基于化学计量比钽酸锂中红外光参量振荡器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光参量振荡器(OPO)是产生可调谐激光的一种非常重要的手段,它能够将一束泵浦激光转换为相干输出的信号光和闲频光,且可以在较宽的频率范围内实现可调谐输出。OPO实现的在军事上具有很高应用价值的3~5μm范围可调谐激光,在激光雷达、光电对抗、遥感、数据通信、光电测量等领域已显示出重要的应用价值。结合准相位匹配技术实现光学参量转换,是实现3~5μm可调谐激光输出的有效手段之一。过去人们制备基于准相位匹配技术的光学器件主要集中在同成份钽酸锂、同成份铌酸锂和磷酸氧钛钾等材料上。相对于以上材料,化学计量比钽酸锂(SLT)拥有一系列独特的非线性光学性质,尤其是较低的矫顽场和较高的抗光损伤能力,使得它成为非线性光学器件等应用中最具吸引力的材料之一。基于准相位匹配技术的周期极化化学计量比钽酸锂(PPSLT)可应用于光参量过程并可产生3~5μm范围可调谐激光,显示出广阔的应用前景。基于这一背景,本文着重于SLT晶体的生长及PPSLT的制备技术和理论研究,涉及的主要内容有:
     采用添加助熔剂方法生长SLT晶体。研究大尺寸、组分均匀的SLT晶体的原料配比、生长以及后续处理技术。通过优化温场的温度分布和控制合适的生长工艺参数,从中频加热炉中生长出无明显宏观缺陷、光学均匀性好的非掺杂和掺镁化学计量比钽酸锂单晶。通过居里温度、紫外吸收边等测试手段研究了晶体的性能,证实了晶体的组分达到近化学计量比,其中通过居里温度测定晶体中的Li含量达到了49.8%[Li/(Li+Ta)]。测定了晶体的矫顽场及晶片平面内的矫顽场分布,非掺杂晶体的矫顽场只有2400V/mm且在晶片平面内变化很小。测试结果表明SLT是制备准相位匹配器件的理想材料。
     深入研究了SLT晶体的铁电畴极化反转的动力学机理,确定出影响铁电体反转质量的各种因素。从钽酸锂晶体的微观结构出发,详细讨论了晶体畴反转各个阶段的机理,研究了铁电畴反转动力学的基本规律。在大量极化实验的基础上,建立了铁电畴反转过程中各参数,如极化时间和极化电压等之间的函数关系。从理论上探讨了准相位匹配技术,并结合SLT晶体的实际,设计了产生3~5μm波长激光的超晶格结构和相应的调谐方式。
     利用自行制备的SLT晶体和周期极化设备进行周期极化实验。尝试了金属薄膜电极、复合电极和液体电极的极化方法,并根据SLT晶体铁电畴反转动力学的研究结果和周期极化实验结果,确定最佳的电极结构与极化工艺,成功制备了周期30μm的单周期PPSLT和3个通道的多周期PPSLT。设计了基于极化电流反馈的周期极化自动控制系统,并进行了周期极化的自动化控制实验。
     分析了可调谐中红外光参量振荡器相关的基础理论,如光参量振荡器和产生器中的三波互作用理论以及光参量振荡器的基本理论等。分析了如何设计基于PPSLT晶体光参量振荡器的关键环节。
     利用高重复频率全固态Nd:YAG激光器端面泵浦单周期PPSLT晶体,实现了中红外准相位匹配光学参量振荡。利用温度控制器的温度调谐,获得3.34~3.64μm波段的波长调谐输出。当平均泵浦功率为7.5W,温度为160℃时,得到了平均功率大于800 mW的中红外激光输出。
Optical parametric oscillator (OPO) is one of the most important ways to get tunable lasers. The pump light could be converted into signal light and idler light by this way. Meanwhile,it can generate tunable coherent light. The broadband tunable laser generated by OPO have shown great value in data communications, optoelectronic measurements, laser range finder, laser radar, photoelectric confrontation and other fields, particularly the mid-infared laser with 3~5μm-wavelength has great value in military. It is one of the most effective ways to get 3~5μm tunable laser through optical parametric conversion by using quasi-phase-matched (QPM) techneque. In the past, congruent LiTaO3, congruent LiNbO_3 and KTiOPO_4 were used to make QPM devices. Compeared with these materials, stoichiometric LiTaO_3(SLT) has a serious of outstanding properties of nonlinear optics, especially the lower corecive field and higher anti-photorefractive ability, which make it one of the most attractive materials for making nonlinear optical devices. Periodic poled stoichiometric LiTaO_3 (PPSLT) based on QPM technique is widely used in parametric process. 3~5μm tunable laser also could be generated through PPSLT. Based on this backgroud, this dissertation focus on the growth techneque of stoichiometric LiTaO3 and fabrication techneque of mid-infrared OPO based on SLT. In this thesis, the main contents are following:
