一维光子晶体波分复用滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来出现了新的光学器件和新的光学理论—光子晶体。用光子晶体做成的光子集成芯片,可以像集成电路对电子的控制一样对光子进行控制,从而实现全光信息处理,在全光通信网、光量子信息、光子计算机等诸多研究领域有着诱人的应用前景。
     研究光子晶体光学传输特性的方法有多种,传输矩阵法是一种简单实用的理论计算方法,将光子晶体作为整体来研究,不需讨论其中间环节,而且不用给出入射场的分布即可计算出光子晶体透射系数和反射系数。
     本文研究了一维光子晶体带结构的优化设计,对光子晶体的传输特性进行了仿真,讨论了填充率对禁带宽度的影响和入射角对传输特性的影响等:重点研究了周期结构和缺陷层结构一维光子晶体波分复用滤波器的滤波特性。对于周期结构研究了叠层结构和3单元结构,引入理想因子,通过理想因子讨论参数的变化对多通道滤波特性的影响;设计了8信道波分复用(WDM)光子晶体滤波器。对于非周期结构,研究了单层缺陷结构和周期缺陷结构。讨论不同参数的变化对光子晶体多通道滤波特性的影响;设计了密集型波分复用光子晶体滤波器。
Recently it appears new optical apparatus and new optical theory-photonic crystals. Photon integrated chip consisting of photonic crystals control photon as integrated circles control electron, then realize all optical information treatment. There are attracting future on all optical communication network, optic quanta information, photon computer field.There are many methods studying on photonic crystal, Transfer matrix method is a simple and utility theory calculate method, Study photonic crystals as integration don't discuss intermediate process, and don't show the distributing of incidence field can calculate the transmission and reflection of photonic crystals.This paper study the optimization design of one dimensional photonic crystals ,and simulate the transmission properties, discuss the influence of filling factor on width band and the influence of incidence angle on the transmission characteristic and so on, For the period structure, it study the structure of napped and three-unit complex period photonic crystals, introducing a parameter called perfect factor, discuss the influence of variational parameter on multi-channel filtering properties;and design 8 channel wavelength division multiplexing filter. For non-period structure, studying the structure of single layers and period layers. Discussing the influence of different parameter on multi-channel filtering properties. Finally, design the dense wavelength division multiplexing transmission filter.
引文
1 Yablonovitch. In habited spontaneous emission in solid-state physics and electronics. Phys Reva Lett. 1987, 58(20): 2059- 2061.
    2 Johns. Strong localition of photons in certain disordered dielectric superlattics. Phys Rev Lett. 1987, 58(23):2486-2489.
    3 Knight. J. C, Russell. P. S. J. New ways to guide light. Science. 2002, 296 (5566): 276- 277.
    4 Sozuer. H, Haus. J, Inguve. R. Photonic bands: convergence problems with the plane wave method. Phys Rev B. 1992, 45(24): 13962-13972.
    5 Chow. Edmond, Lin. S. Y, Johnson. S. G, Villeneuve. P. R, Joannopoulos. J. D, Wendt. J. R, et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature. 2000, 407(6807): 983-985.
    6 Sato. T, Ohtera. Y, Ishino. N, et al. In-plane light propagation in Ta_2O_5/SiO_2 auto cloned photonic crystals. IEEE J. Quantum Electron. 2002, 38(7): 904- 908.
    7 Shirane. M, Gomyo. A, Miura. K, et al. Optical directional couplers based on autocloned photonic crystals. Electron Lett. 2003, 39(1): 53-54.
    8 Kawakami. S, Sato. T, et al. 3-D photonic-crystal heterostructures: fabrication and in-line resonator. IEEE Photon Technol Lett. 2003, 15(6): 816-818.
    9 M. Boroditsky, T. F. Krauss, et al. Light extraction from optically pumped light emitting diode by thin-slab photonic crystals. Appl Phys Lett. 1999, 75(13): 1036-1038.
    10 Sigalas. M. M, Chan. C. T, Ho. K. M, et al. Metallic photonic band gap materials. Phys Rev B. 1995, 52(16): 11744-11751.
    11 Gupta. S , Tuttle. G, Ho. K. M, et al, Infrared filters using metallic photonic band gap structures on flexible substrates. Apple Phys Lett. 1997, 71 (17): 2412-2414.
    12 Sigalas. M. M, Soukoulis. C. M, Economou. E. N, et al, Photonic band gaps and defects in two dimensions : studies of the tranmission coefficient. Phy Rev B. 1993,48(19): 14121-14126.
    13 Lei. X. Y, Li. H, Ding. F, et al. Novel application of a perturbed photonic crystal: High quality filter. Appl Phys Lett. 1997,71(20): 2889-2891.
    14 Ouyang. Zhengbiao, Li. Jingzhen, et al. Investigations on Multi-layer Photonic crystal filters. Acta Optica Sinica(光学学报). 2002,22(1): 79-82.(in Chinese).
