用户名: 密码: 验证码:
晶体硅太阳能电池梯度减反射膜及硅锭中晶体缺陷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多晶硅太阳能电池的转换效率虽然稍低于单晶硅太阳能电池,但前者因制备工艺较简单、成本较低而更受市场的欢迎。目前,如何提高硅基太阳能电池的转换效率已成为光伏领域的研究热点之一。提高硅基太阳能电池的效率主要有两种途径:多晶硅硅锭制备工艺的改进和电池制备工艺的改进。
     多晶硅铸锭工艺主要有三种:浇铸法、直接熔融定向凝固法(布里奇曼法)和电磁铸造法(EMC);直接熔融定向凝固法是目前主流的生长工艺,该方法可以生长出取向性较好的柱状硅锭。为了得到尺寸更大、质量更高的多晶硅铸锭,多晶硅锭的生产工艺仍然需要进一步完善;通过计算机对多晶硅凝固进行数值模拟是一种经济有效的方法,大量实验表明模拟结果具有较好的可靠性。本论文采用CGSIM软件对多晶硅铸锭炉内的温度场、温度梯度和硅熔体中的流场进行数值模拟,得到了它们在不同长晶高度(隔热笼开度)和长晶速度时的分布图,为解释多晶硅硅锭不同位置出现微晶的机理提供了一定的实验依据,为今后进一步优化生产多晶硅锭的工艺提供参考依据。
     定向凝固多晶硅中存在较高密度的晶体缺陷(位错、晶界、微晶),这些缺陷的存在影响了多晶硅太阳能电池的转换效率。本论文借助光学显微镜通过观察位错的微观形貌来研究定向凝固多晶硅锭中的位错特征,发现了位错分布的高度不均匀性、以及大量的滑移位错。利用扫描电子显微镜(SEM)并结合背散射电子衍射(EBSD)技术观察定向凝固多晶硅样品的表面形貌,对其中的晶界类型、分布、晶粒间取向特征等进行了研究;这些结果有助于理解多晶硅太阳能电池的效率为什么低于单晶硅太阳能电池。本论文也研究了多晶硅锭定向凝固生长过程中微晶的形成,结合硅锭炉中温度场、温度梯度和流场及晶体形核和长大的相关理论解释了微晶形成的机理,并研究了微晶区域的面积百分比对太阳能电池光伏性能的影响行为。
     本论文使用SiHH4和NH3作为反应气体,采用化学气相沉积技术制备了单层和双层氢化氮化硅(SiNx:H)减反射薄膜。通过改变反应气体的流量比来控制SiNx:H薄膜的折射率n值在1.8到3.3之间变化,改变沉积时间来控制双层SiNx:H薄膜中的顶层和底层厚度;通过对多晶硅太阳能电池双层SiNx:H减反射薄膜进行优化,得到了顶层和底层SiNx:H薄膜的最佳参数:顶层折射率n1=1.9、底层折射率n2=2.3(λ=615nm);顶层和底层的厚度分别为d1=60nm和d2=23nm。优化后的双层SiNx:H太阳能电池比单层SiNx:H具有更好的光伏性能,这包括更高的转换效率η更高的开路电压Voc和更大的短路电流密度Jsc。
     为进一步降低太阳能电池的光反射,在SiNx:H减反射膜上生长了氧化物纳米结构,对这种纳米结构进行设计和模拟计算。考虑到ZnO在各种基体上能较容易地生长成纳米阵列,其纳米晶的形貌容易控制,本论文选择在SiNx:H减反射膜上生长ZnO纳米结构来进一步降低太阳能电池的反射率。实验中,在SiNx:H减反射膜上用水浴法生长ZnO纳米结构阵列膜层,形成梯度减反射薄膜,从而进一步降低太阳能电池的光反射率;采用严格耦合波分析方法(rigorous coupled-wave analysis,简称为RCWA)对此梯度膜层进行设计;研究了水浴温度、时间和溶液溶度对ZnO纳米柱生长特征及其性能的影响;得到了ZnO纳米柱的直径、长度和阵列之间的距离不同与对光的反射率之间的关系:用有限差分时域(finite-difference time-domain, FDTD)计算方法分析了这种纳米结构对降低电池光反射率的机制。
     为了获得到ZnO纳米棒的形状与对光的反射率之间的关系,论文采用水浴法在SiNx:H层上成功地制备了掺铒的ZnO纳米须阵列;研究了生长时间对掺铒的ZnO纳米须阵列的微结构的影响,结果发现掺铒的ZnO纳米须阵列的长度和直径随生长时间的延长而增大。当生长时间增加到90和120min,掺铒的ZnO纳米须阵列的纳米须底部相互连接在一起,其顶部由针状变为平坦;使其减反射性能变差。60min生长的掺铒的ZnO纳米须阵列呈现出最好的减反射性能和光伏性能,其转换效率由15.64%增加到17.41%。在水浴法制备掺铒ZnO的过程中加入氨水,可得到抛物体纳米结构阵列膜,集成了此膜的电池在宽波长、宽角度下反射率仅为0.3%,光电转换效率可相对提高20%。通过光学模型的建立,论文对该实验结果进行了合理解释。
In spite of the relatively lower conversion efficiency for polycrystalline silicon (polysilicon) solar cells than monocrystalline silicon (monosilicon) solar cells, the fomer dominates the commercial market because of their lower fabrication cost. One of the most intensive reasearch tasks in the photovoltaic community is to further enhance the conversion efficiency of silicon-based solar cells. In general, there are two technical approaches to enhance the conversion efficiency of silicon-based solar cells:the solidification process optimization for polycrystalline silicon ingots, and the process improvement for fabricating solar cells.