     Stoichiometric lithium tantalate crystals were grown by flux method. To obtain SLT crystal with large size and uniform component, mixture ratio of raw material is studied and optimum value is gained. Processing method of subsequent crystal is also presented. By optimizing temperature distribution and selecting appropriate growth technical parameters, crystals with good optical homogeneity and no macroscopic defects have been grown. The composition of the grown crystal was assessed by measuring the UV absorption edge, Curie temperature and so on. The assessed Li content in the grown crystal is 49.8% by testing Curie temperature. The coercive field of the grown crystal is 2400V/mm. The distribution of coercive field in a wafer was tested and the result indicates that SLT is a good candidate for QPM devices.
     The domain reversion kinetics of SLT was studied and the factors that influence domain reversion were determined. Based on the microstructure of SLT, every stage of domain inversion in external field poling procedure at room temperature was discussed. According to the poling results, the functions between the parameters such as poling voltage and poling current were built. Theory of phase matching and quasi-phase matching is studied. Superlattice structure with wavelength of 3-5μm and its tuning mode are both designed with the consideration of SLT.
     Periodical polarization experiments were peformenced while the SLT crystal and poling equipment made by ourselves were uesed. In the experiments, metal electrodes, composite electrodes and liquid electrode were used. Based on the periodical poling results and domain reversion kinetics of SLT, the best electrode structure and poling curve were determined. PPSLT with 30μm periods was fabricated successfully.
     The interrelated basic theorics of the tunable mid-infrared OPO, such as the three wave interaction in the OPO or OPG,QPM theory,and the basic theory of the OPO have been analyzed and diseussed. How to design the OPO system based on PPSLT were introduced.
     A mid-infrared QPM OPO is demonstrated, in which a PPSLT crystal is pumped by a high-repetition all solid state Nd:YAG laser to realize the mid-infrared QPM OPO. The wavelength range of 3.34~3.64μm is obtained through the temperature tuning, and when the average pump power is 7.5W, the average mid-infrared output power reaches 800mW.
