周期极化晶体在光学参量变换和双波长Q开关中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着周期极化晶体制作工艺的逐渐成熟,准相位匹配(QPM)技术以其特有的转换效率高的优点,在倍频、差频、光学参量振荡、光脉冲整型、光学滤波器、光学透镜、光偏转器以及全光开关、全光波长变换等许多领域获得了日益广泛的应用,逐渐成为非线性光学的研究热点。
     本文的主要内容和创新点可归纳如下:
     1、将周期极化晶体置于激光二极管(LD)端面泵浦的声光调Q Nd:YVO4激光器谐振腔内,进行了准相位匹配内腔光学参量产生(IOPG)的实验研究,获得了结构紧凑、低阈值、高转换效率的可调谐红外相干光源。
     2、深入研究了QPM技术在多波长频率变换方面的性质特点,设计出了一块双重调制周期极化晶体,进行了双信号光波运转的光学参量振荡(OPO)、光学参量产生(OPG)、内腔光学参量振荡(IOPO)以及内腔光学参量产生(IOPG)的实验研究,获得了间隔十几纳米的双信号光和间隔一百纳米左右的双闲频光输出。在OPO的实验中,采用不同透过率的输出耦合镜,在7.6W泵浦功率下分别获得了1.9W的双信号光和0.98W的双闲频光输出。在OPG的实验中,总共获得了570mW的双信号光和双闲频光输出,转换效率32.5%。在IOPO和IOPG的实验中,在6.1W LD泵浦功率下,分别获得了0.66W和0.44W的双信号光输出。
     3、对腔轴调谐的OPO进行了理论分析,并利用PPMgO:LN晶体进行了实验研究。
     4、理论上给出了非共线OPG实现宽带输出的模型。利用PPMgO:LN晶体,获得了1571~1679nm范围内的宽带输出。
     5、提出了一种利用倾斜周期极化晶体非共线光学参量振荡产生宽带光源的新方法。
     6、提出了一种利用非周期极化铌酸锂晶体电光效应实现双波长激光器调Q的新方案。以1.0643μm和1.3419μm双波长Nd:YVO4激光器为例,给出了设计方法。
With the maturity of the fabrication of the periodically poled crystals, the quasi-phase matching (QPM) technique has gained more and more interests in the applications including frequency doubling, different frequency generation, optical parametric oscillation, optical pulse compression, optical filter, optical focus lens, optical deflector, all-optical switch and all-optical wavelength conversion. Now QPM has become a hotspot in nonlinear optics by the virtue of the extremely high conversion efficiency.
     The main content and key creation points of the dissertation are as follows:
     1. The QPM intracavity optical parametric generation (IOPG) based on periodically poled crystals internal to an acousto-optically Q-switched Nd:YVO4 laser pumped by a 808-nm diode laser(LD) was demonstrated. Thus a low-pump threshold, compact, high conversion efficiency infrared tunable coherent optical source was obtained.
     2. The multiple wave conversion based on QPM was investigated and a periodically-phase reversed PPMgO:LN crystal was designed. Optical parametric oscillation(OPO), optical parametric generation(OPG), intracavity optical parametric oscillation(IOPO) and IOPG based on this crystal was demonstrated. For the OPO, with different output coupling mirrors, the dual signal power of 1.9W and dual-idler power of 0.98W was obtained at an incident pump power of 7.6W. For the OPG, the total power of 570mW was achieved, leading to a conversion efficiency of 32.5%. For the IOPO and IOPG, the dual signal power of 0.66W and 0.44W was generated at a 6.1W LD pumping.
     3. The theoretical model of the axial angle tuned OPO was presented and the experiments based on the PPMgO:LN crystal was demonstrated.
     4. The theoretical model for generating broadband radiation by using a non-collinear OPG was presented. Using the PPMgO:LN crystal, the bandwidth of 1571~1679nm for the signal wave was achieved.
     5. A new method for generating broadband radiation by using a non-collinear QPM OPO based on the slant-stripe-type periodically poled crystal is proposed.
     6. A new approach by use of an electro-optic (EO) aperiodically poled lithium niobate (APLN) is proposed to realize Q-switch operation of the simultaneous dual-wavelength laser (SDWL). Taking the Nd:YVO4 laser at 1.0643μm and 1.3419μm for example, we present the design method of APLN based on simulated annealing algorithm(SA).
