用户名: 密码: 验证码:
发射光谱研究多针对板电晕放电微观电参数及激发态OH自由基特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针-板式直流电晕放电具有能耗低,对低浓度污染物去除效率高等特点。但目前针对电晕放电电离区与迁移区内电流密度与电场分布的估算、自由基等活性物种特性等微观特性方面的研究还不多见。
     本实验用光学发射光谱(OES)诊断多针对板直流电晕放电电离区N2第二正带跃迁。通过对电离区内空间各点ISPB的检测,确定ISPB空间分布,分析电离区微观放电特性。利用泊松方程对多针对板直流电晕放电电场分布和电流密度进行理论分析。结合ISPB空间分布,分析电离区微观特性及其与宏观电参数的对应关系。然后,对OH进行检测,研究负电晕放电电参数(包括放电电压、放电电流、放电功率、电极间距)和相对湿度对OH特性的影响。确定宏观参数与OH微观特性之间的关系。利用正电晕流光阶段OH空间分布的数据,拟合出OH的空间分布,确定了流光放电间隙OH分布特性。得到的结论有:
     正辉光放电电离区ISPB先增大后减小。从电离区中层到外层,ISPB反应高能电子密度分布,逐渐减小。负辉光放电ISPB分布与正电晕一致;根据泊松方程求得放电区电场强度与电流密度的表达式。电离区电场强度随距离r先增大再减小。实验中ISPB最大值处与理论推导的电场强度最大值较一致;电离区电流密度沿针尖轴向呈减小趋势,并与ISPB在电离区中层和外层呈良好的线性关系。电离区外层离子迁移对电流形成起一定作用;迁移区内,电流强度与原点的距离无关。
     负电晕辉光放电,OH随电压和电流的升高而增加。单位功率OH随总功率增大而减小;电离区内OH沿针尖轴向先增大后减小。随电极间距增大,OH强度减小;流光放电,几乎整个放电间隙均可测到OH。针电极附近OH分布沿针尖径向呈“子弹状”,由内向外逐渐减小。距针电极较远处OH沿针尖径向先增大后减小;正、负电晕放电OH随相对湿度的增大均先增大后减小。应用中正、负电晕放电可选择40%-60%和40-55%的范围。
DC corona discharge in the configuration of needle-plate electrode has been widely used in decomposing contaminants. It has advantages of low energy consumption and high removal efficiency. However, there is not enough study of its microscopic properties, such as current density, distribution of electric field, radicals, active species and etc.
     In this thesis, the emissions of N2 second positive band produced by multi-needle-to-plate DC corona discharge were detected using OES. The spectral intensity ISPB at different point was calculated by detecting the intensity ISPB in different area of the ionization region, and the distribution of ISPB was drawn accurately. The microscopic electrical properties of the ionization region were analyzed according to the trend line of the distribution of ISPB. The electric field and the current density were analyzed theoretically according to Possion equation. Thus, the relationships between microscopic and macroscopic electrical properties were analyzed. Then, the emissions of excited OH radicals were detected in multi-needle-to-plate negative corona discharge and streamer discharge. The effects of relative humidity and electrical properties in the negative corona discharge (including U, I, P and d) on excited OH radicals were investigated experimentally, and some important rules of the characteristics of OH radicals were obtained. The distribution of excited OH radicals in streamer discharge was drawn accurately according to the detected data, and the distribution characteristics of excited OH radicals were summarized.The main conclusions are as follows:
     The intensity of N2 second positive band firstly increases and then reduces in the ionization region. The distribution of ISPB in the middle and outer layers of the ionization region is corresponding to the density of energetic electrons, and the ISPB reduces from the middle layer to the outer layer. The distribution of ISPB in negative glow discharge is similar to that in positive glow discharge; According to Poisson equation, the expressions of the electric field intensity and the current density were deduced respectively. In the ionization region, the electric field intensity firstly increases and then reduces with the increase of r. The position of the maximum value of ISPB is consistent with that of the maximum electric field intensity obtained from theoretical analysis. The current density reduces along the needle axis, and it is linearly proportional toISPB in the middle and outer layers of the ionization region. The mobility of charged particles in the outer layers of ionization region plays a certain role in discharge current formation. The current is irrelevant to r in the migration area.
