基于纳米粒子探针的光学成像新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命科学的迅速发展要求人们从单细胞和单分子水平上原位、活体、实时地了解物质之间的相互作用以及生命的过程。近年来新兴的单分子光学成像技术以其高的灵敏度和分辨率正好适应这一发展的要求,而且它们自诞生以来就一直处于迅速的发展中,成为当今生命科学及相关学科研究的前沿和热点。与此同时,这些基于光学手段的生物成像技术除了光学构型的革新和改进之外在很大程度上还依赖于灵敏而稳定的光学探针的使用。理想的光学探针应该具有以下特点:信号强;稳定,不易发生光漂白;体积小,对标记的宿主分子影响小;能够与宿主分子可控结合;化学惰性。遗憾的是,至今没有任何一种光学探针达到理想探针的要求。
     本论文主要从光学探针和光学成像方法两方面入手,通过选择并优化合适的纳米粒子以及改进现有的光学成像技术,发展基于纳米粒子探针的光学成像新方法以实现高灵敏、稳定、快速的生物成像。主要研究工作包括如下几个方面:
     1)利用全内反射荧光成像技术分别对水相合成的CdTe量子点和有机相合成的CdSe/ZnS量子点进行了荧光成像,并且通过对其荧光强度的跟踪获得了量子点在单粒子尺度上的荧光发射轨迹。我们发现在巯基丙酸、谷胱甘肽等含巯基配体的水溶液中合成的CdTe量子点不存在有机相合成量子点的荧光闪烁现象。进一步的实验证实巯基配体对量子点闪烁的抑制起到了至关重要的作用。最后,我们使用水相合成的CdTe量子点作为荧光探针成功地用于癌细胞的靶向成像。这些研究结果表明水相合成的CdTe量子点由于具有良好的水溶性,高亮度及不闪烁的特征可作为较好的荧光探针用于单分子检测及生物成像领域。
     2)分别使用系综荧光光谱、荧光相关光谱、荧光显微镜等不同的光学技术研究了粒径范围在16 ~ 55 nm的金纳米粒子的光学性质,发现该粒径范围的金纳米粒子具有一定的荧光。而且,随着粒径的增加,金纳米粒子的荧光发射波长几乎保持不变,约为610 nm,其发射峰的半峰宽约为17 nm。尽管这些金纳米粒子的荧光量子产率很低,但在较高激发强度下它们具有足够强的荧光亮度可在单粒子尺度上被荧光显微镜和荧光相关光谱仪器所检测。尤其重要的是,在强光照射下,金纳米粒子不漂白。基于金纳米粒子的抗漂白性质以及细胞自荧光易漂白的特点,我们发展了一种以金纳米粒子作为荧光探针的细胞成像新方法。该方法的主要原理是活细胞经金纳米粒子培育或特异性标记后,利用光照将细胞自荧光迅速漂白,然后观察细胞内部或细胞膜上的金纳米粒子。基于上述原理,我们使用金纳米粒子作为探针或者靶向探针成功实现HeLa癌细胞的荧光成像。而且,利用全内反射荧光显微镜甚至不需要经过光漂白步骤就能够实现以金纳米粒子作为荧光探针的细胞膜成像。
     3)金纳米粒子在光照下由于表面等离子体共振效应会产生强烈的散射信号,然而目前使用金纳米粒子作为散射光探针的生物成像方法主要局限于暗场显微镜、视频增强微分干涉相衬显微镜等传统光学成像技术。本文基于全内反射荧光显微镜平台,设计了一套物镜型隐失波散射成像系统。该系统通过使用一系列自制毫米级小孔对金纳米粒子的散射光和激光的反射光束进行有效分离,实现单个金纳米粒子的隐失波散射检测及溶液中单个金纳米粒子的快速跟踪。在本章中,我们详细阐述了物镜型隐失波散射成像的实现原理以及研究了激光入射角、小孔孔径和视场光阑开口直径等参数对该系统散射成像的影响。结果表明:通过适当地调节激光光束的入射角,小孔可应用的孔径范围位于2.5 mm到4 mm之间。最后,我们使用该隐失波散射成像技术成功实现了活细胞膜上单个金纳米粒子的跟踪,并且进一步研究了单个金纳米粒子在活细胞膜上的扩散行为并计算其相应的扩散系数。我们的研究结果表明以金纳米粒子作为光学探针的隐失波散射成像技术是一种非常具有前途的用以研究活细胞膜动力学的工具。而且,物镜型的光学配置构型更便于样品的放置,使得这种以金纳米粒子作为散射光探针的表面成像方法与膜片钳、原子力显微镜、扫描电化学显微镜等其他探测技术联用成为可能。
Single molecule optical imaging techniques provide great potential for understanding biological processes at the molecular level and for sensitive cancer diagnosis. From the day of their birth, single molecule optical imaging techniques have been the important research frontier and hotspots of life science and related disciplines. Besides the innovation of optical imaging principles and configurations, biological imaging with optical technique also relies greatly upon the use of sensitive and stable optical probes. An ideal optical probe for macro-molecules should generate an intense optical signal; it should also be small, durable, chemically inert, and apt to bind to the molecule of interest in a controlled manner. All currently-used optical markers fall short of the“ideal probe”status.
     In this dissertation, combining nanoparticle technique with optical imaging methods, we develop new optical imaging methods for highly sensitive, stable and fast biological imaging. The main contributions are as follows:
     1) We used total internal reflection fluorescence microscopy (TIRFM) to image clearly individual CdTe quantum dots (QDs) synthesized in aqueous solution and CdSe/ZnS QDs synthesized in organic phase, and investigated their fluorescence emission behavior under continous laser illumination.We found that individual CdTe QDs synthesized in mercaptopropionic acid (MPA) or glutathione (GSH) solution did not blink while CdSe/ZnS QDs synthesized in organic phase exhibited severe fluorescence blinking behavior. Our experiments have confirmed that the MPA and GSH coating on the CdTe QDs play a key role in suppressing blinking. Furthermore, we conjugated CdTe QDs to anti-epidermal growth factor receptor (anti-EGFR) antibodies, and successfully used the anti-EGFR/GNPs conjugates as targeted probes for fluorescent imaging of cancer cells. These results demonstrated that CdTe QDs synthesized in aqueous solution are well suitable for use in single molecule detection and biological imaging as fluorescent probes as they are water-soluble, biocompatible, bright, and non-blinking.