引文
1任国光,黄裕年.用激光红外干扰系统保护军用和民航机.激光与红外. 2006, 36(1):1-6
    2任国光.机载激光红外对抗的现状和发展趋势.激光与红外. 2000, 30(6):323-327
    3胡永钊.激光技术在主动红外对抗中的应用.激光与红外. 2004, 34(1):62-64
    4董春明,王善朋,陶绪堂.中红外非线性光学晶体的研究进展.人工晶体学报. 2006, 35(4): 785-789
    5 D, H, Titterton. A review of the development of optical countermeasures. Proceedings of SPIE, 2004, 5615:1-5
    6淦元柳,徐世录.美国直升机载红外干扰系统的现状与发展.激光与红外. 2006, 36(1):7-10
    7 Fulgham. Laser canfoil SAMs, Air-to-Air Missiles. Aviation week and space technology, 2001,154(21):43-45
    8任钢,钟鸣,李彤等.光参量振荡器在红外对抗中的应用研究.红外与激光工程. 2006,35(10):207-210
    9卞进田,聂劲松,孙晓泉.中红外激光技术及其进展.红外与激光工程. 2006, 35:(增刊):188-193
    10 Chen D W, Fincher C L, Rose T S, et al. Diode-pumped 1-W continuous-wave Er :YAG 3-mm laser. Opt. Lett,1999,24(6):85-387
    11姚宝权,王月珠,柳强,王琪.中红外LiNbO和KTP光参量振荡器的比较研究.哈尔滨工业大学学报. 2003,35(10):1228-1231
    12程干超,张明月,杨琳,等.可调谐TEA CO2激光在AgGaSe2中的倍频.量子电子学报. 1997,14(2):166-169
    13 Chatterjee. U, Rudra. A. M, Bhar. G. C. Widely tunable difference frequency generation (2.6~7.7μm) in lithium niodate. Optics Communications, 1995, 118:367-374
    14 Gale. G. M, Cavallari. M,Driscoll. T. J,et al. Generation of highly coherent tunable mid-infrared femtosecond pulsed by parametric frequency-mixing at 82MHz. Optics Communications, 1995,119:159-162
    15 Fulumoto. J. M,Komine. H, Long. W. H, et al. Periodically poled LiNbO3 optical parametric oscillator with intracavity difference frequency mixing.OSA Trends in Optics and Photonics Series, 1998,19:245-248
    16田文,蒋艳锋,任钢,等.基于差频技术产生4μm波长光波混频系统的特性分析.光学与光电技术. 2005,3(3):26-28
    17卞进田,秦树军,聂劲松,等. 4~5μm全固化可调谐激光技术研究.中国激光. 2006,33(1):9-12
    18朱雪玉.准相位匹配中红外光学参量振荡及内腔光学参量产生研究.天津大学硕士论文. 2007:2
    19 Marzenell S, Beigang R, Wallenstein R. Synchronously pumped femtosecond optical parametric oscillator based on AgGaS2 tunable from 2μm to 6μm. Applied Physics B, 1999, (69):423-428
    20 Haidar S, Nakamura K et al. Mid-infrared and limited single-knob tuning generated by difference-frequency mixing in single-crystal AgGaS2, Applied Optics,1999, 38(9):1798-1801
    21姚宝权,贺万骏,李玉峰,等. 2μm Tm,Ho:YLF激光抽运ZnGeP2光参量振荡技术研究.中国激光. 2005,32(1):39-42
    22 F. L. Madarasz, J. O. Dimmock, N. Deitz, et a1. Sellmeier Parameters for ZnGeP2 and GaP. J. Appl. Physics. 2000,87(3):1564-1565
    23吴海信,倪友保,耿磊,等.红外非线性晶体ZnGeP2的生长与品质研究.人工晶体学报. 2007,36(3):507-511
    24 A.Armgtrong, N.Bloembergen, J.Deuing, etal. Interaction between light waves in a nonlinear dieleetrie. Physics Review. 1962,27(6):1918-1939
    25 Y. R.Shen, The principles of nonlinear optics, Wiley, Newyork, 1984
    26 J.A.Giordlnaine, Mixing of light beams in crystals. Physics Review Letters. 1962, 8(l):19-20
    27纪磊.周期极化铌酸锂的制备及应用研究.天津大学博士论文.天津. 2005: 99
    28 W.Chen, G.Moutet, D.Boucher, et al. Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4. Appl.Lett.B, 2001, (51):1203-1209
    29 Xiangke He, Keyan Li, Meinan Liu, et, al. An optical spectroscopy study of defects in lithium tantalate single crystals, Optics Communications, 2008, (281):2531-2534
    30 S. Kumaragurubaran, S. Takekawa. Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalite single crystals and fabrication of periodically pole structure. Journal of Crystal Growth, 2006, (292):332-336