     With the increases of the applied voltage U and the discharge current I, the number of excited OH radical increases in negative glow discharge. The number of excited OH radical per unit power reduces with the discharge power increase. In the ionization region, the density of excited OH radical firstly increases and then reduces along the needle axis. With the space between electrodes increase, the density of excited OH radical reduces; In streamer discharge, the emission spectrum of excited OH radical can be detected almost in whole discharge gap. The shape of the region around the needlepoint looks like a bullet, and the density of excited OH radical reduces with the r increase. The distribution of OH radical farther away from the needlepoint firstly increases and then reduces along the radius direction; Both in positive and negative corona discharges, the number of excited OH radical firstly increases and then reduces with the relative humidity increase. In practical application, the better RH ranges for positive and negative corona discharges are 40-60% and 40-55% respectively.
引文
[1]徐学基,诸定昌,气体放电物理.上海:复旦大学出版社,1992.
    [2]A Fridman, A Chirokov, A Gutsol. Non-thermal atmospheric pressure discharges. J. Phys:Appl. Phys.2005,38:1-24.
    [3]陈海丰,针阵列双极电晕放电及其捕集颗粒物研究:博士学位论文.大连:大连海事大学,2009.
    [4]A Robledo Martinez. Characteristics of DC corona discharge in humid, reduced-density air.Journal of Electrostatics,1992,29:101-111.
    [5]Raizer Y P. Gas discharge physics. Kisin V I transl. Berlin, Germany:Springer-V-erlag,1991.349.
    [6]Sigmond R S. Simple approximate treatment of unipolar space-charge-dominated coronas:The Warburg and the saturation current[J]. J. Appl. Phys.,1982,53(2): 891-898.
    [7]Yamada. An empirical formula for negative corona discharge current in point-grid electrode geometry[J]. Journal of Applied Physics,2004,96 (5):2472-2475.
    [8]K. Adamiak, P. Atten. Simulation of corona discharge in point-plane configur-ation[J]. Journal of Electrostatics,2004,61:85-98.
    [9]朱益民,孔祥鹏,黄丽萍,等.线筒式电晕放电伏安关系的研究[J].中国电机工程学报,2005,25(25):344-347.
    [10]朱益民,孔祥鹏.多针对板电晕放电伏安特性研究[J].高电压技术,2006,32(158):57-58.
    [11]朱益民,孔祥鹏,张曼霞,等.多针对板电晕放电中针尖半径对伏-安特性影响[J].北京理工大学学报,2005,25:42-44.
    [12]王晓臣,朱益民.多针对板式负电晕放电电极间距确定[J].高电压技术,2003,29(7):40-42.
    [13]杨加元,陈海峰,朱益民.多针电极双极电晕放电电极间距优化[J].高电压技术,2008,34(1):95-97.
    [14]L. Matti, P. Peeter. The multi-avalanche nature of streamer formation in in-homogeneous fields. J. Phys. D:Appl. Phys.,1994,27(5):970-978.
    [15]P. A. Vitello, B. M. Penetrante, J. N. Bardsley. Multi-dimensional modeling of the dynamic morphology of streamer corona. Non-Thermal Plasma Techniques for Pollution Control, Penetrate B M & Schultheis S E (Ed.),1993, G34 (A):249-272.
    [16]P. A. Vitello, B. M. Penetrante, J. N. Bardsley. Simulation of negative str-eamer dynamics in nitrogen. Phys. Review E,1994,49(6):5574-5598.
    [17]C. R. Vidal, J. Cooper, E. W. Smith. Hydrogen Stark-broadening tables. Astr-ophys. J. Suppl.,1973,25 (214):37-136.
    [18]J. Torres, J. Jonkers, M. J. Van de Sande et al. An easy way to determine s-imultaneously the electron density and temperature in high-pressure plasmas by using Stark broadening. J. Phys. D,2003,36 (13):55-59.
    [19]R. B. Gadri. One atmosphere glow discharge structure revealed by computer m-odeling. IEEE Trans. Plasma Sci.,1999,27 (1):36-37.
    [20]F. Massines, A. Rabehi, P. Decomps et al. Experimental and theoretical stud-y of a glow discharge at atmospheric pressure controlled by dielectric barrier.
    J.Appl. Phys.,1998,83 (6):2950-2957.
    [21]王艳辉,王德真.介质阻挡均匀大气压辉光放电数值模拟研究.物理学报,2003,52(7):1694-1700.
    [22]M. Akyuz, A. Larsson, V. Cooray et al.3D simulations of streamer branching in air. J. Electrostat,2003,59:115-141.
    [23]K. Adamiak, P. Atten. Simulation of corona discharge in point-plane config-uration. J. Electrostat,2004,61:85-98.
    [24]R. Barni, P. Esena, C. Riccardit. Chemical kinetics simulations of an atmos-pheric pressure plasma device in air. Surface & Coatings Technology,2005,200: 924-927.