引文
[1] P. A. Franken, A. E. Hill, C. W. Peters, Generation of Optical Harmonics, Physical Review Letters, 1961, 7(4): 118~119
    [2] J. A. Giordmaine, Mixing of light beams in crystals, Physical Review Letters, 1962, 8(1): 19~20
    [3] P. D. Maker, R. W. Terhune, M. Nisenoff, Effects of dispersion and focusing on the production of optical harmonics, Physical Review Letters, 1962, 8(1): 21~22
    [4] J. A. Akmstrong, N. Bloembergen, J. Ducuing, Interaction between light wave in a nonlinear dielectric, Physical Review, 1962,127(6): 1918~1939
    [5] R. C. Miller, Optical harmonic generation in single crystal BaTiO3, Physical. Review, 1964, 134(5A): A1313~A1319
    [6] L. O. Hocker, C. F. Jr. Dewey, Enhancement of second-harmonic generation in zinc selenide by crystal defects, Applied Physics Letters, 1976, 28(5): 267~270
    [7] D. E. Thompson, J. D. McMullen, D. B. Anderson, Second-harmonic generation in GaAs "stack of plates" using high-power CO2 laser radiation, Applied Physics Letters, 1976, 29(2): 113~115
    [8] F. Duan, N. B. Ming, J. F. Hong, Enhancement of second harmonic generation in LiNbO3 crystal with periodical laminar ferroelectric domains, Applied Physics Letters, 1980, 37(7): 607~609
    [9] N. B. Ming, J. F. Hong, D. Feng, The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals, Journal of Materials Science, 1982, 17(6): 1663~1668
    [10] E. J. Lim, M. M.Fejer, R. L. Byer, Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide, Electronics Letters, 1989, 25(11):731~732
    [11] J. Webj?rn, F. Laurell, G. Arvidsson, Blue light generated by frequency doubling of laser diode light in lithium niobate channel waveguide, IEEE Photonics Technology Letters, 1989, 1(10): 316
    [12] Y. Ishigame, T. Suhare, H. Nishiharea, LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating, Optics Letters, 1991, 16(6):375~377
    [13] M. L. Bortz,M. A. Arbore, M. M. Fejer, Quasi-phase matched optical parametric amplification and oscillation in periodically-poled LiNbO3 waveguides, Optics Letters, 1995,20(1): 49~51
    [14] P. W. Haycock, P. D. Townsend, A method of poling LiNbO3 and LiTaO3 below Tc, Applied Physics Letters, 1986, 37(7): 607~609
    [15] R. W. Keys, A. Loni, R. M. De La Rue, Fabrication of domain reversed gratings for SHG in LiNbO3 by electron beam bombardment, Electronics Letters, 1990, 26(3): 188~190
    [16] H. Ito, C. Takyu, H. Inaba, Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes, Electronics Letters, 1991, 27(14), 1221~1222
    [17] B. F. Levine, C. G. Bethea, R. A. Logan, Phase-matched second harmonic generation in a liquid-filled waveguide, Applied Physics Letters, 1975, 26(7): 375~377
    [18] L. L. Pendergrass, Ferroelectric microdomain reversal at room temperature in lithium niobate, Journal of Applied Physics, 1987, 62(1): 231~236
    [19] K. Nassau, H. J. Levinstein, Ferroelectric behavior of lithium niobate, Applied Physics Letters, 1965, 7(3): 69~70
    [20] M. Yamada,N. Nada,M. Saitoh, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient field blue second-harmonic generation, Applied Physics Letters, 1993, 62(5): 435~436
    [21] W. K. Burns, W. McElhanon, L. Goldberg, Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3, IEEE Photonics Technology Letters, 1994, 6(2): 252~254
    [22] J. Webj?rn, V. Pruneri, P.St.J. Russell, Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes, Electronics Letters,1994, 30(11), 894~895
    [23] L. E. Myers,G. D. Miller, R. C. Eckardt, Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3, Optics Letters, 1995, 20(1): 52~45
    [24] L. E. Myers,R. C. Eckardt,M. M. Fejer, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,Journal of Optics Society of America B, 1995, 12(11): 2102~2116
    [25] L. E. Myers, W. R. Bosenberg, Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators, IEEE Journal of Quantum Electronics, 1997, 33(10): 1663~1672
    [26] S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, LiTaO3 crystal periodically poled by applying an external pulsed field, Journal of applied physics, 1995, 77(10): 5481~5483
    [27] K. Mizuuchi, K. Yamamoto, Harmonic blue light generation in bulk periodically poled LiTaO3, Applied Physics Letters, 1995, 66(22): 2943~2945
    [28] Q. Chen, W. P. Risk, Periodically poling of KTiOPO4 using an applied electric field, Electronics Letters, 1994, 30(18): 1516~1517
    [29] M. Oron, M. Katz, D. Eger, Highly efficient blue light generation in flux grown KTiOPO4 periodically poled by an electric field, Electronics Letters, 1997, 33(9): 807~809
    [30] D. T. Reid, Z. Penman, M. Ebrahimzadeh, Broadly tunable infrared femtosecond optical parametric oscillator based on periodically pooled RbTiOAsO4, Optics Letters, 1997,22(18):1397~1399
    [31] G. Rosenman, A. Skliar, Y. Findling, Periodically poled KTiOAsO4 crystals for optical parametric oscillation, Journal of Physics D: Applied Physics, 1999, 32: L49~L52
    [32] M. Missey, V. Dominic, L. E. Myers, Diffusion-bonded stacks of periodically poled lithium niobate, Optics Letters, 1998, 23(9): 664~666
    [33]姚建铨,非线性光学频率变换及激光调谐技术,北京:科学出版社,1995: 193~205
    [34] A. Harada, Y. Nihei, Bulk periodically poled MgO-LiNbO3 by corona discharge method, Applied Physics Letters, 1996, 69(18): 2629~2631
