曲面仿生光学复眼建模设计及其加工路径规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,光学成像系统在国防尖端装备及民用工业中应用范围越来越广,人们对其要求也不断提高。如智能武器、智能机器人视觉系统以及微型飞行器等,期望整个系统重量轻、体积小、视场大以及对运动目标更敏感。近年来,由于系统的机械装置和电子器件进一步小型化,轻量化已变得越来越困难。因此许多科研机构想通过缩小光学系统部位从而使整个系统达到轻量化与小型化。仿生光学复眼具有体积小、重量轻、视场大、灵敏度高、可测速等优点,因而引起国内外学者的广泛关注。各国学者纷纷对光学复眼展开研究,并取得了一定的研究成果,但其成像仍然存在一定的缺点。因此,怎样进一步提高光学复眼的成像特性变得尤为重要,给仿生光学复眼的研究提出了新的挑战。
     本文首先通过对仿生光学复眼进行光学理论分析,得到了仿生光学复眼小眼的三维空间函数关系式。该仿生复眼小眼采用高次拟合曲面取代球面阵列小眼,提高小眼在近光轴以外部分的成像特性,克服了球面小眼成像过程中中间清晰边沿模糊的缺点,改善了复眼的成像效果。
     其次,通过小眼三维空间函数生成的点云,利用Pro/E逆向工程实现了小眼的初始网格化。采用基于三角形递归分割插补算法的RecurSurface(重构曲面)系统完成了小眼的重构,重构精度达到2nm。通过RecurSurface(重构曲面)系统与Pro/E的结合,实现了整个复眼的造型。该仿生光学复眼整体尺寸为19×17×3mm,由七个近似六边形的小眼组成,以中间小眼为基准,其余六个小眼分别绕中间小眼六条边旋转20°。近似六边形的小眼组合,消除了球面小眼组合过程中存在的间隙,克服了球形小眼复眼成像过程中存在“麻点”的不足,进一步改善了复眼的成像特性。
     最后,研究了加工路径及加工参数对仿生光学复眼加工精度的影响,并应用Pro/E数控仿真模块对构建的仿生光学复眼模型进行数控仿真及代码后置处理,生成了可用于实际加工的复眼G-代码。同时,为了消除实际加工中可能出现的错误,利用Vericut对Pro/E仿真生成的G-代码进行验证。将G-代码进行格式变化,生成PMAC控制器能够识别的数控代码,利用基于PMAC控制的三轴微细机床进行加工,得到仿生光学复眼模型并对加工误差进行分析。
With the development of science and technology,optical imaging system has been widely and increasingly used in advanced equipments of national defence and civilian industries, and much higher requirement is needed. Such as smart weapons, intelligent robot vision system and micro air vehicles, expected the whole system weight light, size small, large field of view and the more sensitive to the moving target. However, in recent years the system of mechanical devices and electronic devices has become increasingly difficult to be further miniaturization and much lighter. So many scientists want to reduce the optical system parts in order to make the whole system the lighter weight and further miniaturization. And with the advantages of small volume, light weight, large field-of-view, high sensitivity and measuring speed, the artificial optical compound eye has got more and more attention. The optical compound eye has been researched and lots of results have been made. But the image of the eyes still has some shortcomings. Therefore, how to make further improvement of the optical compound eye imaging properties is becoming particularly important and new challenges to study the compound eyes have been raised.
     In this paper, firstly, the three-dimensional function of the compound eye’s ommatidium can be got through the analysis of artificial optical compound eye by optical theory. The ommatidium is described by higher-order curve, which replace with the high fitting spherical surface array and the imaging features of the outside optical axis part is enhanced. By that way, it overcome the disadvantage that the image is clear in middle but fuzzy in edge with the sphere array and improve the image effect of compound eye.
     Secondly, by the three-dimensional function of the ommatidium, the point cloud is calculate. The initial grid of ommatidium is generated through Pro / E Reverse engineering. Then the ommatidium model is reconstructed by RecurSurface (Surface Reconstruction) system which is base on Triangle recursive subdivision algorithm and the reconstruction accuracy can catch up with 2nm. The model of the compound eye is reconstructed through the RecurSurface (Surface Reconstruction) system and Pro/E. The overall size of the optical compound eye is 19×17×3mm. The eye is formed by seven ommatidium, and base on the middle one, others rotate 20°around its sides. The eye is assembled by approximate hexagonal ommatidiums, which eliminate the gaps that produced by combination of the spherical ommatidiums, and it overcome the image shortage of“Ma points”which appear when the ommatidiums is sphere. In this way, the imaging characteristics of the compound eye can be further improved.