     2) We investigated the fluorescent properties of gold nanoparticles (GNPs) with several tens of nanometers by ensemble fluorescence spectrometry, fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. We observed that GNPs synthesized by the citrate reduction of chloroauric acid possessed certain fluorescence, narrow full width at half maximum (17 nm), and with an increase of particle sizes, the emission intensity showed a gradual increase while the emission wavelength remained almost constant (at 610 nm). Especially, the fluorescence of GNPs possessed the excellent behaviors of anti-photobleaching under strong light illumination. Despite their low quantum yields, GNPs exhibited strong native fluorescence under relatively high excitation power. The fluorescence of GNPs could be characterized by fluorescence imaging and FCS at single particle level. Based on this excellent anti-photobleaching of GNPs and easy photobleaching of cellular autofluorescence, we developed a new method for imaging of cells using GNPs as fluorescent probes. The principle of this method is that after cells stained with GNPs or GNPs bioconjugates are illuminated by strong light, the cellular autofluorescence are photobleached and the fluorescence of GNPs on cell membrane or inside cells can be collected for cell imaging. Based on this principle, we imaged living HeLa cells using GNPs as fluorescent probes, and obtained good cell images by photobleaching of cellular autofluorescence. In particular, under some specific illumination such as total internal reflection fluorescence microscopy, GNPs can also be directly used, not requiring the photobleaching procedure. Our preliminary results demonstrated that GNPs are good fluorescent probes in cell imaging and the cellular imaging method described has potential applications in cancer diagnostics and studies and immunoassays.
     3) We propose a novel evanescent wave scattering imaging method using an objective-type total internal reflection system to image and track single gold nanoparticles (GNPs) in solution. In this imaging system, a millimeter-scale hole is only employed to efficiently separate GNPs scattering light from the background reflected beam. The detailed experimental realization of the imaging system was discussed, and the effect of the hole size on imaging was investigated. The experimental results showed that the hole diameters from 2.5 mm to 4 mm were suitable for the scattering imaging by adjusting the incidence angle. Furthermore, we applied the technology successfully to track single GNPs bound to live cell membrane via the anti-epidermal growth factor receptor antibody, and measured the diffusion coefficients of single particles by recording their corresponding trajectories. Compared to fluorescent dyes or quantum dots, GNPs have no photobleaching and no blinking, and the evanescent wave scattering imaging methods based on GNPs will become a very useful tool to study membrane dynamics in living cells. Additionally, the objective-based configuration provides a free space above the coverslip, and allows imaging and concomitant manipulation of live cells in culture by microinjection, patch-clamping, AFM and other techniques.
引文
[1] de Lange, F.; Cambi, A.; Huijbens, R., et al. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J. Cell Sci. 2001, 114(23): 4153-4160.
    [2] Nie, S. M.; Zare, R. N. Optical detection of single molecules. Annu. Rev. Bioph. Biom. 1997, 26 567-596.
    [3]舍英;伊力奇;呼和巴特尔现代光学显微镜,科学出版社,北京, 1997.
    [4]陈锦云光学显微镜的现状与进展.光仪技术1990, 11(1): 2-9.
    [5] Willingham, M. C.; Yamada, S. S. A mechanism for the destruction of pinosomes in cultured fibroblasts. Piranhalysis. J. Cell Biol. 1978, 78(2): 480-487.
    [6] Reynolds, G. T.; Taylor, D. L. Image Intensification Applied to Light Microscopy. BioSci. 1980, 30(9): 586-592.
    [7] Allen, R. D.; Allen, N. S. Video-enhanced microscopy with a computer frame memory. J. microsc. 1983, 129(1): 3-17.
    [8] Maile, W.; Lindl, T.; Weiss, D. G. New methods for cytotoxicity testing: quantitative video microscopy of intracellular motion and mitochondria-specific fluorescence. Mol. Toxicol. 1987, 1(4): 427-437.
    [9] Weiss, D. G. Videomicroscopic measurements in living cells: dynamic determination of multiple end points for in vitro toxicology. Mol. Toxicol. 1987, 1(4): 465-488.
    [10] Funatsu, T.; Harada, Y.; Tokunaga, M., et al. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 1995, 374(6522): 555-559.
    [11] Sase, I.; Miyata, H.; Corrie, J. E., et al. Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys. J. 1995, 69(2): 323-328.
    [12] Schmidt, T.; Schu?tz, G. J.; Baumgartner, W., et al. Characterization of photophysics and mobility of single molecules in a fluid lipid membrane. J. Phys. Chem. 1995, 99(49): 17662-17668.
    [13] Schmidt, T.; Schutz, G. J.; Baumgartner, W., et al. Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. U.S.A. 1996, 93(7): 2926-2929.
    [14] Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 1981, 89(1): 141-145.
    [15] Weis, R. M.; Balakrishnan, K.; Smith, B. A., et al. Stimulation of fluorescence in a small contact region between rat basophil leukemia cells and planar lipid membrane targets by coherent evanescent radiation. J. Biol. Chem. 1982, 257(11): 6440-6445.
    [16] Axelrod, D.; Hellen, E. H.; Fulbright, R. M. Total Internal Reflection Fluorescence. In: Lakowicz, J. R. (ed.), Topics in Fluorescence Spectroscopy, Biochemical Applications, New York, Plenum Press 1992, Vol. 3, pp289-343.