    [35] A. Kuroda, S. Kurimura, Y. Uesu, Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields, Applied Physics Letters, 1996, 69(11): 1565~1567
    [36] H. Ishizuki, S. Kurimura, M. Cha, Optically monitored poling characteristics of 3-mm-thick MgO-LiNbO3 crystal, Conference on Laser and Electro-Optics(CLEO), 2002, CFE2: 642
    [37] H. Ishizuki, I. Shoji, T. Taira, Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature, Applied Physics Letters, 2003, 82(23): 4062~4064
    [38] H. Ishizuki, I. Shoji, T. Taira, High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO3 device, Optics Letters, 2004, 29(21): 2527~2529
    [39] H. Ishizuki, T. Taira, High-energy optical parametric oscillator by using 5mm×5mm aperture periodically poled MgO:LiNbO3, Conference on Laser and Electro-Optics(CLEO), 2005, CFE2: 214
    [40] H. Ishizuki, T. Taira, Quasi-phase matched optical parametric oscillation by using 5mm-thick periodically poled MgO:LiNbO3, Conference on Laser and Electro-Optics(CLEO), 2005, QWL2-4: 649~650
    [41] N. E. Yu, J. H. Ro, M. Cha, Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band, Optics Letters, 2002, 27(12): 1046~1048
    [42] K. Mizuuchi, A. Morikawa, T. Sugita, High-power continuous-wave ultraviolet generation by single pass frequency doubling in periodically poled MgO:LiNbO3, Electronics Letters, 2003, 39(25): 1836~1837
    [43] K. Mizuuchi, T. Sugita, K. Yamamoto, Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3, Optics Letters, 2003, 28(15): 1344~1346
    [44] K. Mizuuchi, A. Morikawa, T. Sugita, Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3, Optics Letters, 2003, 28(11): 935~937
    [45] K. Mizuuchi, A. Morikawa, T. Sugita, Continuous-wave ultraviolet generation at 354nm in aperiodically poled MgO:LiNbO3 by frequency tripling of a diode end-pumped Nd:GdVO4 microlaser, Applied Physics Letters, 2004, 85(18): 3959~3961
    [46] N. Pavel, I. Shoji, T. Taira, Room-temperature, continuous-wave 1-W power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal, Optics Letters, 2004, 29(8): 830~832
    [47] D. W. Chen, T. S. Rose, Low noise 10-W cw OPO generation near 3μm with MgO doped PPLN, Conference on Laser and Electro-Optics(CLEO), 2005, CThQ2: 1829~1831
    [48] J. Yi, H. Ishizuki, I. Shoji, Generation of mid-IR laser by PPMgLN OPO/DFG configuration, Conference on Laser and Electro-Optics(CLEO), 2005, JTuC11: 812~814
    [49] H. Ishizukui, T. Taira, High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm×5 mm aperture, Optics Letters, 2005, 30(21): 2918~2920
    [50] H. Su, S. C. Ruan, Y. Q. Qin, Multigrating quasi-phase-matched optical parametric oscillation in periodically poled MgO:LiNbO3 device, Journal of Applied Physics, 2006, 100(5): 053107-1~ 053107-3
    [51] H. P. Li, D. Y. Tang, S. P. Ng, Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3, Optics & Laser Technology, 2006, 38: 192~195
    [52] A. Henderson, Ryan Stafford, Low threshold, singly-resonant CW OPO pumped by an all-fibre pump source, Optics Express, 2006, 14(2): 767~772
    [53] J. Saikawa, M. Fujii, H. Ishizuki, 52mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device, Optics Letters, 2006, 31(21): 3149~3151
    [54] H. C. Guo, S. H. Tang, Z. D. Gao, Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3, Journal of Applied Physics, 2007, 101(11): 113112-1~ 113112-3
    [55] K. Kitamura, J. K. Yamamoto, N. Iyi, Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system, Journal of Crystal Growth, 1992, 116: 327~332
    [56] K. Kitamura, Y. Furukawa, N. Iye, Progress in single crystal growth of LiNbO3 using double crucible Czochralski method, Ferroelectrics, 1997, 202: 21~28
    [57] V. Gopalan, T. E. Mitchell, Y. Furukawa, The role of nonstoichiometry in 180o domain switching of LiNbO3 crystals, Applied Physics Letters, 1998, 72(16): 1981~1983
    [58] K. Kitamura, Y. Furukawa, K. Niwa, Crystal growth and low coercive field 180o domain switching characteristics of stoichiometric LiTaO3, Applied Physics Letters, 1998, 73(21):3073~3075
    [59] A. Grisard, E. Lallier, K. Polgár, Low electric field periodic poling of thick stoichiometric lithium niobate, Electronics Letters, 2000, 36(12): 1043~1044
    [60] K. Kitamura, Y. Furukawa, Y. Ji, Photorefractive effect in LiNbO3 crystal enhanced by stoichiometry control, Journal of Applied Physics, 1997, 82(3): 1006~1009
    [61] Y. Furukawa, K. Kitamura, S. Takekawa, Stoichiometric MgO:LiNbO3 as an effective material for nonlinear optics, Optics Letters, 1998, 23(24): 1892~1894
    [62] M. Maruyama, H. Nakajima, S. Kurimura, 70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanaosecond optical parametric generation, Applied Physics Letters, 2006, 89(1): 011101-1~11101-3
    [63] M. Nakamura, S. Takekawa, K. Terabe, ar-stoichiometric LiTaO3 for bulk quasi-phase-matched devices, Ferroelectrics, 2002, 273: 199~204
    [64] M. Katz, R. K. Route, D. S. Hum, Vapor-transport equilibrated near-stoichiometric lithium tantalite for frequency-conversion applications, Optics Letters, 2004, 29(15): 1775~1777
    [65] F. Rotermund, C. J. Yoon, V. Petrov, Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulsed amplification at 1kHz, Optics Express, 2004, 12(26): 6421~6427