     Three kinds of method have been used for preparing polysilicon ingots:casting method, the direct melt directional solidification method (Bridgman method) and electromagnetic casting (EMC). Direct melting directional solidification method is the mainstream of growth process, and this method can grow silicon ingots with preferable columnar orientation. It is still necessary to advance the solidification process in order to grow larger polysilicon ingots with better quality. Numerical simulations by computer for polycrystalline solidification is an economic and effective method, and many research results have shown that computer simulation work can be reliableto a large extent. This thesis adopts the CGSim software for polysilicon ingot furnace temperature field, temperature gradient and a numerical simulation of the flow field in the silicon melt in different crystal got their highly (heat insulation of the opening of the cage) and long crystal speed distribution, and intends to explain the different location of the polycrystalline silicon ingot microcrystalline provides experiment basis for the mechanism of further optimization for the future provided a reference for polycrystalline silicon ingot production process.
     High density of crystal defects existing in the directional solidification of polysilicon (dislocations, grain boundaries, microcrystalline), the existence of these defects influence the polycrystalline silicon solar cell conversion efficiency. This experiment we used an optical microscope to observe dislocations in the directional solidification was studied by the optical topography of dislocation characteristics of polycrystalline silicon ingot, before we found some dislocation characteristics are not reported in the literature, also observe the directional solidification of polysilicon in the presence of large amounts of slip dislocation, and this has not been reported before in the literature. We using scanning electronic microscope (SEM) and electron back scattering diffraction test results with electron backscattered diffraction (EBSD) technique to observe the surface morphology of directional solidification polycrystalline samples, and draw some crystallography data (type and number of grain boundary, orientation of intergranular etc); All of these will help us understand why the efficiency of polycrystalline silicon solar cell is lower than monocrystalline silicon solar cells. We also reported the growth of the polycrystalline silicon ingot of directional solidification process of the formation of the crystallite, combined with silicon ingot furnace temperature field, flow field and temperature gradient, and crystal nucleation and growth of related theory to explain the mechanism of formation of the crystallite. And studied the microcrystalline area percentage of effect on the performance of photovoltaic solar cells.
     Cell preparation technology improvements include:the surface of the wafer velvet, minus reflection film plating and grow various nanostructures on reducing reflector oxide; These can realize minus reflection of light, improve the efficiency of silicon-based solar cells. This experiment using SiH4and NH3as the reaction gas, chemical vapor deposition is used to the preparation of single and double hydrogenated silicon nitride (SiN:H) minus reflection film. By changing the reaction rate ratios of airflow control SiN:H film refractive index n value between1.8to3.3change, change the deposition time to control the double Nx:H film thickness of the top and bottom; We for polycrystalline silicon solar cell double SiN:H minus reflection film is optimized, the optimization results were obtained:the top refractive index n1=1.9, at the bottom of the n2=2.3(lambda=615nm); The thickness of the top and the bottom of the best=60nm d1and d2respectively=23nm. The optimized double SiN:H solar cells than single-layer SiN:H has better photovoltaic performance-higher conversion efficiency eta, the bigger the open circuit voltage Voc and stronger of the short circuit current density Jsc.
