电控全息光开关的波长选择性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全光网的发展,光开关成为光网络通信技术的核心器件。全息光开关利用激光的全息技术和晶体的光折变效应,将光栅全息图写入晶体内部,通过衍射控制实现开关功能。电控全息光开关是基于二次电光效应从而实现对光栅开关状态的电场控制,这种方法制作的光开关由于具有高的衍射效率和快的响应速度已成为光开关实现的新的替代方案。顺电相钽铌酸钾锂(KLTN)晶体在相变温度附近电光效应显著,鉴于其优越的性能,对顺电相下KLTN晶体性能及其光开关器件的研究将促进全光网络以及光信息处理的发展。
     采用提拉法生长室温下具有顺电相结构的KLTN晶体,通过掺杂提高顺电相晶体的空间电荷场,从而提高晶体的光折变性能。利用二波耦合技术和顺电相全息晶体的二次电光效应,在掺锰钽铌酸钾锂晶体(Mn:KLTN)内部写入体相位Bragg光栅,讨论不同外加电压下体相位栅的衍射效率随各参数间变化关系。在不同入射光波长532nm、632.8nm下分别测得了光栅的写入擦除曲线,讨论了光栅记录角度、温度等参数对衍射效率的影响。实验还观察了较大外加电压下光栅的衍射现象。通过参数优化,实现最佳衍射条件。
     通过在顺电相电控全息晶体Mn:KLTN的内部写入两重Bragg光栅,实现了对632.8nm和532nm两波长信号光的电控衍射。根据此电控衍射的工作原理,给出两种光开关制作方案,实现了对两种波长信号光的合束、分束及同时读取,并对衍射信号光的均匀性进行了分析。结果表明,这种利用多重写入技术制作的光开关可同时实现1×2及2×1光开关功能,具有成本低、响应快、性能稳定的优点,适用于多种光学互连网络。
     搭建小角度记录光路,在顺电相全息晶体Mn:KLTN的内部写入光栅,得到具有Raman-Nath衍射的高阶衍射光栅,实现了对光束的电控高阶分束。通过实验获得了不同波长光垂直入射以及斜入射时高阶衍射现象,讨论了垂直入射和斜入射两不同入射方式时零级衍射的相似性,分析了斜入射情况下高阶衍射能量分布情况。通过记录角度的改变,得到高阶衍射时一阶衍射效率的变化情况,说明了高阶衍射对记录角度的敏感性。通过变化不同波长及其入射角入射时的高阶衍射现象比较,说明高阶衍射没有波长选择、角度选择功能。
With the development of AON (All Optical Network), optical switch becomes a core component in optical network communication. Based on holographic techniques by Laser and photorefractive effect in a paraelectric electroholographic crystal, phase gratings was written in to achieve the on-off function. Based on quadratic electro-optic effect, electroholographic switch worked at on-off states by the controlled of external electric field, it has been considered as a promising switch for the combining advantages of high diffraction efficiency and fast electro-optic response time. Paraelectric potassium lithium tantalate niobate (KLTN) crystal has the largest quadratic electro-optic coefficient compared with other crystals, and prominent electro-optic effect near the phase transition temperature. Photorefractive effect was enhanced under external electric field. Due to its excellent properties of KLTN crystal, study on its properties and applications of switch made by paraelectric KLTN crystal would advance the development of all optical network and optical information processing.
     The Czochralski method was used to grow paraelectric KLTN crystals which phase transition temperature were near room temperature. The space-charge field of paraelectric KLTN crystal was enhanced with several dopant types, so that the photorefractive effect of the crystal was also enhanced. Processing techniques was improved to gained a high quality crystal plate. Two wave mixing setup was designed and built, recording and reading process of Bragg gratings were realized. Based on two wave coupling theory and quadratic electro-optic effect in a paraelectric electroholographic crystal, volume phase Bragg gratings was written in manganese doped potassium lithium tantalate niobate (Mn:KLTN). Diffraction efficiency versus various parameters was discussed at different external voltage. Diffraction efficiency versus read-in time curve and grating erasing curve were given at both 632.8nm and 532nm incident lights. The impact of diffraction efficiency by changing record angle and temperature were also discussed. The abnormal phenomenon of grating diffraction curve was discovered with a high external voltage. The best diffraction qualification was carried out when the related parameters were optimized.