     Finally, the processing path and processing parameters are be studied which are very important to processing accuracy of the artificial optical compound eye. And then the NC manufacturing simulation and post processor of the eye model after subdivision are completed adapting the NC machining modular of Pro/E. The G-code of eye is generated. Meanwhile, in order to eliminate the possible errors in the actual processing, the G-code is checked with Vericut soft. After the G-code format is changed to the NC code that the generating PMAC controllers can identify, the eye model is machined by PMAC-based three-axis control machine tool. At last the processing errors are analyzed.
引文
1蔡梦颖.仿生复眼视觉系统标定和大视场图像拼接的技术研究.南京航空航天大学硕士学位论文. 2007:9~12
    2王国锋.蝇视觉系统在红外成像制导中的应用研究.西北工大学博士学位论文. 2003:10~16
    3吴卫国.复眼视网膜图像形成的机制.生理科学. 1983, 2(3):15~19
    4张红鑫,卢振武,李凤有.人工仿生复眼的研究进展.长春理工大学学报. 2006, 29(2): 4~7
    5 D. G. Hodierna. Locchio della mosca. Decio Cirillo, Palermo, 1964
    6 H. B. Barlow. The size of ommatidia in apposition eyes. Experimental Biology. 1952, 29(4): 667~674
    7 M. F. Land. Superpositon images are formed by reflection in the eyes of some oceanic decapod crustacean. Nature. 1976, 263:764~765
    8 G. A. Horridge. Fly photoreceptors111.Angular senstitivity as a function of wavelength and the limits of resolution. Proceedings of the Royal Society of London B. 1976, 194:151~177
    9 G. A. Horridge. The separation of visual axes in apposition compound eyes. Philosophical Transactions of the Royal Society of London B. 1978, 285:1~59
    10 M. F . Land. The optical geometry of euphausiid eyes. Jouranl of Comparative Physiology A. 1979, 130(1):49~62
    11 G. A. Horridge. Apposition eyes of large diurnal insects as organs adapted to seeing. Proceedings of the Royal Society of London B. 1980, 207:287~309
    12 M. F. Land. Compound eyes: old and new optical mechanisms. Nature. 1980, 287: 681~686
    13 G. A. Horridge. The evolution of visual processing and the construction of seeing systems. Proceedings of the Royal Society of London B. 1987, 230: 279~292.
    14 M. F. Land. Variations in the Structure and Design of Compound. Facets of Vision, D. G . Stavenga and R. C. Hardie, editors. 1989, Chap.3:30~73
    15 Reinhard Volkel. Microlens array imaging system for photolithography. Optical Engineering. 1996, 35(11): 3323~3330
    16 R. Luid, Lopez. Neural processing and control for artificial compound eyes. IEEE International Conference on Neural Networks. 1994, 5:2749~2753
    17 Jacques Duparre. Microoptical telescope compound eye. Optics express. 2005, 13(3):889~903
    18李呈德.两级复眼式准分子激光微加工均束器的设计.中国激光.1999, 26: 560~564
    19 S. Jacques, Sanders. Design and analysis of apposition eye optical sensors. Optical Engineering.1995, 34(1):222~235
    20徐琰,颜树华,周春雷,等.昆虫复眼的仿真研究进展.光学技术. 2006,增刊(32):10~12
    21 D. Jacques, D. Peter, S. Peter, et al. Artificial apposition compound eye fabricated by micro-optics technology. Applied Optics. 2004, 43(22) :4303~4310
    22 D. Jacques, S. Peter, B. Andreas. et a1. Artificial compound eye-different concepts and their application to ultra flat image acquisition sensors. Proc of SPIE. 2004,5346:89~100