    31 S. Kumaragurubaran, S. Takekawa. Growth of 4-in diameter nearstoichiometric lithium tantalate single crystals. Journal of Crystal Growth, 2005, (285):88-95
    32 K. Kitamura, Y. Furukawa, K. Niwa, V. Goplan, T.E. Mitchell, Crystal growth and low coercive field 180 degrees domain switching characteristics of stoichiometric LiTaO3, Appl. Phys. Lett. 1998, 73:3073-3076
    33 K. Mizuuchi, K. Yamamoto, and M. Kato, Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3, Appl. Phys. Lett. 1997,70 (10):1201-1203
    34 D. S. Hum,a_ R. K. Route, G. D. Miller, et,al. Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion, J. App. Phys., 2007,(101): 093108-1~093108-12
    35 L.E.Myers, R.C.Eekardt, M.M.Fejer, et al. Quasi-phasematehed optical parametric oscillations in bulk periodically poled LINbO3. J. Opt. SocAm.1995, B12:2102-2116
    36 M. L. Bortz, M. A. Arbore, M. M. Fejer. Quasi-phase-matched optical parametric amplification and oscillation in periodically-poled LiNbO3 waveguides. Opt.Lett. 1995,20(1):49-51
    37 D. Butterworth, V.pruneri , D.C.Hanna. Optical parametric oscillation in periodically poled lithium niobate based on continuous-wave synchronous pumping at 1047nm. OPt. Lett. 1996, 21(17):1345-1347
    38 G. B. Robert, R. W. Dennis, P.Tomas, et al. Continuous-wave 532-nm-pumped single resonant optical parametric oscillators based on periodically poled lithium niobate. Opt. Lett. 1998, 23(3):168-170
    39 Elder IF, Terry JAC, Efficient conversion into the near- and mid-infrared using a PPLN OPO, Journal of optics a-pure and applied optics, 2000,2(3):19-23
    40 M. Ebrahimzadeh, P. J. Phillips. S.Das. Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3, synchronously pumped by a Ti:sapphire laser. Appl. Phys.B. 2001,(72):793-801
    41 P. Gross, M. E. Klein, T. Walde, et al. Fiber-laser-Pumped continuous-wave singly resonant optical parametric oscillators. Opt. Lett.2002, 27(6):418-420
    42 K.J.McEwan, J.Kenneth. Synchronously Pumped tandem OPO and OPO/DFM devices based on a single PPLN crystal. Proceedings of SPIE.2003, (4972):1-12
    43 W. Ruifen, N. H. Khoon. Nanosecond 4-micron PPLN OPO Pumped by a Yb fiber laser. OSA, 2004.CTh34
    44 Zhang BG, Yao JQ, Lu Y, Xu DG, et,al. High-average-power nanosecondquasi-phase-matched single-pass optical parametric generator in periodically poled lithium niobate, Chinese physics letters, 2005, 22(7)1691-1693
    45 Lunhua Deng, Ling Han, Wanguo Liang, et al. A mid-infrared spectrometer based on difference frequency generation, Optics and Lasers in Engineering, 2007, 45:1055-1058
    46 Pierre-Marie Flaud, Johannes Orphal. A continuous-wave difference-frequency generation laser operating in the mid-infrared (3-5μm) region for accurate line intensity measurements, Infrared Physics & Technology, 2008,51:322-331
    47 Eok Bong Kim, Won-Kyu Lee, Chang Yong Park, et al. Narrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laser, Optics express, 2010,18: 10308-10314
    48 S. Zaske, D. H. Lee, C. Becher. Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance, Appl Phys B ,2010,98:729-735