     Two Bragg gratings were written in a thick paraelectric electroholographic crystal Mn:KLTN, and then both 632.8nm and 532nm signal were diffracted at the same time under electric field controlling. Based on the mechanism of this electro-controlled diffraction, two kinds of switches were designed to accomplish the beam splitting, combining and reading together. Uniformity of the diffractive signal light was also analyzed. The results indicated that the switch made by multiple writing techniques was very suitable to various optical connecting networks, because of its advantages of multifunction, fast response, low cost and low intensity to environment disturbance.
     Two wave mixing setup was built where the angle of the two recording beams was really tiny. Two-dimensional grating was written in a thin paraelectric electroholographic crystal Mn:KLTN, the Raman-Nath grating was obtained and the high-order diffraction appeared, beam incidence was separated into multi-beam by the controlled of external electric field. At both 632.8nm and 532nm incident lights, the high-order diffraction phenomenon were gained in the way that vertical incidence and oblique incidence contained. Then in the two incident way, the zero-order diffraction was discussed and intercompared. Energy distribution of high-order diffraction was analyzed in the way of oblique incidence. Diffraction efficiency of first order versus incident angle was measured and the conclusion was given. By changing the incident angle and wavelength, the high-order diffraction phenomenon were gained and intercompared. It was proved that Raman-Nath diffraction was insensitivity to the incident angle and wavelength.
引文
1 J. Lee, J. H. Bang. Novel Architectural Schemes for Wavelength Conversions in Optical Cross Connect Systems. Opt. Fiber Tech. 2006, 12: 317~322
    2 Y. Su, S. Chandrasekhar, R. Ryf. A Multirate Upgradeable l.6-Tb/s Hierarchical OADM Network. IEEE Photonics Technology Letters. 2004, 16(1): 317~319
    3王刚,明安杰,梁静秋.光开关研究进展.微纳电子技术. 2005, 4: 195~199
    4胡军武,吴涛.光开关和光开关阵列技术的发展研究.光通信研究. 2002, 1: 58~62
    5 D. H. Jundt, M. C. C. Kajiyama, D. Djukic, M. Falk. Optical Methods to Characterize Crystal Composition of MgO-Doped Lithium Niobate. J. Crys. Growth. 2010, 312: 1109~1113
    6 W. Yuan, B. Wang, D. Ma, R. Wang. Influence of Post-Growth Treatment on the Optical Properties of In:Ce:Cu:LiNbO3 Crystals. Optik. 2009, 120: 995~999
    7 S. Kar, S. Verma, M. W. Shaikh, K. S. Bartwal. Effect of Proton Exchange and Annealing on Diffraction Efficiency of Fe:LiNbO3 Crystals. Physica B. 2009, 404: 3507~3509
    8 X. Wang, J. Wang, et al. Growth of Cubic KTa1-xNbxO3 Crystal by Czochralski Method. J. Crys. Growth. 2006, 293: 398~403
    9 R. Ilangovan, G. Ravi, C. Subramanian, P. Ramasamy, S. Sakai. Growth and Characterization of Potassium Tantalate Niobate Single Crystals by the Step-Cooling Technique. J. Crys. Growth. 2002, 237-239: 694~699
    10 V. I. Chani, K. Nagata, T. Kawaguchi, M. Imada, T. Fukuda. Segregation and Uniformity of KLiTaNbO3 Fiber Crystals Grown by Micro-Pulling-Down Method. J. Crys. Growth. 2004, 194: 374~378
    11 D. M. L. Bartholomew, A. Hellawell. Changes of Growth Conditions in the Vertical Bridgman-Stockbarger Method for the solidification of Aluminum. J. Crys. Growth. 1980, 50(2): 453~460