    [66] W. R. Bosenberg, A. Drobshoff, J. I. Alexander, Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3, Optics Letters, 1996, 21(10): 713~715
    [67] W. R. Bosenberg, A. Drobshoff, J. I. Alexander, 93% pump depletion, 3.5-W continuous-wave singly resonant optical parametric oscillator, Optics Letters, 1996, 21(17): 1336~1338
    [68] P. A. Champert, S. V. Popov, J. R. Taylor, Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source, Optics Letters, 2000, 25(17): 1252~1254
    [69] S. Wang, V. Pasiskevicius, F. Laurell, Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4, Optics Letters, 1998, 23(24): 1883~1885
    [70] L. E. Myers, R. C. Eckardt, M. M. Fejer, Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3, Optics Letters, 1996, 23(8): 591~593
    [71]张百钢,姚建铨,丁欣,连续调谐输出的多周期极化铌酸锂晶体光学参量振荡器,中国激光,2004, 31(8): 897~902
    [72] T. Hatanaka, K. Nakamura, T. Taniuchi, Dual signal-wave optical parametric oscillator using periodically poled LiNbO3 with series gratings, Electronics Letters, 2000, 26(16): 1409~1411
    [73] W. R. Bosenberg, J. I. Alexander, L. E. Myers, 2.5W, continuous-wave, 629-nm solid-state laser source,Optics Letters, 1998, 23 (3): 207~209
    [74] A. C. Chiang, Y. C. Huang, Y. W. Fang, Compact, 220-ps visible laser employing single-pass cascaded frequency conversion in monolithic periodically poled lithium niobate, Optics Letters, 2001, 26(2): 66~68
    [75] M. H. Chou, K. R. Parameswaran, M. M. Fejer, Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides, Optics Letters, 1999, 24(16): 1157~1159
    [76] S. Zhu, Y. Zhu, N. Ming, Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattices, Science, 1997, 278(31): 843~846
    [77] B. Gu, B. Dong, Y. Zhang, Enhanced harmonic generation in aperiodic optical superlattices, Applied Physics Letters, 1999, 75(15): 2175~2177
    [78] P. E. Powers, T. J. Kulp, and S. E. Bisson, Continuous-tuning of a continuous-wave periodically poled lithium niobate parametric oscillator by use of a fan-out grating design, Optics Letters, 1998, 23(3): 159~161
    [79] N. G. R. Broderick, G.W. Ross, H. L. Offerhaus, Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal, Physical Review Letters, 2000, 84(19): 4345~4348
    [80] http://www.hcphotonics.com
    [81] http://www.crystaltechnology.com
    [82] M. A. Mortazavi, G. Khanarian, Quasi-phase-matched frequency doubling in bulk periodic polymeric structures, Optics Letters, 1994, 19(17): 1290~1292
    [83] M. Jager, G. I. Stegeman, W. Brinker, Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5μm, Applied Physics Letters, 1996, 68(9): 1183~1185
    [84] S. J. B. Yoo, R. Bhat, C. Caneau, Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding, Applied Physics Letters, 1995, 66(25): 3410~3412
    [85] S. J. B. Yoo, C. Caneau, R. Bhat, Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding, Applied Physics Letters, 1996, 68(19): 2609~2611
    [86] K. L. Vodopyanov, M. M. Fejer, Terahertz-wave generation in quasi-phase-matched GaAs, Applied Physics Letters, 2006, 89(14): 141119-1~141119-3
    [87] I. Tomita, H. Suzuki, H. Ito, Terahertz-wave generation from quasi-phase-matched GaP for 1.55μm pumping, Applied Physics Letters, 2006, 88(7): 071118-1~ 071118-3
    [88] G. Imeshev, M. E. Fermann, K. L. Vodopyanov, High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser, Optics Express, 2006, 14(10): 4439~4444
    [89] J. E. Schaar, K. L. Vodopyanov, M. M. Fejer, Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs, Optics Letters, 2007, 32(10): 1284~1286
    [90] P. G. kazansky, V. Pruneri, Electric-field poling of quasi-phase-matched optical fibers, Journal of Optics Society of America B, 1997, 14(11): 3170~3179
    [91] V. Pruneri, G. Bonfrate, P. G. kazansky, Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers, Optics Letters, 1999, 24(4): 208~211
    [92] M. Centini, C. Sibilia, M. Scalora, Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions, Physical Review E, 1999, 60(4): 4891~4898
    [93] Y. Dumeige, I. Sagnes, P. Monnier, Phase-matched frequency doubling at photonic band edges: Efficiency scaling as the fifth power of the length, Physical Review Letters, 2002, 89(4): 043901-1~043901-4
    [94] M. Centini, G. D’Aguanno, L. Sciscione, Non-phase-matched enhancement of second harmonic generation in multilayer nonlinear structures with internal reflections, Optics Letters, 2004, 29(16): 1924~1926
    [95] I. Shoji, T. Kondo, A. Kitamoto, Absolute scale of second-order nonlinear-optical coefficients, Journal of Optics Society of America B, 1997, 14(9): 2268~2294
    [96] P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8μm,Optics Letters, 1999, 24(21): 1523~1525
    [97] L. Lefort, K. Puech, G. W. Ross, Optical parametric oscillation out to 6.3μm in periodically poled lithium niobate under strong idler absorption, Applied Physics Letters, 1998, 73(12): 1610~1612
    [98] L. Lefort, K. Puech, S. D. Butterworth, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3μm to 5.3μm range, Optics Communications, 1998, 152: 55~58
    [99] G. Hansson, D. D. Smith, Optical parametric generation in 2-μm-wavelength-pumped periodically poled LiNbO3, Optics Letters, 2000, 25(24): 1783~1785