    [17] White, J. G.; Amos, W. B. Confocal microscopy comes of age. Nature 1987, 328(6126): 183-184.
    [18] Paddock, S. W. Confocal laser scanning microscopy. Biotechniques 1999, 27(5): 992-1004.
    [19] Paddock, S. W. Principles and practices of laser scanning confocal microscopy. Mol. Biotechnol. 2000, 16(2): 127-149.
    [20] Born, M.; Wolf, E. Principles of optics, 6th, Pergamon Press Oxford, 1980.
    [21] Tadrous, P. J. Methods for imaging the structure and function of living tissues and cells: 2. Fluorescence lifetime imaging. J. Pathol. 2000, 191(3): 229-234.
    [22] Piston, D. W. Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol. 1999, 9(2): 66-69.
    [23] Bahlmann, K.; Jakobs, S.; Hell, S. W. 4Pi-confocal microscopy of live cells. Ultramicroscopy 2001, 87(3): 155-164.
    [24] Straub, M.; Lodemann, P.; Holroyd, P., et al. Live cell imaging by multifocal multiphoton microscopy. Eur. J. Cell Biol. 2000, 79(10): 726-734.
    [25] Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 2003, 21(11): 1347-1355.
    [26] Hofmann, M.; Eggeling, C.; Jakobs, S., et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U.S.A. 2005, 102(49): 17565-17569.
    [27] Hell, S. W. Far-field optical nanoscopy. Science 2007, 316(5828): 1153-1158.
    [28] Rust, M. J.; Bates, M.; Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3(10): 793-795.
    [29] Bates, M.; Huang, B.; Dempsey, G. T., et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 2007, 317(5845): 1749-1753.
    [30] Huang, B.; Wang, W. Q.; Bates, M., et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319(5864): 810-813.
    [31] Paesler, M. A.; Moyer, P. J. Near-Field Optics: Theory, Instrumentation, and Applications, John Wiley and Sons, New York, 1996.
    [32] Dunn, R. C. Near-field scanning optical microscopy. Chem. Rev. 1999, 99(10): 2891-2927.
    [33] Betzig, E.; Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 1993, 262(5138): 1422-1425.
    [34] Synge, E. H. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. 1928, 6: 356-362.
    [35] Pohl, D. W.; Denk, W.; Lanz, M. Optical stethoscopy: Image recording with resolutionλ/20. Appl. Phys. Lett. 1984, 44(7): 651-653.
    [36] Kim, J. M.; Ohtani, T.; Sugiyama, S., et al. Simultaneous topographic and fluorescence imaging of single DNA molecules for DNA analysis with a scanning near-field optical/atomic force microscope. Anal. Chem. 2001, 73(24): 5984-5991.
    [37] Garcia-Parajo, M. F.; Veerman, J. A.; Segers-Nolten, G. M. J., et al. Visualising individual green fluorescent proteins with a near field optical microscope. Cytometry 1999, 36(3): 239-246.
    [38] Christie, R. M. Fluorescent dyes. Rev. Prog. Color. 1993(23): 1-18.
    [39] Shapiro, H. H. Microbial analysis at the single-cell level: tasks and techniques. J. Microbiol. Meth.2000, 42(1): 3-16.
    [40] King, M. A. Detection of dead cells and measurement of cell killing by flow cytometry. J. Immunol. Methods. 2000, 243(1-2): 155-166.
    [41] Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115(19): 8706-8715.
    [42] Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998, 120(21): 5343-5344.
    [43] Talapin, D. V.; Haubold, S.; Rogach, A. L., et al. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B 2001, 105(12): 2260-2263.
    [44] Rogach, A. L.; Katsikas, L.; Kornowski, A., et al. Synthesis and Characterization of Thiol-Stabilized CdTe Nanocrystals. Ber. Bunsenges. Phys. Chem. 1996 1772-1778.
    [45] Gaponik, N.; Talapin, D. V.; Rogach, A. L., et al. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106(29): 7177-7185.
    [46] Zhang, H.; Wang, L. P.; Xiong, H. M., et al. Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv. Mater. 2003, 15(20): 1712-1715.
    [47] Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281(5385): 2016-2018.
    [48] Dabbousi, B. O.; RodriguezViejo, J.; Mikulec, F. V., et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101(46): 9463-9475.
    [49] Li, L.; Qian, H. F.; Ren, J. C. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun. 2005, (4): 528-530.
    [50] Bruchez, M.; Moronne, M.; Gin, P., et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281(5385): 2013-2016.
    [51] Wu, X. Y.; Liu, H. J.; Liu, J. Q., et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21(1): 41-46.
    [52] Gao, X. H.; Cui, Y. Y.; Levenson, R. M., et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22(8): 969-976.
    [53] Elghanian, R.; Storhoff, J. J.; Mucic, R. C., et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277(5329): 1078-1081.
    [54] Storhoff, J. J.; Elghanian, R.; Mucic, R. C., et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120(9): 1959-1964.
    [55] Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S., et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312(5776): 1027-1030.
    [56] Schultz, S.; Smith, D. R.; Mock, J. J., et al. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A. 2000, 97(3): 996-1001.
    [57] Sonnichsen, C.; Reinhard, B. M.; Liphardt, J., et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23(6): 741-745.
    [58] Sokolov, K.; Follen, M.; Aaron, J., et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003, 63(9): 1999-2004.
    [59] El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5(5): 829-834.
    [60] Huang, X. H.; El-Sayed, I. H.; Qian, W., et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128(6): 2115-2120.
    [61] Yguerabide, J.; Yguerabide, E. E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - I. Theory. Anal.Biochem. 1998, 262(2): 137-156.
    [62] Yguerabide, J.; Yguerabide, E. E. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J. Cell Biochem. 2001, 37: 71-81.
    [63] Orendorff, C. J.; Sau, T. K.; Murphy, C. J. Shape-dependent plasmon-resonant gold nanoparticles. Small 2006, 2(5): 636-639.