     In order to further decrease reflection of light, various nanostructures grown on SiNx:H is needed to designed and simulated. These have minus reflection effect of nanometer structure which has the advantage that can easily to design of the structure, minimize the reflection of light. ZnO nanostructures as reducing reflector has attracted great attention, ZnO on the substrate can easily grow into nanometer array, the morphology of the nanocrystalline easy control; In this experiment we're SiN:H subtraction on the reflector with water bath method to grow ZnO nanostructure arrays film to form a gradient minus reflection film to further reduce the light reflection; Using rigorous coupled wave analysis (rigorous coupled wave analysis, referred to as RCWA) for design of this gradient membrane; Water bath temperature, time and solution solubility was studied on the properties of nanometer column growth and its influence; Got ZnO nanometer column diameter, length and the distance between the array and the relationship between the optical reflectivity. The mechanism to improve the performance of the cell is analyzed using the finite difference time domain (finite-difference time-domain, referred to as FDTD) mothod.
     In order to get the shape of ZnO nanorods and the relationship between the optical reflectivity, we use the water bath method in SiN:H layer was prepared successfully erbium doped ZnO nanoparticle array; To study the growth time of erbium doped ZnO nanoparticle must array, the influence of the microstructure found erbium doped ZnO nanoparticle must array length and diameter increases with growth time. When growth time increased to90and120minutes, erbium-doped ZnO must arrays of nano shall be at the bottom are connected together, the top by needle into a flat. Reducing reflection performance becomes poor.60minutes growth of erbium doped ZnO nanoparticle array must be presented the best minus reflection performance and photovoltaic performance, conversion efficiency increases from15.64%to17.41%. Parabolic morphology of Er-doped ZnO nanostructured arrays coating can be obtained by adding ammonia into reaction solution via hydrothermal method. The reflectance of the solar cells integrated with parabolic nanostructures is only0.1%with broad-wavelength and wide angles, and the photovoltaic conversion efficiency of the cells is relatively increased by20%. The results is explained using the optical model.
引文
[1]RAZYKOV T, FEREKIDES C, MOREL D, et al. Solar photovoltaic electricity:Current status and future prospects [J]. Solar Energy,2011,85(8):1580-1608.
    [2]KIM J, PARK J, HONG J H, et al. Double antireflection coating layer with silicon nitride and silicon oxide for crystalline silicon solar cell [J]. Journal of Electroceramics,2013,30(1-2): 41-45.
    [3]BAHRAMI A, MOHAMMADNEJAD S, JOUYANDEH ABKENAR N, et al. Optimized Single and Double Layer Antireflection Coatings for GaAs Solar Cells [J]. International Journal of Renewable Energy Research (IJRER),2013,3(1):79-83.
    [4]LI M, ZENG L, CHEN Y, et al. Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings [J]. International Journal of Photoenergy,2013,2013:1-8
    [5]ZHAO J, GREEN M A. Optimized antireflection coatings for high-efficiency silicon solar cells [J]. Electron Devices, IEEE Transactions on,1991,38(8):1925-34.
    [6JBOUHAFS D, MOUSSI A, CHIKOUCHE A, et al. Design and simulation of antireflection coating systems for optoelectronic devices:Application to silicon solar cells [J]. Solar energy materials and solar cells,1998,52(1):79-93.
    [7]BODEN S A. Biomimetic nanostructured surfaces for antireflection in photovoltaics [D]; University of Southampton,2009.
    [8]LIEN S-Y, WUU D-S, YEH W-C, et al. Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique [J]. Solar energy materials and solar cells,2006, 90(16):2710-2719.
    [9]VAYSSIERES L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Advanced Materials,2003,15(5):464-466.
    [10]NAGEL H, METZ A, HEZEL R. Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition-a novel antireflection coating technology for photovoltaic modules [J]. Solar energy materials and solar cells,2001,65(1):71-77.
    [11]SCHNELL M, LUDEMANN R, SCHAEFER S. Plasma surface texturization for multicrystalline silicon solar cells; proceedings of the Photovoltaic Specialists Conference, 2000 Conference Record of the Twenty-Eighth IEEE,2000 [C]. IEEE.
    [12]PARM I, KIM K, LIM D, et al. High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application [J]. Solar energy materials and solar cells,2002,74(1):97-105.
    [13]GANGOPADHYAY U, KIM K, MANGALARAJ D, et al. Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells [J]. Applied surface science,2004,230(1):364-370.