    [100] M. A. Watson, M. V. O’Connor, P. S. Lloyd, Extended operation of synchronously pumped optical parametric oscillators to longer idler wavelengths, 2002, 27(23): 2106~2108
    [101] D. H. Jundt, Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, Optics Letters, 1997, 22(20): 1553~1555
    [102] M. V. Hobden, J. Warner, The temperature dependence of the refractive index of pure lithium niobate, Journal of Physics Letters, 1966, 22(3): 243~244
    [103] Y. S. Kim, R. T. Smith, Thermal expansion of lithium tantalate and lithium niobate single crystal, Journal of Applied Physics, 1969, 40(11): 4637~4641
    [104] Y. Hirano, S. Yamamoto, T. Tajime, LiNbO3 OPO reaches 60.2W of output, in Postdeadline papers on Conference on Laser and Electro-Optics(CLEO), 2000, CPD-7
    [105] Y. Hirano, S. Yamamoto, H. Taniguchi, High efficient and high power 2μm generation with PPMgLN OPO, Conference on Laser and Electro-Optics(CLEO), 2001, CFH2: 579~580
    [106] T. Hatanaka, K. Nakamura, T. Taniuchi, Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3, Optics Letters, 2000, 25(9): 651~653
    [107] Y. Furukawa, K. Kitamura, E. Suzuki, Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system, Journal of Crystal Growth, 1999, 197(4): 889~895
    [108] N. Y. Yu, S. Kurimura, Y. Nomura, Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium niobate, Japan Journal of Applied Physics, 2004, 43: L1265~L1267
    [109] J. Hellstr?m, V. Pasiskevicius, H. Karlsson, High-power optical parametric oscillation in large-aperture periodically poled KTiOPO4, Optics Letters, 2000, 25(3): 174~176
    [110] H. Harlsson, M. Olson, G. Arvidsson, Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO4, Optics Letters, 1999, 24(5): 330~332
    [111] T. J. Edwards, G. A. Turnbull, M. H. Dunn, Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4, Optics Letters, 1998, 23(11): 837~839
    [112] V. Pasiskevicius, S. J. Holmgren, S. Wang, Simultaneous second-harmonic generation with two orthogonal polarization states in periodically poled KTP, Optics Letters, 2002, 27(18): 1628~1630
    [113] G. Z. Luo, S. N. Zhu, J. L. He, Simultaneously efficient blue and red light generations in a periodically poled LiTaO3, Applied Physics Letters, 2001, 78(20): 3006~3008
    [114] J-P. Fève, O. Pacaud, B. Boulanger, Widely and continuously tunable optical parametric oscillator based on a cylindrical periodically poled KTiOPO4 crystal, Optics Letters, 2001, 26(23): 1882~1884
    [115] C. Weiss, G. Torosyan, J. P. Meyn, Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate, Optics Express, 2001, 8(9): 497~502
    [116] Y. Sasaki, A. Yuri, K. Kawase, Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal, Applied Physics Letters, 2002, 81(18): 3323~3325
    [117] S. M. Russell, P. E. Powers, M. J. Missey, Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures, IEEE Journal of Quantum Electronics, 2001, 37(7): 877~887
    [118] J. A. C. Terry, G. Tsiminis, M. H. Dunn, Eye-safe broadband output at 1.55μm through the use of a fan-out grating structure in MgO:PPLN, Journal of Optics A: Pure and Applied Optics, 2007, 9: 229~234
    [119] S. Zhu, Y. Zhu, Y. Qin, Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3, Physical Review Letters, 1997, 78(14): 2754~2755
    [120] J. He, J. Liao, H. Liu, Simultaneous cw red, yellow, and green light generation,“traffic signal lights,”by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3, Applied Physics Letters, 2003, 83(2): 228~230
    [121] J. Liao, J. He, H. Liu, Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically poled LiTaO3, Applied Physics Letters, 2003, 83(19):3159~3161
    [122] M. Asobe, O. Tadanaga, H. Miyazawa, Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure, Optics Letters, 2003, 28(7): 558~560
    [123] M. A. Arbore, O. Marco, M. M. Fejer, Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings, Optics Letters, 1997, 22(12): 865~867
    [124] M. A. Arbore, A. Galvanauskas, D. Harter, Engineerable compression of ultrashort pulses by use of second harmonic generation in chirped-period-poled lithium niobate, Optics Letters, 1997, 22(17): 1341~1343
    [125] B. Gu, Y. Zhang, B. Dong, Investigations of harmonic generations in aperiodic optical superlattices, Journal of Applied Physics, 2000, 87(11): 7629~7637
    [126] Y. Zhang, B. Gu, Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification, Optics Communications, 2001, 192: 417~425
    [127] Y. W. Lee, F. C. Fan, Y. C. Huang, Nonlinear multiple conversion based on aperiodic optical superlattice in lithium niobate, Optics Letters, 2002, 27(24): 2191~2193
    [128] A. H. Norton, C. M. Sterke, Aperiodic 1-dimensional structures for quasi-phase matching, Optics Letters, 2004, 12(5): 841~846
    [129] J. Capmany, A. Rodríguez, Wavelet-transform analysis for independent electrooptic control of multiple quasi-phase-matched nonlinear optical interactions, IEEE Photonics Technology Letters, 2004, 16(9): 2099~2101
    [130] T. Kartalo?lu, z. G. Figen, O. Ayt?r, Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate, Journal of Optics Society of America B, 2003, 20(2): 343~350
    [131] T. Umeki, M. Asobe, Y. Nishida, Widely tunable 3.4μm band difference frequency generation using apodizedχ(2) graing, 2007, 32(9): 1129~1131