    [64] Hillenbrand, R.; Keilmann, F. Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy. Appl. Phys. B 2001, 73(3): 239-243.
    [65] Sheetz, M. P.; Turney, S.; Qian, H., et al. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 1989, 340(6231): 284-288.
    [66] Boyer, D.; Tamarat, P.; Maali, A., et al. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 2002, 297(5584): 1160-1163.
    [67] Cognet, L.; Tardin, C.; Boyer, D., et al. Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(20): 11350-11355.
    [68] Lasne, D.; Blab, G. A.; Berciaud, S., et al. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys. J. 2006, 91(12): 4598-4604.
    [69] Taylor, J. R.; Fang, M. M.; Nie, S. M. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem. 2000, 72(9): 1979-1986.
    [70] Santra, S.; Zhang, P.; Wang, K. M., et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 2001, 73(20): 4988-4993.
    [71] Bagwe, R. P.; Yang, C. Y.; Hilliard, L. R., et al. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir. 2004, 20(19): 8336-8342.
    [72] Zhao, X. J.; Bagwe, R. P.; Tan, W. H. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv. Mater. 2004, 16(2): 173-176.
    [73] Burmeister, J. S.; Olivier, L. A.; Reichert, W. M., et al. Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials. Biomaterials 1998, 19(4-5): 307-325.
    [74] Toomre, D.; Manstein, D. J. Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol. 2001, 11(7): 298-303.
    [75] Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2001, 2(11): 764-774.
    [76] Wazawa, T.; Ueda, M. Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv. Biochem. Eng. Biotechnol. 2005, 95: 77-106.
    [77] Stock, K.; Sailer, R.; Strauss, W. S. L., et al. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device. J. Microsc. 2003, 211: 19-29.
    [78] Saito, K.; Tokunaga, M.; Iwane, A. H., et al. Dual-colour microscopy of single fluorophores bound to myosin interacting with fluorescently labelled actin using anti-Stokes fluorescence. J. Microsc. 1997, 188: 255-263.
    [79] Schapper, F.; Goncalves, J. T.; Oheim, M. Fluorescence imaging with two-photon evanescent wave excitation. Eur. Biophys. J. 2003, 32(7): 635-643.
    [80] Schneckenburger, H.; Stock, K.; Lyttek, M., et al. Fluorescence lifetime imaging (FLIM) of rhodamine 123 in living cells. Photochem. Photobiol. Sci. 2004, 3(1): 127-131.
    [81] Vale, R. D.; Funatsu, T.; Pierce, D. W., et al. Direct observation of single kinesin molecules moving along microtubules. Nature 1996, 380(6573): 451-453.
    [82] Harada, Y.; Funatsu, T.; Murakami, K., et al. Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys. J. 1999, 76(2): 709-715.
    [83] Okada, Y.; Hirokawa, N. A processive single-headed motor: Kinesin superfamily protein KIF1A. Science 1999, 283(5405): 1152-1157.
    [84] Sakamoto, T.; Amitani, I.; Yokota, E., et al. Direct observation of processive movement by individual myosin V molecules. Biochem. Biophys. Res. Commun. 2000, 272(2): 586-590.
    [85] Inoue, Y.; Iwane, A. H.; Miyai, T., et al. Motility of single one-headed kinesin molecules along microtubules. Biophys. J. 2001, 81(5): 2838-2850.
    [86] Nishikawa, S.; Homma, K.; Komori, Y., et al. Class VI myosin moves processively along actin filaments backward with large steps. Biochem. Biophys. Res. Commun. 2002, 290(1): 311-317.
    [87] Sako, Y.; Minoghchi, S.; Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2000, 2(3): 168-172.
    [88] Sako, Y.; Hibino, K.; Miyauchi, T., et al. Single-Molecule Imaging of Signaling Molecules in Living Cells. Single Mol. 2000, 1(2): 159-163.
    [89] Iino, R.; Koyama, I.; Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 2001, 80(6): 2667-2677.
    [90] Mashanov, G. I.; Tacon, D.; Knight, A. E., et al. Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 2003, 29(2): 142-152.
    [91] Hibino, K.; Watanabe, T. M.; Kozuka, J., et al. Single- and multiple-molecule dynamics of the signaling from H-Ras to cRaf-1 visualized on the plasma membrane of living cells. Chemphyschem 2003, 4(7): 748-753.
    [92] Yamasaki, R.; Hoshino, M.; Wazawa, T., et al. Single molecular observation of the interaction of GroEL with substrate proteins. J. Mol. Biol. 1999, 292(5): 965-972.
    [93] Taguchi, H.; Ueno, T.; Tadakuma, H., et al. Single-molecule observation of protein-protein interactions in the chaperonin system. Nat. Biotechnol. 2001, 19(9): 861-865.
    [94] Kaseda, K.; Yokota, H.; Ishii, Y., et al. Single-molecule imaging of interaction between dextran and glucosyltransferase from Streptococcus sobrinus. J. Bacteriol. 2000, 182(4): 1162-1166.
    [95] Yokota, H.; Kaseda, K.; Matsuura, H., et al. Single-molecule imaging of the dynamic interactions between macromolecules. J. Nanosci. Nanotechnol. 2004, 4(6): 616-621.
    [96] Zhuang, X. W.; Kim, H.; Pereira, M. J. B., et al. Correlating structural dynamics and function in single ribozyme molecules. Science 2002, 296(5572): 1473-1476.
    [97] Yao, G.; Fang, X. H.; Yokota, H., et al. Monitoring molecular beacon DNA probe hybridization at the single-molecule level. Chem.-Eur. J. 2003, 9(22): 5686-5692.
    [98] Wazawa, T.; Ishii, Y.; Funatsu, T., et al. Spectral fluctuation of a single fluorophore conjugated to aprotein molecule. Biophys. J. 2000, 78(3): 1561-1569.
