表面等离子体波导及其在微环谐振腔中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,微环滤波器由于其具有窄线宽、结构紧凑和易于大规模集成等优势而得到广泛的关注。但传统的基于电介质的微环滤波器的器件尺寸在达到单个波长量级时便不能继续降低,这极大地束缚了光子集成芯片的集成度。为了突破这个极限尺寸的限制,人们便考虑用表面等离子体波导来实现微环滤波器。这是由于表面等离子体波导能对光紧紧地束缚在波导表面,实现光的亚波长传输,因而达到降低器件尺寸的目的。
     本文对传统的基于电介质的微环滤波器和基于表面等离子波导的微环滤波器均进行了深入的理论研究和实验探索。以下为本文的创新和硕士期间的主要研究工作:
     1、对微环滤波器的工作原理进行了深入的分析,并用耦合模理论给出了微环滤波器的透射谱公式。同时给出了微环滤波器重要性能参数的表达式,分析了结构参数对其性能的影响。
     2、提出了一个基于并联微环结构的滤波器,该滤波器由一串互相之间不直接耦合的微环和两根直波导组成。分析结果表明:当微环的数目大于或等于6个时,该微环滤波器的透射谱具有明显的平顶陡边特性。当微环数目为6个时,其-0.5dB、-3dB、-20dB的带宽分别为0.8nm、1.6nm、1.9nm,满足波分复用系统(WDM)的要求。同时我们发现此种并联微环滤波器的平顶陡边特性和旁瓣之间存在一个矛盾关系:当微环与bus波导的耦合系数较大时(比如为0.6),其透射谱具有很好的平顶陡边特性,但旁瓣较大:当微环与bus波导的耦合系数较小时(比如为0.14),其透射谱成三角形状,但几乎没有旁瓣。因此对于此种滤波器需要我们在平顶陡边特性和旁瓣之间做一个折中。
     3、提出了一个基于金属纳米棒的表面等离子体波导。该波导由两串基端互相连接的金属纳米棒组成。通过将纳米棒的底部连接起来,我们在此波导中引入了一种新的相互作用机制-传到电流交换,从而减小了波导的传输损耗。理论分析表明:此种等离子波导在1.55μm处的传输长度达到20.87gm,远大于传统的基于金属纳米棒结构的表面等离子体波导。
     4、提出了一种基于核壳结构的表面等离子体波导,并分析了基于此种波导结构的微环滤波器的性能。理论分析表明:基于此种波导结构的表面等离子体微环滤波器的3dB线宽为1.7nm,消光比为23dB,均比传统的表面等离子体微环滤波器的性能要好。
     5、设计并制作了一个基于SOI晶片的单微环滤波器。测试结果表明,对于微环半径为7μm,波导间隔为1.8μm,波导截面为300x250nm的微环滤波器,其自由谱范围为18nm, drop端投射谱的消光比为15dB,through端透射谱的消光比为5dB。
Recently, microring resonators have received considerable attention due to their advantages of ultra-narrow3dB bandwidth, compact structure and suitability for large-scale integration. However, the integration degree of photonic integration circuit is restrained by the fact that it is impossible to downscale the size of dielectric based microring resonators into the regime of subwavelength due to the diffraction limit. In order to overcome the diffraction limit, Surface Plasmon Polaritons (SPPs) are employed to realize the microring resonators. This is due to the fact that metal could confine the light tightly near its surface and transport the energy in the regime of subwavelength, and the size could then be reduced.
     In this article, we have investigated the working principles of dielectric based and SPPs based microring resonators, separately. And then the experiment procedures are given thorough introduction. The followings are the achievements of the article:
     1. We have investigated the working principles of microring resonators and presented the formulas for the transmission spectrum. In addition, the formulas for the performance parameters of microring resonators are presented and then the impact of the change of structural parameters on the performance is analyzed.
     2. We have proposed and designed a parallel microring resonators based filters, which is composed of a series of microrings and two bus waveguides. Theoretical analysis reveals that the proposed microring filters clearly exhibit the character of steep-edge and flat-top spectrum when the number of microrings is not less than six. It is demonstrated that when the number of microrings is six, the-0.5dB、-3dB、-20dB linewidth of the proposed filer is0.8nm,1.6nm,1.9nm, separately, which definitely meets the requirement of WDM system. Furthermore, a trade-off in terms of the steep-edge and flat-top character and side band is needed:the characteristics of flat-top and steep-edge is well presented with a large side band at a large coupling coefficient (e.g.0.6), while the characteristics of flat-top and steep-edge is nearly missing with a small side band at a small coupling coefficient (e.g. 0.14).