    49 Nimish Dixit, Rouchin Mahendra, O. P. Naraniya, A. N. Kaul, A. K. Gupta. High repetition rate mid-infrared generation with singly resonant optical parametric oscillator using multi-grating periodically poled MgO:LiNbO3, Optics & Laser Technology, 2010,42:18-22
    50 J. Hellstrom, V. Pasiskevieius, H. Karlsson, et al. High-Power optical parametric oscillators in large-aperture periodically poled KTiOPO4. Opt. Lett. 2000,(25): 174-176
    51 P.A.Champert, S.V.Popov, A.V.Avdokhin, J.R.Taylor, Sum frequency generation of synchronously-seeded, high-power Yb and Er fiber amplifiers in periodically poled KTP, Applied Physics Letters, 2002,81,3732-3734
    52 P.A.Champert, S.V.Popov, M.A.Solodyankin, J.R.Taylor, 1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers, IEEE Photonics Technology Letters, 2002,14,1680-1682
    53 S.V.Popov, S.V.Chernikov, J.R.Taylor, 6-W average power green light generation using high power ytterbium fiber amplifier and periodically poled KTP, Optics communication, 2000,174,231-234
    54 M.Peltz, U.Bader, A. Borsutzky, et al. Optical parametric oscillators for high pulse energy and hig haverage power operation based on large aperture periodically poled KTP and RTA. Appl. Phys.B. 2001,(73):663-670
    55 U. Strobner, A. peters, J .Mlynek, et al. Single-frequency continuous-wave optic parametric oscillator system with an ultrawide tuning range of 550 to 2830nm. Joumal of the Optical Soeiety of America B: OPtical Physics.2002,(19):1419-1424
    56 R. Le Targat, J.J. Zondy, P. Lemonde. 75%-Efficiency blue generation from an intracavity PPKTP frequency doubler, Optics Communications, 2005,247: 471-481
    57 M. Herriksson, M. Tiihonen, V. Pasiskevieius, et al. Mid-IR ZGP-OPO Pumped by a Bragg grating line-narrowed PPKTP-OPO.CLEO, 2006.CThO4
    58 Y. Y. Wang, D. G. Xu, Y. H. Yu, et al. High-peak-power, high-repetition-rate intracavity optic parametric oscillator at1.57μm.Chin.OPt.Lett. 2007,5(2): 93-95
    59 B.V. Zhdanov , M. K. Shaffer, W. Holmes, R. J. Knize. Blue laser light generation by intracavity frequency doubling of Cesium vapor laser, Optics Communications, 2009,282: 4585-4586
    60姚健铨.非线性光学频率变换及激光调谐技术.科学出版社, 1995
    61夏林中.宽带连续可调谐的中红外激光器研究.华中科技大学博士学位论文,武汉. 2009
    62姚健铨.全固态激光及非线性光学频率变换技术.院士论坛. 2010,24(5):1-10
    63 Gregory David Miller. Periodically poled lithium niobate: modeling fabrication and nonlinear-optical performance. Ph.D. thesis, Stanford University, 1998
    64 N.E.Yu, S.Kurimura, Y. Nomura, M. Nakamura, and K.Kitamura, Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation, Applied physics letters, 2004,84(10):1662-1164
    65 Xiaoyan Liu and Kenji Kitamura, Stabilization of periodically poled domain structures in a quasiphase-matching device using near-stoichiometric LiTaO3, J. Appl. Phys., 2007, 102:014101~1-014101-4
    66 N. E. Yu, C. Kang, H. K. Yoo,C. Jung, et, al. Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses, Applied physics letters, 2008,93: 041104-1~041104-3
    67 K. Mizuuchi and K. Yamamoto, Harmonic blue light generation in bulk periodically poled LiTaO3, Appl. Phys. Lett. 1995, 66 (22):2943-2945
    68 Nan Ei Yu, S. Kurimura, Y. Nomura, K.Kitamura. Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate. Materials science and engineering B, 2005, (120):146-149