    [99] Suzuki, Y.; Tani, T.; Sutoh, K., et al. Imaging of the fluorescence spectrum of a single fluorescent molecule by prism-based spectroscopy. Febs. Lett. 2002, 512(1-3): 235-239.
    [100] Dickson, R. M.; Cubitt, A. B.; Tsien, R. Y., et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 1997, 388(6640): 355-358.
    [101] Moerner, W. E.; Peterman, E. J. G.; Brasselet, S., et al. Optical methods for exploring dynamics of single copies of green fluorescent protein. Cytometry 1999, 36(3): 232-238.
    [102] Li, H. W.; Yeung, E. S. Single-molecule dynamics of conformational changes in flavin adenine dinucleotide. J. Photochem. Photobiol. A-Chem. 2005, 172(1): 73-79.
    [103] Ma, Y. F.; Shortreed, M. R.; Yeung, E. S. High-throughput single-molecule spectroscopy in free solution. Anal. Chem. 2000, 72(19): 4640-4645.
    [104] Peterman, E. J. G.; Sosa, H.; Goldstein, L. S. B., et al. Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules. Biophys. J. 2001, 81(5): 2851-2863.
    [105] Sosa, H.; Peterman, E. J. G.; Moerner, W. E., et al. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Biol. 2001, 8(6): 540-544.
    [106] Tokunaga, M.; Kitamura, K.; Saito, K., et al. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 1997, 235(1): 47-53.
    [107] Oiwa, K.; Eccleston, J. F.; Anson, M., et al. Comparative single-molecule and ensemble myosin enzymology: Sulfoindocyanine ATP and ADP derivatives. Biophys. J. 2000, 78(6): 3048-3071.
    [108] Ishijima, A.; Kojima, H.; Funatsu, T., et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 1998, 92(2): 161-171.
    [109] Lu, H. P.; Xun, L. Y.; Xie, X. S. Single-molecule enzymatic dynamics. Science 1998, 282(5395):1877-1882.
    [110] Xie, S. N. Single-molecule approach to enzymology. Single Mol. 2001, 2(4): 229-236.
    [111] Li, H. W.; Yeung, E. S. Direct observation of anomalous single-molecule enzyme kinetics. Anal. Chem. 2005, 77(14): 4374-4377.
    [112] Gajraj, A.; Ofoli, R. Y. Quantitative technique for investigating macromolecular adsorption and interactions at the liquid-liquid interface. Langmuir. 2000, 16(9): 4279-4285.
    [113] Kang, S. H.; Shortreed, M. R.; Yeung, E. S. Real-time dynamics of single-DNA molecules undergoing adsorption and desorption at liquid-solid interfaces. Anal. Chem. 2001, 73(6): 1091-1099.
    [114] Ide, T.; Yanagida, T. An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. Biochem. Biophys. Res. Commun. 1999, 265(2): 595-599.
    [115] Ide, T.; Takeuchi, Y.; Aoki, T., et al. Simultaneous optical and electrical recording of a single ion-channel. Jpn. J. Physiol. 2002, 52(5): 429-434.
    [116] Ide, T.; Takeuchi, Y.; Yanagida, T. Development of an experimental apparatus for simultaneous observation of optical and electrical signals from single ion channels. Single Mol. 2002, 3(1): 33-42.
    [117] Demuro, A.; Parker, I. Imaging the activity and localization of single voltage-gated Ca2+ channels by total internal reflection fluorescence microscopy. Biophys. J. 2004, 86(5): 3250-3259.
    [118] Demuro, A.; Parker, I. Imaging single-channel calcium microdomains by total internal reflection microscopy. Biol. Res. 2004, 37(4): 675-679.
    [119] Demuro, A.; Parker, I. Optical single-channel recording: imaging Ca2+ flux through individual ion channels with high temporal and spatial resolution. J. Biomed. Opt. 2005, 10(1): 011002-001008.
    [120] Furukawa, Y.; Ban, T.; Hamada, D., et al. Electron transfer reaction in a single protein molecule observed by total internal reflection fluorescence microscopy. J. Am. Chem. Soc. 2005, 127(7): 2098-2103.
    [121] Shinohara, K.; Yamaguchi, S.; Wazawa, T. First observation of spectral fluctuation in a single molecule of a rigid-rod pi-conjugated polymer. Polymer 2001, 42(18): 7915-7918.
    [122] Shinohara, K.; Kato, G.; Minami, H., et al. Single molecule of a pi-conjugated polymer slowly twinkles in solution at room temperature. Polymer 2001, 42(20): 8483-8487.
    [123] Kobitski, A. Y.; Heyes, C. D.; Nienhaus, G. U. Total internal reflection fluorescence microscopy - a powerful tool to study single quantum dots. Appl. Surf. Sci. 2004, 234(1-4): 86-92.
    [124] Kuhn, J. R.; Pollard, T. D. Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys. J. 2005, 88(2): 1387-1402.
    [125] Boldt, F. M.; Heinze, J.; Diez, M., et al. Real-time pH microscopy down to the molecular level by combined scanning electrochemical microscopy/single-molecule fluorescence spectroscopy. Anal. Chem. 2004, 76(13): 3473-3481.
    [1] Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281(5385): 2016-2018.
    [2] Bruchez, M.; Moronne, M.; Gin, P., et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281(5385): 2013-2016.
    [3] Dubertret, B.; Skourides, P.; Norris, D. J., et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298(5599): 1759-1762.
    [4] Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22(1): 47-52.
    [5] Michalet, X.; Pinaud, F. F.; Bentolila, L. A., et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307(5709): 538-544.
    [6] Schlamp, M. C.; Peng, X. G.; Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 1997, 82(11): 5837-5842.
    [7] Kiraz, A.; Atature, M.; Imamoglu, A. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Phys. Rev. A 2004, 69(3): 032305.
    [8] Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G., et al. Fluorescence intermittency in single cadmiumselenide nanocrystals. Nature (London) 1996, 383(6603): 802-804.