    [132] M. Yamada, M. Saitoh, H. Ooki, Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystal, Applied Physics Letters, 1996, 69(24): 3659~3661
    [133] V. Berger, Nonlinear photonic crystals, Physical Review Letters, 1998, 81(19): 4136~4139
    [134] P. Ni, B. Ma, X. Wang, B. Cheng, Second- harmonic generation in two-dimensional periodically poled lithium niobate using second- order quasi-phase matching, Applied Physics Letters, 2003, 82(24): 4230~4232
    [135] P. Ni, B. Ma, S. Feng, Multiple wavelength second-harmonic generations in a two-dimensional periodically poled lithium niobate, Optics Communications, 2004, 233: 199~203
    [136] G. D. Miller , R. G. Batchko, W. M. Tulloch, 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,Optics Letters, 1997, 22(24): 1834~1936
    [137] D. Taverner, P. Britton, P. G. R. Smith, Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber: periodically poled lithium niobate source, Optics Letters, 1998, 23(3): 162~164
    [138] B. G. Zhang, J. Q. Yao, Y. Lu, High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT, Chinese Physics, 2005, 14(2): 353~358
    [139] N. E. Yu, S. Kurimura, Y. Nomura, Green light generation by QPM SHG with Czochralski-grown stoichiometric lithium tantalate, Conference on Laser and Electro-Optics(CLEO), 2005, CFC4: 2100~2102
    [140] A. G. Getman, S. V. Popov, J. R. Taylor, 7 W average power, high-beam-quality green generation in Mgo stoichiometric periodically poled lithium tantalate, Applied Physics Letters, 2004, 85(15): 3026~3028
    [141] A. Bruner, D. Eger, S. Ruschin, Second harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO, 2004, 96(12): 7445~7449
    [142] S. V. Tovstonog, S. Kurimura, K. Kitamura, High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate, Applied Physics Letters, 2007, 90(5): 051115-1~051115-3
    [143] G. W. Ross, M. Pollnau, P. G. R. Smith, Generation of high-power blue light in periodically poled LiNbO3, Optics Letter, 1998, 23(3): 171~173
    [144] X. Mu, Y. J. Ding, Efficient third-harmonic generation in partly periodically poled KTiOPO4 crystal, Optics Letter, 2001, 26(9): 623~625
    [145] D. J. L. Birkin, E. U. Rafailov, G. S. Sokolovskii, 3.6 mW blue light by direct frequency doubling of a diode laser using an aperiodically poled lithium niobate crystal, Applied Physics Letters, 2001, 78(21): 3172~3174
    [146] E. U. Rafailov, D. J. L. Brinkin, W. Sibbett, Efficient frequency doubling of a pulsed laser diode by use of a periodically poled KTP waveguide crystal with Bragg gratings, Optics Letters, 2001, 26(24): 1961~1963
    [147] D. Woll, J. Schumacher, A, Robertson, 250 mW of coherent blue 460-mW light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP, Optics Letters, 2002, 27(12): 1055~1057
    [148] X. Mu, W. Shi, Y. J. Ding, Efficient KTiOPO4 blue-light converter for monochromatic 1.3188-μm emission line of pulsed Nd:YAG laser, Journal of Applied Physics, 2003, 93(12): 9437~9440
    [149] F. Villa, A. Chiummo, E. Giacobino, High-efficiency blue-light generation with a ring cavity with periodically poled KTP, Journal of Optics Society America B, 2007, 24(3): 576~580
    [150] J.-P. Meyn, M. M. Fejer, Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite, Optics Letters, 1997, 22(16): 1214~1216
    [151] K. Mizuuchi, K. Yamamoto, Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3, Optics Letters, 1996, 21(2): 107~109
    [152] W. R. Bosneberg,A. Drobshoff, J. I. Alexander, Continuous-wave single resonant optical parametric oscillator based on periodically poled LiNbO3, Optics Letters, 1996, 21(10): 713 ~715
    [153] W. R. Bosneberg,A. Drobshoff, J. I. Alexander, 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator, Optics Letters, 1996, 21(17): 1336~1338
    [154] D. W. Chen, T. S. Rose, Low noise 10-W cw OPO generation near 3μm with MgO doped PPLN, Conference on Laser and Electro-Optics(CLEO), 2005, CThQ2: 1829~1831
    [155] A. Henderson, R. Stafford, Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source, Optics Letters, 2006, 14(2): 767~772
    [156] U. Bāder, T. Mattern, T. Bauer, Pulsed nanosecond optical parametric generator based on periodically poled lithium niobate, Optics Communications, 2003, 217: 375~380
    [157] S. Acco, P. Blau, S. Pearl, Optical parametric generation at extremely low pump irradiance in a long periodically poled lithium niobate, Proceedings of International Society for Optical Engineering, 2007, 6455: 64551A-1~64551A-7
    [158] I. Brener, M. H. Chou, E. Chaban, Polarization-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides, Optics Letters, 2000, 36(1): 66~67
    [159] M. H. Chou, I. Brener, G. Lenz, Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides, IEEE Photonics technology Letters, 2000, 12(1): 82~84
    [160] M. H. Chou, J. Hauden, M. A. Arvore, 1.5-μm-band wavelength conversion based difference-frequency generation in LiNbO3 waveguides with integrated coupling structures, Optics Letters, 1998, 23(13): 1004~1006
    [161] C. Q. Xu, H. Okayama, K. Shinozaki, Wavelength conversions ~1.5μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides, Applied Physics Letters, 1993, 63(9): 1170~1172.