     3. A nanorods based SPPs waveguide is proposed. The transportation loss is reduced significantly by introducing additional interaction mechanism named conduction current exchange, which is realized by connecting the base end of each nanorod. Simulation results reveal that the transportation length of the proposed waveguide is as long as20.87μm at the wavelength of1.55μm, far larger than that of traditional nanorods based SPPs waveguides.
     4. A SPPs waveguide based on a core-shell structure is proposed, and then its application in microring resonators is analyzed. Simulation results reveal that for a microring resonator based on such a waveguide, the3dB line-width is1.7nm and the extinction ratio is23dB, which are both better than that of conventional SPPs microring resonators.
     5. A microring resonator based filter is fabricated on a SOI wafer. The radius of the microring is7μm, gap width between microring and bus waveguide is1.8μm, and the waveguide cross-section is300x250nm. The experiment results reveal that the free spectral range is18nm, extinction ratio for the transmission spectrum at drop and through is15dB and5dB, separately.
引文
[1].马艳华,《光子集成中的MMI型环形波导谐振腔的特性分析及结构设计》[硕士学位论文],北京邮电大学,2007.
    [2].顾畹仪,黄永清,陈雪,张杰,张民,喻松,《光纤通信》,人民邮电出版社,北京,2010.
    [3].顾畹仪,李国瑞,《光纤通信系统》,北京邮电大学出版社,1999.
    [4]. Khan, M.H.A., "Scalable Architectures for Design of Reversible Quaternary Multiplexer and Demultiplexer Circuits", Multiple-Valued Logic,2009. ISMVL '09.39th International Symposium on Computing & Processing (Hardware/Software), Dhaka, 2009.
    [5]. Takara, H.; Uchiyama, K.; Shake, I. et al, "Ultra-high speed OTDM transmission systems and sub-systems", Lasers and Electro-Optics,2001. CLEO'01.
    [6]. Hercules Simos, Charis Mesaritakis, Dimitris Alexandropoulos, and Dimitris Syvridis, "Dynamic Analysis of Crosstalk Performance in Microring-Based Add/Drop Filters", Journal of Lightwave Technology, Vol.27,2004, pp.2027-2034.
    [7], Sang-Yeon Cho1, and Richard Soref, "Apodized SCISSORs for filtering and switching", Optics Express, Vol.16,2008, pp.19078-19090.
    [8]. Odysseas C. Tsilipakos, IEEE, Traianos V. Yioultsis, and Emmanouil E. Kriezis, "Theoretical Analysis of Microring Resonator Filters Made of Plasmonic Waveguides", ICTON 2009.
    [9].顾畹仪,黄永清,陈雪,张杰,张民,喻松,《光纤通信》,人民邮电出版社,背景,2010.
    [10]. Krishna M. Sivalingam, and Suresh Subramaniam, "Optical WDM Networks", McGraw-Hill,New York,2002.
    [11]. C. A. Brackett, "Dense Wavelength Division Multiplexing Networks:Principles and Applications", IEEE Journal on Selected Areas in Communications, Vol.8,1990, pp. 948-964.
    [12]. 徐素妍,《基于高速率、大容量通信系统的WDM技术》[硕士学位论文],指挥技术学院,2000.
    [13]. M. Born and E. Wolf, "Principles of Optics", Cambridge University Press, New York, 1999.
    [14]. W. Y. Wang, and T. J. DiLaura, "Bragg effect waveguide coupler analysis", Applied Optics, Vol.16,1977, pp.3230-3236.
    [15]. L. Caruso and I. Montrosset, "Analysis of a Racetrack Microring Resonator with MMI Coupler", Journal of Lightwave Technology, vol.21,2003, pp.206-210.
    [16]. Mattia Mancinelli, Rornain Guider, Marco Masi, Paolo Bettotti, Manga Rao Vanacharla, et.al, "Optical characterization of a SCISSOR device" Opt. Express, vol.19, 2011, pp.13664-13674.
    [17]. Freddy Tan, "Integrated Optical Filters Based On Microring Resonators" [Doctoral Dissertation], University of Twente,2004.
    [18]. Robin Buckley and Pierre Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes", Opt. Express, vol.15,2007, pp. 12174-12182.
    [19]. Thierry Larochea and Christian Girard, "Near-field optical properties of single plasmonic nanowires", Appl. Phys. Lett., vol.89,2006, pp.233119.