    [9] Empedocles, S. A.; Norris, D. J.; Bawendi, M. G. Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. Phys. Rev. Lett. 1996, 77(18): 3873-3876.
    [10] Fisher, B. R.; Eisler, H. J.; Stott, N. E., et al. Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes. J. Phys. Chem. B 2004, 108(1): 143-148.
    [11] Ebenstein, Y.; Mokari, T.; Banin, U. Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl. Phys. Lett. 2002, 80(21): 4033-4035.
    [12] Kuno, M.; Fromm, D. P.; Gallagher, A., et al. Fluorescence intermittency in single InP quantum dots. Nano Lett. 2001, 1(10): 557-564.
    [13] Sychugov, I.; Juhasz, R.; Linnros, J., et al. Luminescence blinking of a Si quantum dot in a SiO2 shell. Phys. Rev. B 2005, 71(11): 115331.
    [14] Cichos, F.; Martin, J.; von Borczyskowski, C. Emission intermittency in silicon nanocrystals. Phys. Rev. B 2004, 70(11): 115314.
    [15] Peterson, J. J.; Krauss, T. D. Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett. 2006, 6(3): 510-514.
    [16] Kuno, M.; Fromm, D. P.; Hamann, H. F., et al. Nonexponential "blinking" kinetics of single CdSe quantum dots: A universal power law behavior. J. Chem. Phys. 2000, 112(7): 3117-3120.
    [17] Kuno, M.; Fromm, D. P.; Hamann, H. F., et al. "On"/"off" fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 2001, 115(2): 1028-1040.
    [18] Shimizu, K. T.; Neuhauser, R. G.; Leatherdale, C. A., et al. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B 2001, 63(20): 205316.
    [19] Kuno, M.; Fromm, D. P.; Johnson, S. T., et al. Modeling distributed kinetics in isolated semiconductor quantum dots. Phys. Rev. B 2003, 67(12): 125304.
    [20] Dabbousi, B. O.; RodriguezViejo, J.; Mikulec, F. V., et al. (CdSe)ZnS core-shell quantum dots:Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101(46): 9463-9475.
    [21] Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124(9): 2049-2055.
    [22] Biju, V.; Makita, Y.; Nagase, T., et al. Subsecond luminescence intensity fluctuations of single CdSe quantum dots. J. Phys. Chem. B 2005, 109(30): 14350-14355.
    [23] Gomez, D. E.; van Embden, J.; Jasieniak, J., et al. Blinking and surface chemistry of single CdSe nanocrystals. Small 2006, 2(2): 204-208.
    [24] Hohng, S.; Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 2004, 126(5): 1324-1325.
    [25] Biebricher, A.; Sauer, M.; Tinnefeld, P. Radiative and nonradiative rate fluctuations of single colloidal semiconductor nanocrystals. J. Phys. Chem. B 2006, 110(11): 5174-5178.
    [26] Hammer, N. I.; Early, K. T.; Sill, K., et al. Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures. J. Phys. Chem. B 2006, 110(29): 14167-14171.
    [27] Gao, M. Y.; Kirstein, S.; Mohwald, H., et al. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 1998, 102(43): 8360-8363.
    [28] Gaponik, N.; Talapin, D. V.; Rogach, A. L., et al. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106(29): 7177-7185.
    [29] Zhang, H.; Zhou, Z.; Yang, B., et al. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 2003, 107(1): 8-13.
    [30] Liang, L.; Qian, H. F.; Ren, J. C. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun. 2005, (4): 528-530.
    [31] Li, L.; Qian, H. F.; Fang, N. H., et al. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursorsolutions. J. Lumines. 2006, 116(1-2): 59-66.
    [32] Weng, J. F.; Song, X. T.; Li, L. A., et al. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta 2006, 70(2): 397-402.
    [33] Li, Z. H.; Wang, K. M.; Tan, W. H., et al. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal. Biochem. 2006, 354(2): 169-174.
    [34] Lee, J.; Govorov, A. O.; Kotov, N. A. Bioconjugated superstructures of CdTe nanowires and nanoparticles: Multistep cascade forster resonance energy transfer and energy channeling. Nano Lett. 2005, 5(10): 2063-2069.
    [35] Guldi, D. M.; Rahman, G. M. A.; Sgobba, V., et al. CNT-CdTe versatile donor-acceptor nanohybrids. J. Am. Chem. Soc. 2006, 128(7): 2315-2323.
    [36] Wolcott, A.; Gerion, D.; Visconte, M., et al. Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J. Phys. Chem. B 2006, 110(11): 5779-5789.
    [37] Klayman, D. L. Reaction of Selenium with Sodium Borohydride in Protic Solvents. a Facile Method for the Introduction of Selenium into Organic Molecules. J. Am. Chem. Soc. 1973, 95(1): 197-199.
    [38] Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297(5579): 237-240.
    [39] Qian, H. F.; Dong, C. Q.; Weng, J. F., et al. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals. Small 2006, 2(6): 747-751.
    [40] Crosby, G. A.; Demas, J. N. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 1971, 75(8): 991-1024.
    [41] Kobitski, A. Y.; Heyes, C. D.; Nienhaus, G. U. Total internal reflection fluorescence microscopy - a powerful tool to study single quantum dots. Appl. Surf. Sci. 2004, 234(1-4): 86-92.
    [42] Banin, U.; Bruchez, M.; Alivisatos, A. P., et al. Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. J. Chem. Phys. 1999, 110(2): 1195-1201.
    [43] Hu, G. Y.; Liu, W. B.; Mendelsohn, J., et al. Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J. Natl. Cancer Inst. 1997, 89(17): 1271-1276.
    [44] Hemminki, A.; Dmitriev, I.; Liu, B., et al. Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 2001, 61(17): 6377-6381.
    [1] Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281(5385): 2016-2018.
    [2] Bruchez, M.; Moronne, M.; Gin, P., et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281(5385): 2013-2016.