    [25]Landers, E.U.Distribution of electrons and ions in a corona discharge Proc Inst Electr Eng (London),1978:125(10)1069-1073.
    [26]Irwin, F.Ben; Inculet, Ion I. A Mathematical Analysis of the Glow and Dark Space Regions in Positive Corona, IEEE Transactions on Industry Applications,198 6:22 (5) 875-879.
    [27]Adamiak, Kazimierz.Simulation of corona in wire-duct electrostatic precipi-tator by means of the boundary element method IEEE Transactions on Industry A-pplications,1994:30(2)381-386.
    [28]Chen Junhong, Davidson, Jane H. Electron density and energy distributions in the positive DC corona:Interpretation for corona-enhanced chemical reactions[J]. Plasma Chemistry and Plasma Processing,2002,22(2):199-224.
    [29]Chen Junhong, Davidson, Jane H. Model of the Negative DC Corona Plasma:Com -parison to the Positive DC Corona Plasma[J]. Chemistry and Plasma Processing,2 003,23(1):83-102.
    [30]Aliat, A.; Hung, C. T.; Tsai, C. J. Wu, J. S. Implementation of Fuchs'model o-f ion diffusion charging of nanoparticles considering the electron contribution in dc-corona chargers in high charge densities, Journal of Physics D:Applied Phy sics,2009:42(12)1-10.
    [31]Akiramizuno, Member, IEEE, Kazuo Shimizu, Alokkumar Chakrabarti, Lucian Dasc-alescu, Satoshi Furuta. NOx Removal Proeess Using Pulsed Discharge Plasma, IEEE t-ransaction on Industry applications. VOL.31, NO.5, September 1995:957-962.
    [32]赵化侨.等离子体化学及工艺.合肥:中国科学科技大学出版社,1993.
    [33]陈杰培,低温等离子体化学及其应用,北京:科学出版社,2001.
    [34]李谦,李劲.脉冲电晕烟气脱硫脱硝的化学动力学分析[J].环境科学学报,1998,18(3):236-241.
    [35]Lowke J J, Member, IEEE, and Morrow R. Theoretical Analysis of Removal of Ox-ides of Sulphur and Nitrogen in Pulsed Operation of Electrostatic Precipitators. IEEE Trans. Plasma Sci,1995,23:661-671.
    [36]Mok Y S, Ham S W, Nam In-Sik. Mathematical analysis of positive pulsed corona discharge process employed for removal of nitrogen oxides, IEEE Trans. Plasma Sc-i.,1998,26(5):1566-1574.
    [37]Gentile A C and Kushner M J. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams. Journal of Applied Physics,1995,78:2074-2 087.
    [38]Penetrante B M, Bardsley J N and Hsiao M C. Kinetic analysis of non-thermal p-lasma used for pollution control. Japan. J. Appl. Phys.,1997,36:5007.
    [39]朱益民.非热放电荷电净化餐饮油烟装置研究[J].环境保护科学,2003,29(4):1-4.
    [40]朱益民,孔祥鹏,陈海丰,等.针阵列对板电晕放电捕集微粒研究[J].北京理工大学学报,2005,128(25):137-140.
    [41]Y. M. Zhu, X. C. Wang, M. X. Zhang et al. Indoor Formaldehyde Oxidation by Needle Matrix to Plate Corona Discharge[J]. J. Advanced Oxidation Technologies, 2005,8 (1):112-115.
    [42]朱益民,孔祥鹏,张卓然,等.针阵列对板电晕放电对副流感病毒灭活的研究[J].北京理工大学学报,2005,128(25):165-168.
    [43]朱益民,王晓臣,公维民.非热放电对室内空气净化效果研究[J].中国消毒学杂志,2004, 21(3):213-215.
    [44]唐书凯,王文春,刘佳宏,等.高压脉冲电晕放电氮等离子体的分子束质谱诊断研究[J].真空科学与技术,2000,20(5):322-326.
    [45]王文春.非热平衡等离子体中H3-/D3-离子的实验检测及OH自由基诊断研究:(博士学位论文).大连:大连理工大学.2007.
    [46]Foner. S. N and Hudson. R. L, J. Chem. Phys,1962,36:2681.
    [47]Hsu W L, Tung D M. Rev Sci Instrum,1992,63:4138/Hsu W L,McMaster M C, Colt-rin M E et al. Jpn J Appl Phys,1994,33:2231.