    69 S. Ashihara, J.Nishina, T. Shimura. Nonlinear refraction of femtosecond pulses due to quadratic and cubic nonlinearities in periodically poled lithium tantalate. Optics communications, 2003,(222):421-427
    70张铁犁.共线准相位匹配光学参量过程的研究.天津大学博士学位论文.天津. 2005
    71吕新杰,赵刚,李桂君,等.基于PPLT晶体的瓦级中红外光参量振荡器研究.中国科学G辑. 2009,39(11):1594-1598
    72 Shih-Yu Tu, A. H. Kung, Z. D. Gao and S. N. Zhu, Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region, Opt. Lett. 2005, 30(18):2451-2453
    73 Shi-ning Zhu, Yong-yuan Zhu, Zhi-yong Zhang, LiTaO3 crystal periodically poled by applying an external pulsed field, J. Appl. Phys.,1995,77(10): 5481-5483
    74 Z. D. Gao and S. N. Zhu, Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate, App.phys. lett. 2006,89:181101-1~181101-3
    75胡小鹏,祝世宁.基于光学超晶格的准白光激光器.激光与光电子进展. 2009,2:20
    76赵伟,纪峰,张百钢,张铁犁,等. PPLN准相位匹配内腔光学参量振荡器的实验研究.科学技术与工程. 2007,7(16):4009-4012
    77杨剑,李晓琴,姚建铨,等.基于周期极化铌酸锂的高功率可调谐光参量振荡器.中国激光. 2008,35(10):1459-1462
    78刘坤,陈险峰.基于光学超晶格的可调谐滤波器.第八届全国光学前沿问题讨论会论文集.丽江. 2009
    79 Chen Xianfeng, Liu Kun, Shi Jianhong, Electro-Optic switch by use of polarization coupling in periodically poled lithium niobate, Journal of Jiangxi Normal University, 2009,35(5):577-581
    80吴波,蔡双双,沈剑威,等.基于镁掺杂的周期性畴反转铌酸锂的宽调谐光参量振荡器.物理学报. 2007,56(5):2684-2688
    81蔡双双,吴波,沈剑威,等. PPMgLN光参量振荡器温度和畴周期调谐研究.浙江大学学报. 2006,40(6):1097-1100
    82蔡双双,吴波,徐海斌,等.基于PPMgLN晶体的红外光参量振荡器研究.红外与毫米波学报. 2006,25(5):338-341
    83彭跃峰,鲁燕华,谢刚.准相位匹配PPMgLN光参量振荡器技术.强激光与粒子束. 2007,19(3):377-380
    84谢刚,彭跃峰,王卫民,武德勇.高功率中红外3.8μm激光器.强激光与粒子束. 2009,21(7):970-972
    85 G. I. Malovichko, V. G. Grachev, L. P. Yurchenko. Improvement of LiNbO3microstructure by crystal growth with potassium. Physica Status Solidi(a), 1992, 133(1):292-302
    86孔勇发,许京军,张光寅.多功能光电材料-铌酸锂晶体.科学出版社
    87 S. Kar, R. Bhatt. Optical behaviour of VTE treated near stoichiometric LiNbO3 crystal. Solid Communication, 2006, (137):283-287
    88倪代秦,宋友庭,吴星.区熔法生长近化学计量比铌酸锂晶体,人工晶体学报, 2000,29(1):334-337
    89 M. Nakamura, K. Terabe, S. Takekawa, et al. Effect of subgrain boundaries on domain-inverted structure in periodically poled near-stoichiometric LiTaO3 crystal, Optical Materials, 2008,31: 276-279
    90 M. Nakamuraa, S. Takekawaa, Y. Furukawab, K. Kitamura, Influence of powder supply on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method, Journal of Crystal Growth, 2002,(245):267-272
    91马春荣,郑桂泉,王诚毕译.全息记录材料.科学出版社, 1984:148
    92 H. Fay, W. J. Alford and H. M. Dess. Dependence of second harmonicphase matching temperature in LiNbO3 crystals on melt-composition. Appl. Phys. Lett. 1968, 12:89-92
    93 S. Miyazawa, H. Iwasaki. Congruent melting composition of lithium tantalate. J. Cryst. Growth, 1971, 10:276-278
    94 Bong Mo Park, K. Kitamura, K. Terabe, et, al. Mechanical twinning in stoichiometric lithium niobate single crystal, Journal of Crystal Growth, 1997, (180): 101-104
    95 P.F.Bordui, R.G.Norwood, C.D.Bird, J.T.Carella. Stoichiometry issues in single-crystal lithium tantalate. J. Appl. Phys.1995, 78:4647-4650
    96 C. Baumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Kratzig, M. Wohlecke. Composition dependence of the ultraviolet absorption edge in lithium tantalate. J. Appl. Phys. 2003, 93:3102-3104