    23 D. Jacques, S. Peter, V. Reinhard. Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices. Proc of SPIE. 2004, 5249:408~418
    24 DuparréJacques, Dannberg, Peter1. Micro-optically fabricated artificial apposition compound eye. SPIE. 2004, 5301: 25~33
    25张红鑫,卢振武,王瑞庭,等.曲面复眼成像系统的研究.光学精密工程. 2006, 3(14):346~349
    26 LI Fengyou, LU Zhenwu, LI Hongjun. Binary Laser Direct Writing System and Its Applications. Optics and Precision Engineering. 2001, 9(5):451~454
    27 XIE Yongjun, LU Zhenwu. Lithographic fabrication of large curved hologram by laser writer. Optics Express. 2004, 12:1810~1814
    28 ZHANG HX, LU ZW, LI FY. Fabrication of a curved linear grating by using a laser direct writer system. Optics Communications. 2006,266(1):249-252
    29张红鑫,卢振武,李凤有,等.重叠复眼光学模型的建立与分析.光子学报. 2007,36 (6):1106-1109
    30张红鑫,卢振武,刘华.对重叠复眼进行简化模型与分析的新方法.光学精密工程, 2008,16(10):1847-1851
    31 JACQUES Duparré, DANIELA Radtke. Spherical artificial compound eye captures real images. SPIE. 2007, 6466:64660K-1~64660K-9
    32孙克豪. Trimmed NURBS曲面的三角化及其应用与离散数据点重构技术研究.南京航空航天大学博士论文.1998
    33 C. Loop. Smooth Subdivision Surfaces Based on Triangles. Salt Lake : University of Utah Master’s thesis. 1987
    34 M. Halstead, M. Kass, T. DeRose. Efficient Fair Interpolation Using Catmull-Clark Surfaces. Computer Graphics. 1993, 27(3):35~44
    35 Tony DeRose, Michael Kass, Tien Truong. Subdivision Surfaces in Character Animation. Computer Graphics Proceedings, Annual Conference Series SIGGRAPH. 1998: 85~94
    36 T. Sederberg, J. Zheng, D. Sewell, el at. Non-uniform Recursive Subdivision Surfaces. Computer Graphics. 1998, 32(3): 387~394.
    37魏仁选,周祖德,陈幼平,等.可重用面向对象数控系统软件及其开发环境研究.华中理工大学学报. 1999, 27 (3):19~21
    38 N. Bradley, W. damazo, J. Robert, el at. Open Architecture Controls for precision Machine tools. Proceeding of Mechanism and Controls for Ultra-precision Motion. 1994, 8:6~8
    39 B. K. CHOI, C. S. JUN. Ball end cutter interference avoidance in NC machining of sculptured surface. Computer Aided Design. 1989, 21(6): 371~378
    40傅桂龙,程筱胜.基于PC的开放式数控系统实现方法.机械设计与制造工程. 2001, 29(1): 45~46
    41 Jacques Duparré, Frank Wippermann . Micro optical artificial compound eyes - From design to experimental verification of two different concepts. Proc. of SPIE. 2005,5962
    42王少杰,顾牡主.基础物理学(下册).同济大学出版社, 2006: 230~270
    43任秉银,孟庆鑫,王丽慧.面向自由曲面重构的递归插值分割算法.哈尔比工业大学学报. 2001, 22(5):44~47
    44李刚,刘华明,王新龙.CAD/CAM中曲面求交技术的研究.高技术通讯. 2000,10(6):57
    45 H. HOPPE, T. DEROSE, T. DUCHAMP, et al. Piece wise smooth surface. Computer Graphics. 1996, 28(3) :295~302
    46郭伟星.基于PMAC控制的自由曲面加工数控系统研究.哈尔滨工业大学硕士研究生. 2004:8~19
    47任秉银,孟庆鑫,于华.基于递归分割曲面造型算法.高技术通讯.2002,12(1): 77~79
    48王阳俊.基于PMAC控制的五轴数控系统研究.哈尔滨工业大学硕士研究生. 2005: 10~14
    49陈明君,辛玉红,王阳俊等.基于Loop算法递归复杂曲面的数控插补技术.航空精密制造技术. 2008,3(44):26~28
    50高建瓴,施怀瑾,邸江涛.一种新型的开放式图形库OPENGL及应用.贵州工业大学学报. 1995, 6:17~18
    51宋德军.基于能量优化的曲线曲面造型理论及应用研究.北京航空航天大学博士学位论文. 1998:35~50
    52穆国旺.逆向工程中NURBS曲面的重构.北京航空航天大学博士学位论文. 2001
    53 Stan Jarzabek, Guosheng Wang. Model-based Design of Reverse Engineering Tools. Journal of Software Maintenance: Research and Practice. 1998,10(5): 353~380
    54詹友刚. Pro/ENGINGEER中文野火版4.0数控加工教程.机械工程出版社, 2008: 50~100
    55李云龙,曹岩主.数控机床加工仿真系统VERICUT.西安交通大学出版社, 2005: 2~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700