    [14]ZHAO J, WANG A, GREEN M A, et al.19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells [J]. Applied Physics Letters, 1998,73(14):1991-1993.
    [15]GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 39) [J]. Progress in photovoltaics:research and applications,2011,20(1):12-20.
    [16]KISHORE R, SINGH S, DAS B. PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells [J]. Solar energy materials and solar cells,1992,26(1): 27-35.
    [17]KOYNOV S, BRANDT M S, STUTZMANN M. Black nonreflecting silicon surfaces for solar cells [J]. Applied Physics Letters,2006,88(20):203107-203110.
    [18]RICHARDS B. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells:a review [J]. Progress in photovoltaics:research and applications,2004,12(4):253-281.
    [19]CHEN Z, ROHATGI A, BELL R, et al. Defect passivation in multicrystalline-Si materials by plasma-enhanced chemical vapor deposition of SiO2/SiN coatings [J]. Applied Physics Letters,1994,65(16):2078-2080.
    [20]JUP M, LAPPSCHIES M, JENSEN L, et al. Laser-induced damage in gradual index layers and Rugate filters; proceedings of the Boulder Damage Symposium:Annual Symposium on Optical Materials for High Power Lasers,2006 [C]. International Society for Optics and Photonics,2006,6403(1):334-336.
    [21]KING D L, BUCK M E. Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells; proceedings of the Photovoltaic Specialists Conference,1991, Conference Record of the Twenty Second IEEE,1991 [C].1991, 1(1):303-308.
    [22]PARRETTA A, SARNO A, TORTORA P, et al. Angle-dependent reflectance measurements on photovoltaic materials and solar cells [J]. Optics Communications,1999,172(1):139-151.
    [23]ABBOTT M, COTTER J. Optical and electrical properties of laser texturing for high-efficiency solar cells [J]. Progress in photovoltaics:research and applications,2006,14(3): 225-235.
    [24]ZHAO J, WANG A, ALTERMATT P, et al. Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss [J]. Applied Physics Letters,1995,66(26):3636-3638.
    [25]MACHIDA T, NAKAJIMA K, TAKEDA Y, et al. Efficiency improvement in polycrystalline silicon solar cell with grooved surface; proceedings of the Photovoltaic Specialists Conference,1991, Conference Record of the Twenty Second IEEE,1991 [C].1991,2(3): 1033-1034.
    [26]STOCKS M, CARR A, BLAKERS A. Texturing of polycrystalline silicon [J]. Solar energy materials and solar cells,1996,40(1):33-42.
    [27]SAI H, FUJII H, KANAMORI Y, et al. Numerical analysis and demonstration of submicron antireflective textures for crystalline silicon solar cells; proceedings of the Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference 2006 [C]. 2006,1(2):1191-1194.
    [28]SUN C-H, MIN W-L, LIMN N C, et al. Templated fabrication of large area subwavelength antireflection gratings on silicon [J]. Applied Physics Letters,2007,91(23):231105-231108.
    [29]BODEN S A, BAGNALL D M. Optimization of moth-eye antireflection schemes for silicon solar cells [J]. Progress in photovoltaics:research and applications,2010,18(3):195-203.
    [30]RUBY D, ZAIDI S, NARAYANAN S, et al. Rie-texturing of multicrystalline silicon solar cells [J]. Solar energy materials and solar cells,2002,74(1):133-137.
    [31]YOO J, PARM I, GANGOPADHYAY U, et al. Black silicon layer formation for application in solar cells [J]. Solar energy materials and solar cells,2006,90(18):3085-3093.
    [32]CLAPHAM P, HUTLEY M. Reduction of lens reflexion by the "Moth Eye" principle [J]. 1973,244(1):281-282.
    [33]STEINBACH I, FRANKE D, KRUMBE W, et al. A virtual crystallization furnace for solar silicon; proceedings of the Photovoltaic Energy Conversion,1994, Conference Record of the Twenty Fourth IEEE Photovoltaic Specialists Conference-1994,1994 IEEE First World Conference 1994 [C].1994,2(2):1270-1273.
    [34]FRANKE D, STEINBACH I, KRUMBE W, et al. Concept for an online material quality control by numerical simulation of a silicon ingot solidification process; proceedings of the Photovoltaic Specialists Conference,1996, Conference Record of the Twenty Fifth IEEE 1996 [C].1996,3(1):545-548.
    [35]刘秋娣,林安中.多晶硅锭凝固过程的影响因素分析及数值模拟[J].有色金属,2003,55(1):15-17.