    [3] Michalet, X.; Pinaud, F. F.; Bentolila, L. A., et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307(5709): 538-544.
    [4] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4(1): 11-18.
    [5] Kirchner, C.; Liedl, T.; Kudera, S., et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005, 5(2): 331-338.
    [6] Storhoff, J. J.; Elghanian, R.; Mucic, R. C., et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc.1998, 120(9): 1959-1964.
    [7] Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 2000, 289(5485): 1757-1760.
    [8] Han, M. S.; Lytton-Jean, A. K. R.; Oh, B. K., et al. Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. Angew. Chem. Int. Edit. 2006, 45(11): 1807-1810.
    [9] Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S., et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312(5776): 1027-1030.
    [10] Medley, C. D.; Smith, J. E.; Tang, Z., et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008, 80(4): 1067-1072.
    [11] Shi, X. G.; Wang, S. H.; Meshinchi, S., et al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small 2007, 3(7): 1245-1252.
    [12] Tong, L.; Zhao, Y.; Huff, T. B., et al. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007, 19(20): 3136-3141.
    [13] Lee, K. J.; Nallathamby, P. D.; Browning, L. M., et al. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007, 1(2): 133-143.
    [14] Curry, A. C.; Crow, M.; Wax, A. Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles. J. Biomed. Opt. 2008, 13(1): 014022.
    [15] Schultz, S.; Smith, D. R.; Mock, J. J., et al. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A. 2000, 97(3): 996-1001.
    [16] Sonnichsen, C.; Reinhard, B. M.; Liphardt, J., et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23(6): 741-745.
    [17] Paciotti, G. F.; Myer, L.; Weinreich, D., et al. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004, 11(3): 169-183.
    [18] Kusumi, A.; Sako, Y.; Yamamoto, M. Confined lateral diffusion of membrane receptors as studiedby single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 1993, 65(5): 2021-2040.
    [19] Meier, J.; Vannier, C.; Serge, A., et al. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat. Neurosci. 2001, 4(3): 253-260.
    [20] Borgdorff, A. J.; Choquet, D. Regulation of AMPA receptor lateral movements. Nature 2002, 417(6889): 649-653.
    [21] Sokolov, K.; Follen, M.; Aaron, J., et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003, 63(9): 1999-2004.
    [22] El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5(5): 829-834.
    [23] Huang, X. H.; El-Sayed, I. H.; Qian, W., et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128(6): 2115-2120.
    [24] Kumar, S.; Harrison, N.; Richards-Kortum, R., et al. Plasmonic nanosensors for imaging intracellular biomarkers in live cells. Nano Lett. 2007, 7(5): 1338-1343.
    [25] Huang, C. C.; Yang, Z.; Lee, K. H., et al. Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II). Angew. Chem. Int. Edit. 2007, 46(36): 6824-6828.
    [26] Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127(14): 5261-5270.
    [27] Negishi, Y.; Tsukuda, T. Visible photoluminescence from nearly monodispersed Au-12 clusters protected by meso-2,3-dimercaptosuccinic acid. Chem. Phys. Lett. 2004, 383(1-2): 161-165.
    [28] Huang, T.; Murray, R. W. Visible luminescence of water-soluble monolayer- protected gold clusters. J. Phys. Chem. B 2001, 105(50): 12498-12502.
    [29] Schaaff, T. G.; Whetten, R. L. Giant gold-glutathione cluster compounds: Intense optical activity inmetal-based transitions. J. Phys. Chem. B 2000, 104(12): 2630-2641.
    [30] Zheng, J.; Zhang, C. W.; Dickson, R. M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93(7): 077402.
    [31] Zheng, J.; Petty, J. T.; Dickson, R. M. High quantum yield blue emission from water-soluble Au-8 nanodots. J. Am. Chem. Soc. 2003, 125(26): 7780-7781.
    [32] Tran, M. L.; Zvyagin, A. V.; Plakhotnik, T. Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters. Chem. Commun. 2006(22): 2400-2401.
    [33] Shi, X. Y.; Ganser, T. R.; Sun, K., et al. Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology 2006, 17(4): 1072-1078.
    [34] Duan, H. W.; Nie, S. M. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129(9): 2412-2413.
    [35] Geddes, C. D.; Parfenov, A.; Gryczynski, I., et al. Luminescent blinking of gold nanoparticles. Chem. Phys. Lett. 2003, 380(3-4): 269-272.
    [36] Geddes, C. D.; Parfenov, A.; Lakowicz, J. R. Luminescent Blinking from Noble-Metal Nanostructures: New Probes for Localization and Imaging. J. Fluoresc. 2003, 13(4): 297-299.
    [37] Geddes, C. D.; Gryczynski, I.; Parfenov, A., et al. Luminescent blinking from silver, gold and copper nanostructures: A new class of probes for imaging and localization. Proc. of SPIE 2004, 5329 276-286.
    [38] Dong, C. Q.; Bi, R.; Qian, H. F., et al. Coupling fluorescence correlation spectroscopy with microchip electrophoresis to determine the effective surface charge of water-soluble quantum dots. Small 2006, 2(4): 534-538.
    [39] Dong, C. Q.; Qian, H. F.; Fang, N. H., et al. Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J. Phys. Chem. B 2006, 110(23): 11069-11075.
    [40] Dong, C. Q.; Qian, H. H.; Fang, N. H., et al. On-line investigation of laser-induced aggregationand photoactivation of CdTe quantum dots by fluorescence correlation spectroscopy. J. Phys. Chem. C 2007, 111(22): 7918-7923.
    [41] Hu, G. Y.; Liu, W. B.; Mendelsohn, J., et al. Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J. Natl. Cancer Inst. 1997, 89(17): 1271-1276.
    [42] Hemminki, A.; Dmitriev, I.; Liu, B., et al. Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 2001, 61(17): 6377-6381.