    [20]. Sergey I. Bozhevolnyi, Valentyn S. Volkov, Eloise Devaux, and Thomas W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves", Phys. Rev. Letters, vol.95,2005, pp.046802.
    [21]. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, "Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip", Appl. Phys. Lett., vol.96,2010, pp.063105.
    [22]. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile And X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation", Nature Photonics, vol.2,2008, pp.496-500.
    [23]. Jacek Gosciniak, Tobias Holmgaard, and Sergey I. Bozhevolnyi, "Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides", Journal of Lightwave Technology, vol.29,2011, pp.1473-1481.
    [24]. Lord Rayleigh, "The problem of the whispering gallery," Philosophical Magazine, vol. xx,1910, pp.1001-1004.
    [25]. 秦莉,陆景彬,马春生,王立军,聚合物坏型滤波器的光学特性,光电子激光,2002.1.
    [26]. Djifar K. Mynbaev, Lowell L. Scheiner著,徐工全,段路,廖光宇,陈亚华等译,光想通信技术,北京:计息工业出版社,2002:576~578.
    [27]. 吴重庆,光波导理论,清华大学出版社,2005。
    [28]. 陈海波,黄永清,黄辉等,半导体环形激光器的输出耦合及阈值增益分析[J],Journal of Optoelectronics and Lasers(光电子激光),2007,18(5):543-546.
    [29]. Yariv A. "Universal relationsfor coupling of optical power between micro resonators and dielectric waveguides", Electronics Letters, vol.36,2000, pp.12-15.
    [30]. Manolatou C., Khan M. J., "Coupling of modes analysis of resonant channel add drop filters", IEEE J. Quantum Electronics, vol.-35,1999, pp.1322-1330.
    [31], Haishan Sun, Antao Chen, Larry R. Dalton, "A reflective microring notch filter and sensor", Opt. Express, vol.17,2009, pp.10731-10737.
    [32]. Hercules Simos, Charis Mesaritakis, Dimitris Alexandropoulos, and Dimitris Syvridis, "Dynamic Analysis of Crosstalk Performance in Microring-Based Add/Drop Filters", Journal of Lightwave Technology, vol.27,2009, pp.2027-2034.
    [33]. Bernd Klein, Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen-und Fahrzeugbau, Springer,2010.
    [34]. 卢善文,Comsol在应用物理领域的应用,中仿科技有限公司,2006.
    [35]. Sang-Yeon Cho, and Richard Soref, "Apodized SCISSORs for filtering and switching," Opt. Express, vol.16,2008, pp.19078-19090.
    [36]. F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett., vol.89, 2006, pp.041122.
    [37]. J. K. S. Poon, L. Zhu, G A. DeRose, and A. Yariv, "Polymer Microring Coupled-Resonator Optical Waveguides," J. Lightwave Technol., vol.24,2006, pp. 1843-1849.
    [38]. V. Van, "Synthesis of elliptic optical filters using mutually coupled microring resonators," J. Lightwave Technol., vol.25,2007, pp.584-590.
    [39]. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Elec-tromagnetic energy transport via linear chains of silver nanopar-ticles," Opt. Lett., vol.23,1998, pp. 1331-1333.
    [40]. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit", Physical Review B, vol.62,2000, pp. R16356-R16359.
    [41]. W. M. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express, vol.13,2005, pp.4818-4827.
    [42]. Jian Zhu, Jian-jun Li, and Jun-wu Zhao, "Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle," Appl. Phys. Lett., vol.99,2011, pp.101901.
    [43]. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, Jie Zhu, and Wenwu Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett., vol.91,2007, pp.133107.
    [44]. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wil-son, and P. Mulvaney, "Drastic Reduction of Plasmon Damping in Gold Nanorods," Phys. Rev. Lett.,vol.88,2002, pp.077402.
    [45]. T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett., vol.89,2006, pp.233119.
    [46]. R. K. Harrison and Adela Ben-Yakar, "Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate," Opt. Express, vol.18, 2010, pp.22556-22571.
    [47]. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallee, "Ultrafast Nonlinear Optical Response of a Single Gold Nanorod near Its Surface Plasmon Resonance," Phys. Rev. Lett., vol.107,2011, pp.057402.
    [48]. Q. H. Song and H. Cao, "Improving Optical Confinement in Nanostructures via External Mode Coupling," Phys. Rev. Lett., vol.105,2010, pp.053902.
