    [37]Q. F. Xu, M. Lipson, "All-optical logic based on silicon micro-ring resonators," Opt. Express, vol.15, no.3, pp.924-929,2007
    [38]E. B. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microringresonator channel dropping filters," J. Lightw. Technol., vol.15, no.6, pp.998-1005, Jun. 1997
    [39]S. Y. Lin, E. Schonbrun, and K. Crozier, "Optical manipulation with planar silicon microringresoantors," Nano Lett., vol.10, pp.2408-2411,2010
    [40]I. Jafri, H. Busta, S. Walsh, "Critical point drying and cleaning for MEMS technology," Prof. SPIE, vol.3880, pp.51-58,1999
    [41]J. H. Song, J. Zhang, H. J. Zhang, C. Li, G. Q. Li, "Si-photonics based passive device packaging and module performance," Opt. Express, vol.19, no.19, pp. 18020-18028, Sep.2011
    [42]P. Sun, and R. M. Reano, "Low-power optical bistability in a free-standing silicon ring resonator," Opt. Lett., vol.35, no.8, pp.1124-1126, Apr.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700