    97 R.G. Smith, D. B. Fraser, R. T. Denton, T. C. Rich. Correlation of reduction in optically induced refractive-index inhomogeneity with OH content in LiTaO3 and LiNbO3. J. Appl. Phys.1968.39:4600-4603
    98 L. Kovacs, M. Wohlecke, A. Jovanovic, K. Polgar, S. Kapphan. Infrared absorption study of the OH vibrational band in LiNbO3 crystals. J. Phys. Chem. Solids. 1991, 52:797-803
    99 L. Kovacs, Zs. Szaller, I. Cravero, I. Foldvari, C. Zaldo. OH-related defects in LiNbO3:Mg,M(M=Nd,Ti,Mn) crystals. J. Phys.C hem.Solids. 1990, 51:417-521
    100 D. Xue, K. Betzler, H. Hesse, Dielectric properties of lithium niobate–tantalatecrystals, Solid State Communications, 2000, (115):581-585
    101 Dongfeng Xue, Siyuan Zhang, Bond-charge calculation of nonlinear optical susceptibilities of LiXO3 type complex crystals, Chemical physics, 1998,(226): 307-318
    102 V. gopalan and T. E. Mitchel. Wall velocities, switching times and the stabilization mechanism of 180°domains in congruent LiTaO3 crystals. J. Appl. Phys., 1998, 83(2):941-954
    103 L.Tian and Venkatraman Gopalana, Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration, Appl. Phys. Lett. 2004,85(19): 4445-4447
    104 T. Hatanaka, K. Nakamura, and T. Taniuchi, Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3, Opt. Lett. 2000, 25(9):651-653
    105桑梅.准相位匹配PPKTP的研制及有关应用研究.天津大学博士学位论文.天津. 2003
    106 L. E. Myers, R. C. Echkardt, M. M. Fejer. Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am., 1995, B12(11): 2102-2116
    107 Chao Shiuh, W. Davis, D. D. Tuschel. Time dependence of ferrorlectric coercive field after domain inversion for lithium tantalite crystal. Appl. Phys. Lett., 1995, 67(8): 1066-1068
    108孔艳.激光在畴反转光学超晶格中的传输、控制和频率变换研究.上海交通大学博士学位论文.上海. 2008:23
    109 R. C. Miller and A. Savage. Further experiments on the sidewise motion of 180°domain walls in BaTiO3, Phys. Rev. 1959,115:1176-1180
    110陈建华,屈绍波,魏晓勇,徐卓,朱林户.外加电场法制备LiNbO3周期畴的反转电流特性研究.物理学报. 2009,58(1):554-557
    111 A Busacca, M Cherehi, S. R Sanseverinoetal. Surface periodic poling in lithium niobate and lithium tantalate. IEEE/LEOS, 2005, Proeeedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components:126-130
    112奚庆新,刘德安,职亚楠,周煜,刘立人.铌酸锂晶体紫外激光诱导畴反转实验研究.光学学报. 2005,25(3):431-432
    113刘宏德,胡茜,王文杰,等.可见光诱导铌酸锂晶体畴反转.南开大学学报(自然科学版). 2007,40(2):109-112
    114纪磊,于建,倪文俊,等.周期极化的电极结构及相关工艺缺陷的电场分析.人工晶体学报. 2005,34(5):805-811
    115 G. Arlt and H. Neumann. Internal bias in ferroelectric ceramics: origin and time dependence. Ferroelectrics, 1988, 87:109-120
    116 S.W. Kwon, Y.S. Song, W.S. Yang, et,al, Effect of photoresist grating thickness and pattern open width on performance of periodically poled LiNbO3 for a quasi-phase matching device, Optical Materials, 2007,29: 923-926
    117 D. Eger, A Bruner, P. Shaier, A. Raizman, A. Englander and P. Blau, Periodically poled thick wafers of near stoichiometric LiTaO3, Proceedings of SPIE , 2003: 4972
    118吕新杰.利用介电体超晶格材料提高光参量放大带宽和稳定性的研究.绵阳:中国工程物理研究院学位论文. 2007
    119李淳飞.非线性光学.哈尔滨:哈尔滨工业大学出版社, 2005
    120石顺祥,陈国夫,赵卫.非线性光学.西安:西安电子科技大学出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700