    [43] Pfeiffer, D.; Stellwag, B.; Pfeiffer, A., et al. Clinical implications of the epidermal growth factor receptor in the squamous cell carcinoma of the uterine cervix. Gynecol. Oncol. 1989, 33(2): 146-150.
    [44] Todd, R.; Wong, D. T. W. Epidermal growth factor receptor (EGFR) biology and human oral cancer. Histol. Histopathol. 1999, 14(2): 491-500.
    [1] Axelrod, D.; Hellen, E. H.; Fulbright, R. M. Total Internal Reflection Fluorescence. In: Lakowicz, J. R. (ed.), Topics in Fluorescence Spectroscopy, Biochemical Applications, New York, Plenum Press 1992, Vol. 3, pp289-343.
    [2] Inoue, S. Video microscopy, Plenum Press, New York 1986.
    [3] Pawley, J. B. Handbook of Biological Confocal Microscopy, 2nd Plenum Press, New York 1995.
    [4] Park, J. S.; Choi, C. K.; Kihm, K. D. Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp. Fluids. 2004, 37(1): 105-119.
    [5] Stelzer, E. H. K.; Lindek, S. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt. Commun. 1994, 111(5-6): 536-547.
    [6] Denk, W.; Strickler, J. H.; Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248(4951): 73-76.
    [7] Moerner, W. E.; Orrit, M. Illuminating single molecules in condensed matter. Science 1999, 283(5408): 1670-1676.
    [8] Li, X.; Ma, H.; Nie, L., et al. A novel fluorescent probe for selective labeling of histidine. Anal. Chim. Acta 2004, 515(2): 255-260.
    [9] Bao, Z.; Wang, S.; Shi, W., et al. Selective modification of Trp19 inβ-lactoglobulin by a new diazo fluorescence probe. J. Proteome Res. 2007, 6(9): 3835-3841.
    [10] Bruchez, M.; Moronne, M.; Gin, P., et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281(5385): 2013-2016.
    [11] Cui, R.; Pan, H. C.; Zhu, J. J., et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal. Chem. 2007, 79(22): 8494-8501.
    [12] Dubertret, B.; Skourides, P.; Norris, D. J., et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298(5599): 1759-1762.
    [13] Dahan, M.; Levi, S.; Luccardini, C., et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003, 302(5644): 442-445.
    [14] Michalet, X.; Pinaud, F. F.; Bentolila, L. A., et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307(5709): 538-544.
    [15] Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G., et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature (London) 1996, 383(6603): 802-804.
    [16] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4(1): 11-18.
    [17] Kirchner, C.; Liedl, T.; Kudera, S., et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005, 5(2): 331-338.
    [18] Yguerabide, J.; Yguerabide, E. E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - I. Theory. Anal. Biochem. 1998, 262(2): 137-156.
    [19] Yguerabide, J.; Yguerabide, E. E. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J. Cell Biochem. 2001, 37: 71-81.
    [20] Storhoff, J. J.; Elghanian, R.; Mucic, R. C., et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120(9): 1959-1964.
    [21] Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 2000, 289(5485): 1757-1760.
    [22] Yan, W.; Feng, X.; Chen, X., et al. A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material. Biosens. Bioelectron. 2008, 23(7): 925-931.
    [23] Yao, H.; Yi, C.; Tzang, C. H., et al. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures. Nanotechnology 2007, 18(1): 015102.
    [24] Cao, Y. C.; Jin, R. C.; Thaxton, S., et al. A two-color-change, nanoparticle-based method for DNA detection. Talanta 2005, 67(3): 449-455.
    [25] Jiang, Z. L.; Huang, W. X.; Liang, A. H., et al. A rapid and sensitive immunonanogold resonance scattering spectral probe for complement 3. Talanta 2007, 73(5): 926-931.
    [26] Hou, M.; Sun, S. J.; Jiang, Z. L. A new and selective and sensitive nanogold-labeled immunoresoance scattering spectral assay for trace prealbumin. Talanta 2007, 72(2): 463-467.
    [27] Xu, X.; Han, M. S.; Mirkin, C. A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angew. Chem. Int. Ed. 2007, 46(19): 3468-3470.
    [28] Sheetz, M. P.; Turney, S.; Qian, H., et al. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 1989, 340(6231): 284-288.
    [29] Kusumi, A.; Sako, Y.; Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 1993, 65(5): 2021-2040.
    [30] Ritchie, K.; Shan, X. Y.; Kondo, J., et al. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 2005, 88(3): 2266-2277.
    [31] Kusumi, A.; Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 1996, 8(4): 566-574.
    [32] Borgdorff, A. J.; Choquet, D. Regulation of AMPA receptor lateral movements. Nature 2002, 417(6889): 649-653.
    [33] Sonnichsen, C.; Alivisatos, A. P. Gold nanorods as novel nonbleaching plasmon-based orientationsensors for polarized single-particle microscopy. Nano Lett. 2005, 5(2): 301-304.
    [34] Jacobsen, V.; Stoller, P.; Brunner, C., et al. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 2006, 14(1): 405-414.
    [35] Lasne, D.; Blab, G. A.; Berciaud, S., et al. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys. J. 2006, 91(12): 4598-4604.
    [36] Sonnichsen, C.; Geier, S.; Hecker, N. E., et al. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 2000, 77(19): 2949-2951.
    [37] Ewers, H.; Smith, A. E.; Sbalzarini, I. F., et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc. Natl. Acad. Sci. U.S.A. 2005, 102(42): 15110-15115.
    [38] Goulian, M.; Simon, S. M. Tracking single proteins within cells. Biophys. J. 2000, 79(4): 2188-2198.
    [39] Hu, G. Y.; Liu, W. B.; Mendelsohn, J., et al. Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J. Natl. Cancer Inst. 1997, 89(17): 1271-1276.
    [40] Hemminki, A.; Dmitriev, I.; Liu, B., et al. Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 2001, 61(17): 6377-6381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700