    12 J. Czochralski. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Zeitschrift fèur Physikalische Chemie. 1917, 92: 219~221
    13 J. C. Jacco, G. M. Loiacono, M. Jaso, G. Mizell and B. Greenberg. Flux Growth and Properties of KTiOPO4. J. Crys. Growth. 1984, 70(1-2): 484~488
    14 V. Belruss, J. Kalnajs, A. Linz and R. C. Folweiler. Top-Seeded Solution Growth of Oxide Crystals from Non-Stoichiometric Melts. Materials Research Bulletin. 1971, 6(10): 899~905
    15田浩.钽铌酸钾锂晶体的生长及电光性能研究.哈尔滨工业大学博士论文. 2008: 8 33 54 59~76
    16 A. Agranat, R. Hofmeister, A. Yariv. Characterization of a New Photorefractive Material: K1-yLyT1-xNx. Opt. Lett. 1992, 17: 713~715
    17 B. Pesach, E. Refeali, A. J. Agranat. Investigation of the Holographic Storage Capacity of Paraelectric K1-xLixTa1-yNbyO3. Opt. Lett. 1998, 23(8): 642~644
    18 R. Hofmeister, A. Yariv, A. Agranat. Growth and Characterization of the Perovskite K1-yLiyTa1-xNbxO3:Cu. J. Crys. Growth. 1993, 131: 486~494
    19 A. J. Agranat, C. E. M. de Olivera, G. Orr. Dielectric Electrooptic Grating in Potassium Lithium Tantalate Niobate. J. Non-cryst. Solids. 2007, 353: 4405~4410
    20 A. Pierangelo, E. DelRe, A. Ciattoni, G. Biagi, E. Palange, A. Agranat. Separating Polarization Components through the Electro-optic Read-out of Photorefractive Solitons. Optics Express. 2007, 15(21): 14283~14288
    21 H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, M. Hass. Submerged Waveguide Constructed by the Implantation of C-12 Ions in Electro-Optic Crystals. Lasers and Electro-Optics. 2007, 89: 241130
    22 T. Fukuda. Structural and Dielectric Studies of Ferroelectric K3Li2(TaxNb1-x)5O15. J. Appl. Phys. 1970, 9: 599~606
    23 H. Tian, C. He, et al. Growth and Characterization of Perovskite K1-yLiyTa1-xNbxO3:Ce. J. Rare Earths. 2006, 24(3): 261~263
    24 H. Tian, Z. Zhou, et al. Photorefractive Properties of Paraelectric Potassium Lithium Tantalite Niobate Cryatal Doped with Iron. Opt. Commu. 2008, 281(7): 1720~1724
    25 H. Tian, Z. Zhou, et al. Growth and Optical Properties of Paraelectric K1-yNayTa1-xNbxO3 Single Crystals. Appl. Phys. B. 2008, 91(1): 75~78
    26 H. Tian, Z. Zhou, et al. Enhanced Photorefractive Properties of Paraelectric Potassium Lithium Tantalite Niobate by Manganese Doping. J. Phys. D: Appl. Phys. 2008, 41: 095105
    27 A. Huang. Architecture Considerations Involved in the Design Optical Digital Computer. Proceedings of the IEEE. 1984, 72(7): 780~786
    28 F. Tooley, S. Wakelin. Design of a Symmetric Self-Electro-Optic-Effect-Device Cellular-Logic Image Processor. Appl. Opt. 1993, 32(11): 1850~1862
    29 K. Tajima, Y. Yamada, S. Bao, M. Okada, K. Yoshimura. Optical Switching Properties of All-Solid-State Switchable Mirror Glass Based on Magnesium–Nickel Thin Film for Environmental Temperature. Solar Energy Materials & Solar Cells. 2010, 94: 227~231
    30 P. Honzatko. All-Optical Wavelength Converter Based on Fiber Cross-Phase
    31 J. Yang, X. Li, J. Yang, J. Liu, X. Su. Polarization-Independent Bidirectional 4×4 Optical Switch in Free Space. Optics & Laser Technology. 2010, 42: 927~933
    32 Z. Li, Y. Xue, Z. Deng, T. Shen. Study on Optical Switching Effect of Photonic Crystals with Negative Effective Index of Refraction. Optik. 2009, 120: 605~609
    33 C. C. Shih, Y. J. Chen, S. Wu, C. C. Tsai, I. M. Jiang. Voltage-Controlled Optical Switch in Planar Nematic Liquid Crystal Film. Opt. Commu. 2009, 282: 3977~3981