    [162] C. Q. Xu, H. Okayama, T. Kamijoh, Broadband multichannel wavelength conversions for optical communication systems using quasi-phase matched difference frequency generation, Japanese Journal of Applied Physics B, 1995, 34(11): Pt2
    [163] K. Gallo, G. Assanto, G. I. Stegeman, Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides, Applied Physics Letters, 1997, 71(8): 1020~1022
    [164] K. Gallo, G. Assanto, Analysis of lithium niobate all-optical wavelength shifters for the third window, Journal of Optics Society of America B, 1999, 16(5): 741~753
    [165] H. Kanbara, H. Itoh, M. Asobe, All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide, IEEE Photonics Technology Letters, 1999, 11(3): 328~330
    [166] L. Gallmann, G. Steinmeyen, U. Keller, Generation of sub-6-fs blue pulse by frequency doubing with quasi-phase-matching gratings, Optics Letters, 2001, 26(9): 614~616
    [167] L. Lefort, K. Puech, S. D. Butterworth, Generation of femtosecond pulses formorder-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate, Optics Letters, 1999, 24(1): 28~30
    [168] J. Li, H. C. Cheng, J. Kawas, Eletrooptic wafer beam deflector in LiTaO3, IEEE Photonics Technology Letters, 1996, 8(11): 1486~1488
    [169] V. Gopalan, M. J. Kawas, M. C. Gupta, Integrated quasi-phase-matched second-harmonic generator and electrooptic scanner on LITaO3 single crystals, IEEE Photonics Technology Letters, 1996, 8(12): 1704~1706
    [170] W. Wang, R. Tavlykaev, R. Ramaswamy, Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with domain reversal, IEEE Photonics Technology Letters, 1997, 90(5): 610~612
    [171] M. J. Kawas, D. D. Stancil, T. E. Schlesinger, Electrooptics lens stacks on LiTaO3 by domain inversion, Journal of Lightwave Technology, 1997, 15(9): 1716~1719
    [172] Y. Chiu, V. Gopalan, M. J. Kawas, Integrated optical device with second-harmonic generator, electrooptic lens, and electrooptic scanner in LiTaO3, Journal of Lightwave Technology, 1999, 17(3): 462~465
    [173] H. Gnewuch, C. N. Pannell, G. W. Ross, Nanosecond response of Bragg deflectors in periodically poled LiNbO3, 1998, 10(12): 1730~1732
    [174] M. Yamada, Electrically induced Bragg-diffraction grating composed of periodically poled inverted domains in lithium niobate crystals and its application devices, Review of Scientific Instruments, 2000, 71(11): 4010~4016
    [175] S. Oikawa, F. Yamamoto, J. Ichikawa, Zero-chirp broadband Z-cut Ti:LiNbO3 optical modulator using polarization reversal and branch electrode, Journal of Lightwave Technology, 2005, 23(9): 2756~2760
    [176] Y. Y. Lin, S. T. Lin, G. W. Chang, Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch, Optics Letters, 2007, 32(5): 545~547
    [177] Y. Lu, Z. Wan, Q. Wang, Electro-optical effect of periodically poled optical superlattice LiNbO3 and its applications, Applied Physics Letters, 2000, 77(23): 3719-3721
    [178] X. Chen, J. Shi, Y. Chen, Electro-optic Solc-type wavelength filter in periodically poled lithium niobate, Optics Letters, 2003, 28(21): 2115-2117
    [179] Y. J. Ding, J. B. Khuurgin, A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically poled lithium niobate, Optics Communications, 1998, 148: 105~109
    [180] Y. S. Lee, T. Meade, V. Perlin, Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate, Applied Physics Letters, 2000, 76(18): 2505~2507
    [181] Y.–S. Lee, T. Meade, M. Meade, Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate, Applied Physics Letters, 2000, 77(9): 1244~1246
    [182] C. Weiss, G. Torosyan, Y. Avertisvan, Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate, Optics Letters, 2001, 26(8): 563~565
    [183] C. Weiss, G. Torosyan, J.–P. Meyn, Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate, Optics Express, 2001, 8(9): 497~502
    [184] K. Kawase, T. Hatanaka, H. Takahashi, Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Optics Letters, 2000, 25(23): 1714~1716
    [185] Y. Sasaki, H. Yokoyama, H. Ito, Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate narrow-bandwidth terahertz-wave generation, Optics Express, 2004, 12(14): 3066~3071
    [1]钱士雄,王恭明,非线性光学——原理与进展,上海:复旦大学出版社,2001: 53~61
    [2] A. Yariv, Optics Electronics in Modern Communications (5th edition), Oxford University Press, 1997
    [1] U. Bāder, T. Mattern, T. Bauer, Pulsed nanosecond optical parametric generator based on periodically poled lithium niobate, Optics Communications, 2003, 217: 375~380
    [2] S. Acco, P. Blau, S. Pearl, Optical parametric generation at extremely low pump irradiance in a long periodically poled lithium niobate, Proceedings of International Society for Optical Engineering, 2007, 6455: 64551A-1~64551A-7
    [3] M. Maruyama, H. Nakajima, S. Kurimura, 70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanaosecond optical parametric generation, Applied Physics Letters, 2006, 89(1): 011101-1~011101-3
    [4] B. Zhang, J. Yao, X. Ding, Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3, Chinese Physics, 2004, 13(03): 364~368
    [5] P. Zhao, B. Zhang, E. Li, Experimental study on a high conversion efficiency, low threshold, high-repetition-rate periodically poled lithium niobate optical parametric generator, Optical Express, 2006, 14(16): 7224~7229
    [6] O. B. Jensen, T. Skettrup, O. B. Petersen, Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation, Journal of Optics A: Pure and Applied Optics, 2002, 4(3): 190~193
    [7] Y. F. Chen, S. W. Chen, S. W. Tsai, Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57μm, Applied Physics B, 2003, 77(4): 505~508
    [8] Y. H. Chen, Y. Y. Lin, C. H. Chen, Monolithic quasi-phase-matched nonlinear crystal for simultaneous laser Q switching and parametric oscillation in a Nd:YVO4 laser, Optics Letters, 2005, 30(9): 1045~1047
    [9] R. L. Byer, Quantum Electronics: A treatise, New York: Academic, 1975: 587~702