    15 S. Y. Lin, J. G Fleming, D. L. Hetherington, et al. A three dimensional photonic crystal operating at infrared wavelengths. Nature. 1998,394(6690): 251-253.
    16 Scalora. M, Bloemer. M. J, et al. Transparent metallo-dielectric one dimensional photonic band gap structures. J. Appl Phys. 1998, 83(5): 2377- 2383.
    17 Yablonovitch. E. Photonic band gap structures. J Opt Soc Am B. 1993,10: 283-295.
    18 Shanhui. Fan, Pierre. R. Villeneuve, J. D. Joannopoulos, et al. Extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys Rev Lett. 1997, 78(17): 3294-3297.
    19 V. I. Kopp, Fan. B, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt Lett. 1998,23(21): 1707-1709.
    20 X. Y. Lei, H. Li, et al. Novel application of a perturbed photonic crystal: High quality filter. Appl Phys lett. 1997.71(20): 2889-2891.
    21 Trull. J, Martorell. Jordi, Vilaseca. R. Angular dependence of phase-matched second-harmonic generation in a photonic crystal. J Opt Soc Am B. 1998, 15(10): 2581-2585.
    22 H. Kosaka, Takayuki, Kawashima, et al. Photonic crystals for micro lightwave circuits using wavelength dependent angular beam steering. Appl Phys lett,1999, 74(10): 1370-1372.
    23 K. M. Ho, C. T. Chan, C. M. Soukoulis, Existence of a photonic gap in periodic structures. Phys Rev Lett. 1990, 65(25): 3152-3155.
    24 Z. zhang, S. Satpathy. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equation. Phys Rev Lett. 1990, 65(25): 2650-2654.
    25 K. M. Leung, Y. F. Liu. Full vector wave calculation to photonic band structures in face centered cubic dielectric media. Phys Rev Lett. 1990, 65(25): 2646-2650.
    26 K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Tans Antennas Propagation. 1966, 17
    27 K. Bierwirth, et al. Finite difference analysis of rectangular dielectric wave guide structures, IEEE Trans Microwave Theory Tech. 1986, 34(10): 94-96.
    28 J B Pendry, A MacKinnon, Calculation of photon dispersion relation, Phys Rev Lett, 1992, 69(19):2772-2775.
    29 M. Sigalas, C. M. Soukoulis, E. N Economou, et al. Electromagnetic wave propagation through dispersive and absorptive photonic band gap materials. Phys Rev B. 1994, 48(19), 14121-14126.
    30 J. B. Pendry. Lower Energy electron diffraction. Academic London. 1974.
    31 波恩 沃尔夫.光学原理.北京:科学出版社.1978,41-51.
    32 李正中.固体理论.北京:高等教育出版社.1985,10-11.
    33 顾秉林,王喜坤.固体物理学.北京:清华大学出版社.1989,81~82.
    34 阎守胜.固体物理基础.北京:北京大学出版社.2000,115~116.
    35 Jae. Song. I, Yeonsang. Park, et al. Optimal Design for one dimendional photonic crystal waveguide. J. Lighewave Technology. 2004, 22(2): 509- 513.
    36 D. N. Chigrin, A. V. Lavrinenko, et al. All dielectric one dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control. J. Lighewave Technology. 1999, 17(11): 2018-2023.
    37 Bi. Qinhuang, Pei. Fugu. Extension of one dimendional photonic crystal's band gap. Acta Optiac Sinica (光学学报). 2003, 23(12): 1497-1501.
    38 Zi. J, Wan. J, Zhang. C. Large frequency range of negligible transmission in 1D photonic quanturn well structures. Appl Phys Lett. 1998, 73(15): 2084- 2086.
    39 Zhang. C, Qiao. F , Wan. J, et al. Enlargement of nontransmission frequency range in photoic crystals by using multiple heterostructures. J Appl Phys. 2000, 87(6): 3174-3176.
    40 H. Y. Lee, H. Makino, T Yao, et al, Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm J Appl Phys Lett, 2002,81(24)14502-4505.
    41 H. Y. Lee, T. Yao, Design and evaluation of omnidirectional one-dimensional photonic crystals. J Appl Phys. 2003,93(2): 819-830
    42 Chal. Sik. Kee, Tkmo. Park, H. Lim, et al. Microwave photonic crystal multiplexer and its applications. Current Applied Physics, 2001,1(1): 84-87.
    43 E. Yablonovicth, T. J. Gmitter. Photonic band structure: the face centered cubic case. Phys Rev Lett. 1989, 63(18): 1950-1953.
    44 K. M. Ho, C. T. Chan, C. M Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett. 1990, 65(25):3152-3155.
    45 E. Yablonovicth, T. J. Gmitter. Photonic band structure: the face centered cubic case employing ninspherical atoms. Phys Rev Lett. 1991, 67(17): 2295-2298.
    46 S. Y. Lin, J. G Fleming, D. L. Hetherington, et al. A three dimensional photonic crystal operating at infrared wavelengths. Nature. 1998,394(6690): 251-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700