    34 C. Jia, J. Zhou, W. Dong, W. Chen. Design and Fabrication of Silicon-Based 8×8 MEMS Optical Switch Array. Microelectronics Journal. 2009, 40: 83~86
    35 A. J. Agranat. Electroholographic Artificial Neural Networks. Physica A. 1993, 200: 608~612
    36 B. Pesach, G. Bartal, E. Refaeli, A. J. Agranat. Free Space Optical Cross-connect Switch by Use of Electroholography. Appl. Opt. 2000, 39(5): 746~758
    37 P. Arora, V. M. Petrov, J. Petter, T. Tschudi. Integrated Optical Bragg Filter With Fast Electrically Controllable Transfer Function. Opt. Commu. 2008, 281: 2067~2072
    38 K. Pavani, I. Naydenova, J. Raghavendra, S. Martin and V. Toal. Electro-Optical Switching of the Holographic Polymer-Dispersed Liquid Crystal Diffraction Gratings. J. Opt. A: Pure Appl. Opt. 2009, 11: 024023
    39闫晓娜,刘立人.偏振控制的光折变开光.光学学报. 1999, 19(7): 1003~1005
    40闫晓娜,刘立人.各向异性光折变光开光的原理.光学学报. 2001, 21(10): 1249~1252
    41董良威,阎晓娜,史开源,颜锦奎.利用光折变晶体的电光、压电效应实现2×2光开关的原理.光学学报. 2003, 23(7): 787~792
    42杨冰,杨延华,张洪方,阎晓娜.超短脉冲光通过光折变体光栅衍射及透射光强的瞬时变化特性研究.光子学报. 2009, 38: 204~208
    43闫爱民,刘德安,柴志方,周煜,栾竹,刘立人.组合外加电场提高Fe: LiNbO3中90°记录体全息的衍射效率.中国激光. 2005, 32(12): 1659~1663
    44胡志娟,闫爱民,刘德安,王春花,刘立人.变波长读出条件下光折变局域体全息光栅的衍射性质.光子学报. 2006, 35(12): 1865~1868
    45刘秋平,何兴道,周小春.体全息光栅线性记录折射率分布的修正.光学学报. 2008, 28(6): 1037~1040
    46 S. Bian, J. Frejlicha, B. Sugg, R. A. Rupp. Multiple Gratings in Semi-Insulating GaAs Crystal. Opt. Commu. 1995, 115: 151~157
    47忽满利,周景会,李艳辉,刘继芳,李育林,谭玉山.密集型体全息光栅波长解复用技术.红外与激光工程. 2004, 33: 327~330
    48江竹青,陶世荃,袁韡,刘国庆,丁晓红.光折变多重全息图分批热固定的光擦除特性.中国激光. 2005, 32: 236~239
    49刘东,王大勇,郑小丹,万玉红,江竹青,陶世荃.体全息波分复用器件波长选择性实验.中国激光. 2009, 36(2): 413~416
    50裴延波.向列液晶中的薄光栅及波耦合动力学.哈尔滨工业大学博士论文. 2007: 1~113
    51 D. Gong, Z. Zhou, et al. Two-Dimensional Higher-Diffraction-Order Optical Beam Splitter Based on Phenanthrenequinone-Doped Poly(Methyl Methacrylate) Photopolymer. Optics and Lasers in Engineering. 2009, 47(6): 662~666
    52 D. Gong, Z. Zhou, et al. The Coupling and Superposition Behavior of Higher-Order Diffraction Image Based on Photorefractive Nematic Liquid Crystal Materials. Optik. 2009, 120(11): 524~529
    53 D. Gong, Z. Zhou, et al. Higher-Order Diffraction Images in Photorefractive Materials. Optics and Lasers in Engineering. 2007, 45(1): 170~174
    54 D. Gong, Z. Zhou, et al. Higher Diffraction Order Photorefractive Optical Beam Splitter. Optics & Laser Technology. 2008, 40(3): 481~486
    55 D. Gong, Z. Zhou, et al. Comparison of the Higher Diffraction Order Images in Methyl-Red-Doped Liquid Crystal Films. Current Applied Physics. 2009, 9(4): 764~768
    56石顺祥,陈国夫,赵卫,刘继芳.非线性光学.西安电子科技大学出版社. 2002: 378~380
    57 N. V. Kukhtarev, M. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetsky. Holographic Storage in Electrooptic Crystals. Ferroeletrics. 1979, 22: 949
    58 H. Kogelnik, Bell Syst. Coupled Wave Theory for Thick Hologram Gratings. Tech. J. 1969, 48: 2909~2945
    59刘思敏,郭儒,许京军.光折变非线性光学及其应用.科学出版社. 2004: 57~66 112
    60 A. J. Agranat. Electroholographic Wavelength Selective Switches in WDM Networks. Electroholography. The Hebrew University of Jerusalem, ISRAEL. 2001: 1~41
    61 G. Barbastathis, D. Psaltis. Shift-multiplexed Holographic Memory Using the Two-lambda Method. Opt. Lett. 1996, 21(6): 432~434
    62袁保红,周忠祥,李焱,侯春风.存储于同一空间点的两幅光折变相位栅交扰问题的研究.中国激光. 2000, 27(7): 638~644

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700