    [36]CHEN J-C, TENG Y-Y, WUN W-T, et al. Numerical simulation of oxygen transport during the CZ silicon crystal growth process [J]. Journal of Crystal Growth,2011,318(1):318-323.
    [37]TENG Y-Y, CHEN J-C, HUANG B-S, et al. Numerical simulation of impurity transport under the effect of a gas flow guidance device during the growth of multicrystalline silicon ingots by the directional solidification process [J]. Journal of Crystal Growth,2013,385(1):1-8.
    [38]CHEN L, DAI B. Optimization of power consumption on silicon directional solidification system by using numerical simulations [J]. Journal of Crystal Growth,2012,354(1):86-92.
    [39]WU B, CLARK R. Influence of inclusion on nucleation of silicon casting for photovoltaic (PV) application [J]. Journal of Crystal Growth,2011,318(1):200-207.
    [40]陈君,杨德仁,席珍强.铸造多晶硅晶界的EBSD和EB1C研究[J].太阳能学报,2006,27(4):364-368.
    [41]SAMESHIMA T, TSUCHIYA Y, MIYAZAKI N, et al. Impacts of Metal Impurities on Recombination Properties at Small Angle Grain Boundaries in Multicrystalline Silicon for Solar Cells [J]. ECS Transactions,2011,41(4):29-36.
    [42]NORDMARK H, DI SABATINO M, ACCIARRI M, et al. EBIC, EBSD and TEM study of grain boundaries in multicrystalline silicon cast from metallurgical feedstock; proceedings of the Photovoltaic Specialists Conference,2008 PVSC'08 33rd IEEE,2008 [C].2008,1(1): 1-6.
    [43]MACDONALD D, CUEVAS A. Understanding carrier trapping in multicrystalline silicon [J]. Solar energy materials and solar cells,2001,65(1):509-516.
    [44]PIZZINI S, SANDRINELLI A, BEGHI M, et al. Influence of extended defects and native impurities on the electrical properties of directionally solidified polycrystalline silicon [J]. Journal of The Electrochemical Society,1988,135(1):155-165.
    [45]HARTMAN K, BERTONI M, SERDY J, et al. Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing [J]. Applied Physics Letters,2008,93(12):122108-122113.
    [46]RYNINGEN B, SULTANA K S, STUBHAUG E, et al. Dislocation clusters in multicrystalline silicon; proceedings of the European Photovoltaic Solar Energy Conference (EU PVSEC), Milan, Italia,2007 [C].2007,1(2):14-18.
    [47]STOKKAN G, RIEPE S, LOHNE O, et al. Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon [J]. Journal of Applied Physics,2007,101(5):053515-053519.
    [48]FATHI M, BOUHAFS D. A new detection technique of crystalline defects by sheet resistance, measurement on multicrystalline silicon wafers [J]. Semiconductor science and technology, 2006,21(4):437-442.
    [49]KWAN KIM Y. Characteristics of structural defects in the 240kg silicon ingot grown by directional solidification process [J]. Solar energy materials and solar cells,2006,90(11): 1666-1672.
    [50]EDMISTON S, HEISER G, SPROUL A, et al. Improved modeling of grain boundary recombination in bulk and p-n junction regions of polycrystalline silicon solar cells [J]. Journal of Applied Physics,1996,80(12):6783-95.
    [51]DAVIS JR J R, ROHATGI A, HOPKINS R, et al. Impurities in silicon solar cells [J]. Electron Devices, IEEE Transactions on,1980,27(4):677-87.
    [52]DOOLITTLE W, ROHATGI A, BRENNEMAN R. Correlation between impurities, defects and cell performance in semicrystalline silicon [solar cells]; proceedings of the Photovoltaic Specialists Conference,1990, Conference Record of the Twenty First IEEE,1990 [C].1990, 1(1):34-36.
    [53]SILAND A, VRELID E, ENGH T, et al. SiC and Si3N4 inclusions in multicrystalline silicon ingots [J]. Materials science in semiconductor processing,2004,7(1):39-43.
    [54]DU G, ZHOU L, ROSSETTO P, et al. Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon [J]. Solar energy materials and solar cells, 2007,91(18):1743-1748.
    [55]HULL R. Properties of crystalline silicon [M]. IET,1999.