    [48]Korobeinichev 0 P, Kuibida L V, Paletsky A A et al. Proceedings of the Decomp-osition, Combustion and Detonation Energetic Materials. Materials Research Societ-ySymposium Proceedings,'1996,418:245.
    [49]Knuth E L. Combustion and Flame,1995,103:171.
    [50]丁洪斌,刘佳宏,杨学锋.真空科学与技术,1999,19:128.
    [51]刘佳宏,唐书凯,杨学锋.核聚变与等离子体物理,2000,20:43-47.
    [52]唐书凯,王文春,吴彦.J. Vacuum. Sci&Techno,2000,18.5.
    [53]吴桂林,刘延伟,邓新绿.用激光诱导荧光方法测量等离子体中离子温度[J].量子电子学,13:458.
    [54]邓新绿,吴桂林,张家良,等.利用LIF法诊断微波等离子体鞘层[J].大连理工大学学报,1997,37(2):160-166.
    [55]Ono R and Oda T. OH Radical Measurment in a Pulsed Arc Dicharge Plasma Obser-ved a LIF Method[J]. IEEE trans. Ind. Appl.,2001,37:709-714.
    [56]Seiji Kanazawa, Hiroto Tanaka, Atsushi Kajiwara, etc. LIF imaging of OH rad-icals in DC positive streamer coronas[J]. Thin Solid Films 2007,515:4266-427 1.
    [57]吴桂林,刘延伟,邓新绿.用激光诱导荧光方法测量等离子体中离子温度[J].量子电子学,13:458.
    [58]Becker. K. H and Haaks. P, Zeite. Naturf,1974,129:829.
    [59]Honda. C, Maeda. M and Akazaki. M, Jpn. J. Appl. Phys,1985,124:L402.
    [60]Kosiover. R and Macwilliams. R, ReVOLSci. Intrum, VOL57, P2441,1986.
    [61]邓新绿,吴桂林,张家良,等.利用LIF法诊断微波等离子体鞘层[J].大连理工大学学报,1997,37(2):160-166.
    [62]阎文斌,微量气体定量分析的新方法:光腔衰荡光谱[J],低温与特气.2007,25(1):35-39.
    [63]Hoefnagels. J. P. M, Stevens. A. A. E, et al, Chem. Phys. Lett,2002,360 (1-2):189-193.
    [64]Benedikt.J, Woen. R. V, et al, Diamond and Related Materials,2003,12(2):90-97.
    [65]Herbelin J M, M ckay J A, Kwok M A, etal.. Sensitive measurement of phot-on lifetime and true reflectances in an optical cavity by a phase-shift method [J]. Opt,1980,19 (1):144-147.
    [66]Anderson D Z, Frisch J C, Masser C S. Mirror reflectometer based on optical cavity decay time[J]. Appl Opt,1984.23 (8):1238-1245.
    [67]孙福革,戴东旭,解金春,等.用光腔衰荡光谱方法精确测量高反镜的反射率[J].中国激光,1999,26(1):35-39.
    [68]盛新志,孙福革,顾玉昆,等.平面COIL腔镜高反射率的精确检测[J].量子电子学报,1999,16(1):64-70.
    [69]赵宏太,柳晓军,曹俊文,等.Ba原子6s6p'P1←6s6s1S0跃迁的光腔衰荡光谱[J].物理学报,2001,50(7):1274-1279.
    [70]赵宏太,柳晓军,詹明生.Ba原子吸收系数的光腔衰荡光谱测量[J].光谱学与光谱分析,2001,21(3):284-286.
    [71]0'Keefe A, Deacon D. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Rev Sci Instrum nts,1988,59:2544-2550.
    [72]宓云,王晓萍,詹舒越.光腔衰荡光谱技术及其应用综述[J].光学仪器,2007,29(5):85-90.
    [73]Bisson S E, Kulp T J, L evio, et al.. A broadly tunable high resolution IR cavity ring-down spectrometer based on difference frequency generation in ori-entation-patteredn GaA s[J]. S P IE.2004,5337:112-116.
    [74]Toshiyuki H, Patrick V F, Feasibility of cavity ring-down spectroscopy for measuring diesel exhaust[J]. S P IE,2001,4448:36-44.
    [75]Wei C, Farrell P, Cavity ring-down spectroscopy for soot measurement in die-sel exhaust[J]. S P IE,2005,5880:207-218.
    [76]裘世鑫,高晓明,崔芬萍,等.C02的腔增强吸收与高灵敏吸收光谱研究[J].光谱学与光谱分析,2005,25(12):1908-1911.