    [10] W. Koechner, Solid-State Laser Engineering, New York: Springer 1976: 397~455
    [11] I. Shoji, T. Kondo, A. Kitamoto, Absolute scale of second-order nonlinear-optical coefficients, Journal of Optics Society of America B, 1997, 14(9): 2268~2294
    [1] C. He, T. H. Chuna, Solid-state barium nitrate Raman laser in the visible region, Optics Communications, 1997, 135: 273~278
    [2] R. P. Mildren, M. Convery, H. M. Pask, Efficient, all-solid-state, Raman laser in the yellow, orange and red, Optics Express, 2004, 12(5): 785~790
    [3]延英,罗玉,潘庆,瓦级连续双波长输出Nd:YAP KTP稳频激光器,中国激光,2004, 31(5): 513~517
    [4] Y. Sasaki, H. Yokoyama, H. Ito, Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation, Optics Express, 2004, 12(14): 3066~3071
    [5]陈安,双波长可调谐脉冲钛宝石的实验研究,重庆大学学报,1994, 17(6): 71~73
    [6] K. Kawase, M. Mizuno, S. Sohma, Difference-frequency terahertz-wave generation from 4-dimethy lamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser, Optics Letters, 1999, 24(15): 1065~1067
    [7]张强,姚建铨,温伍麒,高功率激光二极管抽运Nd:YAG连续双波长激光器,中国激光,2006, 33(4): 1~5
    [8] Y. Lu, B. Zhang, E. Li, High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition, Optics Communications, 2006, 262: 241~245
    [9] R. Zhou, B. G. Zhang, X. Ding, Simultaneous continuous wave dual-wavelength operation at 4F3/2–4I13/2 transitions in Nd:YVO4 crystal, Optics Communications, 2006, 260: 641~644
    [10] R. Zhou, W. Q. Wen, Z. Q. Cai, Efficient stable simultaneous continuous wave dual-wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338μm and their frequency doubling, Chinese Optics Letters, 2005, 3(10): 597~599
    [11] T. Taniuchi, J. Shikata, H. Ito, Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator, Electronics Letters, 2000, 36(16): 1414~1416
    [12] T. Taniuchi, H. Nakanishi, Continuously tunable terahertz-wave generation in GaP crystal by collinear difference frequency mixing, Electronics Letters, 2004, 40(5): 327~328
    [13] T. Hatanaka, K. Nakamura, T. Taniuchi, Dual signal-wave optical parametric oscillator using periodically poled LiNbO3 with series gratings, Electronics Letters, 2000, 36(16): 1409~1411
    [14] Y. Sasaki, A. Yuri, K. Kawase, Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal, Applied Physics Letters, 2002, 81(18): 3323~3325
    [15] K. Suizu, Y. Sasaki, H. Ito, Double injection seeded ppr-PPLN-OPG and its application, Conference on Laser and Electro-Optics(CLEO), 2003, 1: 30
    [16] T. Kartalo?lu, z. G. Figen, O. Ayt?r, Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate, Journal of Optics Society of America B, 2003, 20(2): 343~350
    [17] J. D. McMullen, Optical parametric interactions in isotropic materials using a phase-corrected stack of nonlinear dielectric plates, Journal of Applied Physics, 1975, 46(7): 3076~3081
    [18] C. Q. Xu, H. Okayama, M. Kawahara, Optical frequency conversions in nonlinear medium with periodically modulated linear and nonlinear optical parameters, IEEE Journal of quantum electronics, 1995, 32(6): 981~987
    [19] Y. Zhang, B. Gu, Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification, Optics Communications, 2001, 192: 417~425
    [1]张百钢,姚建铨,路洋,抽运光角度调谐准相位匹配光学参量振荡器的研究,物理学报,2006, 55(03): 1231~1236
    [2]张百钢,周期极化晶体准相位匹配倍频和光学参量转换的研究:[博士学位论文],天津:天津大学,2004
    [3] M. J. Missey, V. Dominic, P. E. Powers, Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators, Optics Letters, 1999, 24(17): 1227~1229
    [4] C. W. Hsu, C. C. Yang, Broadband infrared generation with noncollinear optical parametric processes on periodically poled LiNbO3, Optics Letters, 2001, 26(18): 1412~1414
    [5] C. W. Hsu, C. T. Chen, C. C. Yang, Retracing behaviors and broadband generations based on quasi phase-matched optical parametric processes, Journal of Optics Society of America B, 2002, 19(5): 1150~1156
    [6] J. A. C. Terry, G. Tsiminis, M. H. Dunn, Eye-safe broadband output at 1.55μm through the use of a fan-out grating structure in MgO:PPLN, Journal of Optics A: Pure Applied Optics, 2007, 9(3): 229~234
    [1] W. Q. Shi, R. Kurtz, J. Machan, Simultaneous, multiple wavelength lasing of (Er,Nd): Y3Al5O12, Applied Physics Letters, 1987, 51(16), 1218~1220
    [2] R. W. Farley, P. D. Dao, Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged solid-state sodium lidar system, Applied Optics, 1995, 34(21), 4269~4273
    [3] Y. Lu, B. Zhang, E. Li, High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition, Optics Communications, 2006, 262: 241~245
    [4] R. Zhou, B. G. Zhang, X. Ding, Simultaneous continuous wave dual-wavelength operation at 4F3/2–4I13/2 transitions in Nd:YVO4 crystal, Optics Communications, 2006, 260: 641~644
    [5] J. W. Euans, Solc Birefringent Filter, Journal of Optics Society of America, 1958, 48(3): 142~145
    [6] I. Solc, Birefringent Chain Filter, Journal of Optics Society of America, 1965, 55(6): 621~625
    [7] P. Yeh, Transmission spectrum of a Solc filter, Optics Communications, 1979, 29(1): 1~6
    [8] P. Butcher, D. Cotter, The elements of nonlinear optics, United Kingdom: Cambridge University Press, 1990: 211~246
    [9]石顺祥,张海兴,刘劲松,物理光学与应用光学,西安:西安电子科技大学出版社,2000:245~275
    [10] D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, An electro-optic tunable filter, Applied Physics Letters, 1979, 34(6): 391-393
    [11] Y. Lu, Z. Wan, Q. Wang, Electro-optical effect of periodically poled optical superlattice LiNbO3 and its applications, Applied Physics Letters, 2000, 77(23): 3719~3721
    [12] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 1983, 220(4598): 671~680
    [13] B. Y. Gu, Y. Zhang, B. Z. Dong, Investigations of harmonic generations in aperiodic optical superlattices, Journal of Applied Physics, 2000, 87(11): 7629~7637
    [14] Y. W. Lee, F. C. Fan, Y. C .Huang, Nonlinear multiple conversion based on aperiodic optical superlattice in lithium niobate, Optics Letters, 2002, 27(24), 2191~2193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700