    [49]. Cheng-ping Huang, Xiao-gang Yin, Qian-jin Wang, Huang Huang, and Yong-yuan Zhu, "Long-Wavelength Optical Properties of a Plasmonic Crystal," Phy. Rev. Lett., vol. 104,2010, pp.016402.
    [50]. C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phy. Rev. B, vol.80,2009, pp.125124.
    [51]. Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, "Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab," Appl. Phys. Lett., vol.98,2011, pp.083117.
    [52]. G A. Wurtz, W. Dickson, D. O'Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, " Guided plasmonic modes in nanorod assemblies:strong electromagnetic coupling regime," Opt. Express, vol.16,2008, pp.7460-7470.
    [53]. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Phys. Rev. Lett., vol.97,2006, pp.243902.
    [54]. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans Microwave Theory Tech., vol.47,1999, pp.2075-2084.
    [55]. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B,vol.6,1972, pp.4370.
    [56]. Nader Engheta, "Circuits with Light at Nanoscales:Optical Nanocircuits Inspired by Metamaterials," Science, vol.317,2007, pp.1698-1702.
    [57]. Wu, JJ, "Subwavelength microwave guiding by periodically corrugated strip line," Progress In Electromagnetics Research, Vol.104,2010, pp.113-123.
    [58]. B. E. A. Saleh and M.C. Teich, Fundamentals of Photonics (Wiley, New York,1991).
    [59]. A. Mekis, J, C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High Transmission through Sharp Bends in Photonic Crystal Waveguides," Phys. Rev. Lett., vol.77,1996, pp.3787.
    [60]. S. J. Al-Bader, "Optical Transmission on Metallic Wires—Fundamental Modes," IEEE J. Quantum Electron., vol.40,2004, pp.325-329.
    [61]. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett., vol.79,2001, pp.51.
    [62]. Rasmus B. Nielsen, Irene Fernandez-Cuesta, Alexandra Boltasseva, Valentyn S. Volkov, Sergey I. Bozhevolnyi, Anna Klukowska, and Anders Kristensen, "Channel plasmon polariton propagation in nanoimprinted V-groove waveguides," Opt. Lett., vol. 33,2008,2800-2802.
    [63]. Yun Binfeng, Hu Guohua, and Cui Yiping, "Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides," Opt. Express, vol.17,2009, pp. 3610-3618.
    [64]. Lin Zhu, "Modal Properties of Hybrid Plasmonic Waveguides for Nanolaser Applications," Photonics Technology Letters, vol.22,2010, pp.535-537.
    [65]. Hong-Son Chu, Ping Bai, and Er-Ping Li, "Characterization of Planar Hybrid Dielectric-loaded Plasmonic nano-Waveguides used for nano-Photonic Circuits," Proc. Microwave Symposium Digest,1-4 (2011).
    [66].:R F Oulton, G Bartal, D F P Pile, and X Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys., vol.10,2008, pp. 105018.
    [67]. P. B. Johnson and R. W. Christy, "Optical Constants of the Nobel Metals," Phys. Rev. Letters, vol.11,1963, pp.541.
    [68]. Alexey V. Krasavin and Anatoly V. Zayats, "Numerical analysis of long-range surface plasmon polariton modes in nanoscale plasmonic waveguides," Opt. Lett., vol.35, 2010,2118-2120.
    [69]. Hovhannes Haroyan, Yuri Avetisyan, Masayoshi Tonouchi, "Sub-wavelength plasmonic mode confinement in semiconductor-gap-dielectric waveguide in THz range," Proc. Lasers and Elecro-Optics,1-2 (2011).
    [70]. S. L Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, vol.440,2006, pp.508-511.
    [71]. Tobias Holmgaard, Zhuo Chen, Sergey I. Bozhevolnyi, Laurent Markey, and Alain Dereux, " Dielectric-loaded plasmonic waveguide-ring resonators," Optics Express, vol. 17,2009, pp.2968-2975.
    [72]. Thanh Trung Le and Laurence Cahill, "Analysis and Design of Optical Reflectors Based on a Series of Ring Resonators", IFIP International Conference on Wireless and Optical Communications Networks,2007, WOCN'07.
    [73]. 侯睿,何对燕,陈丹,李志宏,SOI矩形光波导的有效折射率方法的研究[J].半导体技术.2003(02).
    [74]. Yariv A. "Universal relationsfor coupling of optical power between micro resonators and dielectric waveguides", Electronics Letters, vol.36,2000, pp.12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700