    [77]刘忠伟,徐勇,杨学锋,等.介质阻挡放电等离子体中HO2自由基的红外光腔衰荡光谱原位诊断[J].真空科学与技术学报,2007,27(6):535-540.
    [78]刘忠伟,赵国利,王健,等.介质阻挡放电等离子体中OH自由基的光腔衰荡光谱原位诊断[J].核聚变与等离子体物理,2008,28(2):167-172.
    [79]王健,赵国利,朱爱民,等.微波等离子体中OH自由基的光腔衰荡光谱诊断[J].真空科学与技术学报,2009,29(4):448-453.
    [80]王健.微波等离子体OH白由基的光腔衰荡光谱诊断.大连:大连理大学,2008.
    [81]张锐,黄碧霞,何有昭.原子光谱分析.合肥:中国科学技术大学出版社,1991.
    [82]G.赫兹堡.分子光谱与分子结构.北京:科学出版社,1983.
    [83]Furuta N, Nojiri Y, Fuwa K. Spatial profile measurement of electron number de-nsities and analyte line intensities in an inductively coupled plasma. Spectroch im.Acta,1985,40B:423-434.
    [84]Alder J F, Mermet J M. A spectroscopic study of some radio frequency mixed ga-s plasmas. Spectrochim. Acta,1973,28B:421-433.
    [85]Gottscho R A, Donnelly V M.optical emission actinometry arid spectral line sh-apes in glow discharges. J. Appl. Phys.,1984,56(2):245-250.
    [86]Coburn J W, Chen M. Optical emission spectroscopy of reactive plasmas:A metho-d for correlating emission intensities to reactive particle density. J. Appl. P-hys,1980,51:3134-3136.
    [87]Sasaki K, Kawai Y, Kadota K, Vacuum ultraviolet absorption spectroscopy for absolute density measurements of fluorine atoms influorocarbon Plasma. Appl. Phys. Lett.,1997,70:1375-1377.
    [88]Hanish P D, Grizzle J W, Giles M D, Terry Jr F L. A modle-based technique for real-time estimation of absolute fluorine concentration in a CF4/Ar plasma. J. Vac. Sci. Technol. A,1995,13:1802-1807.
    [89]高翔,余权,吴祖良,等.喷嘴-平板直流电晕放电中的OH(A2∑+→X2Π,0-0)光谱研究[J].强激光与粒子束,2007,19(4):700-703.
    [90]German K R. J. Chem. Phys.,1975,62:2584.
    [91]Ershov A, Borysow J. J. Phys. D:Appl. Phys.,1995,28:68.
    [92]王文春,刘峰,张家良,等.利用发射光谱研究脉冲电晕放电中的自由基[J].光谱学与光谱分析,2004,24:1288-1292.
    [93]Feng Liu, Wenchun Wang, Su Wang, et al. Diagnosis of OH radical by optical e-mission spectroscopy in a wire-plate bi-directional pulsed corona discharge[J]. Journal of Electrostatics,2007,65():445-451.
    [94]Feng Liu, Wenchun Wang, Wei Zheng, et al. Investigation of spatially resolv-ed spectra of OH and N2+ in N2 and H20 mixture wire-plate positive pulsed streame-r discharge[J]. Spectrochimica Acta Part A,2008,69():776-781.
    [95]孙明,吴彦,张家良,等.空气电晕放电中的OH自由基发射光谱[J].光谱学与光谱分析,2005,25(1):108-112.
    [96]Park C W, Hahn J W. Measurement of OH radical in nonthermal plasma forNO/NO2 reduction. The Pacific Rim Conference on Lasers and Electro-optics. CLEO/Pacific Rim[J],1999,2:356-357.
    [97]Su Z et al. Thirty-Fourth IAS Annual Meeting[J]. Conference Record of the 1 999 IEEE,1999,3:1473.
    [98]宿鹏浩,朱益民,陈海丰.多针对板负电晕放电电离区形貌确定[J].光谱学与光谱分析,2007,27(11):2171-2174.
    [99]宿鹏浩,朱益民,陈海丰.发射光谱研究多针对板正电晕放电形貌[J].光谱学与光谱分析,2008,28(9):1998-2002.
    [100]Su Penghao, Zhu Yimin, Shu Yang. Using. OES to measure distribution of ene-rgetic electron in multi-needle-to-plate corona discharge. J. Electrosta,66 (2 008) 193-196.
    [101]陈海丰,宿鹏浩,朱益民.多针双极电晕放电形貌发射光谱研究[J].光谱学与光谱分析,2009,29(1):24-27.
    [102]李廷钧.发射光谱分析.北京:原子能出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700