    [56]JUNGH NEL M, SCH DEL M, STOLZE L, et al. Black multicrystalline solar modules using novel multilayer antireflection stacks; proceedings of the Proc 25th Eur Photovoltaic Solar Energy Conf,2010 [C].2010,1(1):1-8.
    [57]SOPPE W, RIEFFE H, WEEBER A. Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD [J]. Progress in Photovoltaics:Research and Applications,2005,13(7):551-569.
    [58]WERTHEN J G. Trends in Solar Cell Technologies and Laser Manufacturing [J]. Laser Technik Journal,2011,8(1):18-20.
    [59]YUAN H-C, YOST V E, PAGE M R, et al. Efficient black silicon solar cell with a density-graded nanoporous surface:Optical properties, performance limitations, and design rules [J]. Applied Physics Letters,2009,95(12):123501-123504.
    [60]KIM B S, LEE D H, KIM S H, et al. Silicon solar cell with nanoporous structure formed on a textured surface [J]. Journal of the American Ceramic Society,2009,92(10):2415-2417.
    [61]CHANG C-H, YU P, HSU M-H, et al. Combined micro-and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics [J]. Nanotechnology,2011, 22(9):095201-095208.
    [62]LEE Y-J, RUBY D S, PETERS D W, et al. ZnO nanostructures as efficient antireflection layers in solar cells [J]. Nano Letters,2008,8(5):1501-1505.
    [63]CHEN J, SUN K. Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells [J]. Solar energy materials and solar cells,2010,94(5):930-934.
    [64]A L, KIEVEN D, CHEN J, et al. ZnO nanorod arrays as an antireflective coating for Cu (In, Ga) Se2 thin film solar cells [J]. Progress in Photovoltaics:Research and Applications,2010, 18(3):209-213.
    [65]YEH L K, LAI K Y, LIN G J, et al. Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays [J]. Advanced Energy Materials,2011,1(4):506-510.
    [66]KO Y H, YU J S. Structural and antireflective properties of ZnO nanorods synthesized using the sputtered ZnO seed layer for solar cell applications [J]. Journal of nanoscience and nanotechnology,2010,10(12):8095-8101.
    [67]KO Y H, YU J S. Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings [J]. Optics Express,2011,19(1):297-305.
    [68]CHAO Y-C, CHEN C-Y, LIN C-A, et al. Antireflection effect of ZnO nanorod arrays [J]. Journal of Materials Chemistry,2010,20(37):8134-8138.
    [69]YU X, WANG D, LEI D, et al. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating [J]. Nanoscale research letters,2012,7(1):1-5.
    [70]AURANG P, DEMIRCIOGLU O, ES F, et al. ZnO Nanorods as Antireflective Coatings for Industrial-Scale Single-Crystalline Silicon Solar Cells [J]. Journal of the American Ceramic Society,2013,96(4):1253-1257.
    [71]HSUEH T-J, LIN S-Y, WENG W-Y, et al. Crystalline-Si photovoltaic devices with ZnO nanowires [J]. Solar Energy Materials and Solar Cells,2012,98:494-498.
    [72]LIU Y, DAS A, XU S, et al. Hybridizing ZnO Nanowires with Micropyramid Silicon Wafers as Superhydrophobic High-Efficiency Solar Cells [J]. Advanced Energy Materials,2012, 2(1):47-51.
    [73]LEEM J W, YU J S, HEO J, et al. Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for Ⅲ-Ⅴ multi-junction solar cell applications [J]. Solar energy materials and solar cells,2014,120:555-560.
    [74]LEE S H, LEEM J W, YU J S. Transmittance enhancement of sapphires with antireflective subwavelength grating patterned UV polymer surface structures by soft lithography [J]. Optics Express,2013,21(24):29298-29303.
    [75]XU S, ADIGA N, BA S, et al. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments [J]. ACS nano,2009,3(7):1803-1812.
    [76]WEINTRAUB B, ZHOU Z, LI Y, et al. Solution synthesis of one-dimensional ZnO nanomaterials and their applications [J]. Nanoscale,2010,2(9):1573-1587.
    [77]CHAO Y-C, CHEN C-Y, LIN C-A, et al. Light scattering by nanostructured anti-reflection coatings [J]. Energy & Environmental Science,2011,4(9):3436-3441.
    [78]HUA B, LIN Q, ZHANG Q, et al. Efficient Photon Management with Nanostructures for Photovoltaics [J]. Nanoscale,2013,5:6627-6640.
    [79]ZHMAKIN A I. Enhancement of light extraction from light emitting diodes [J]. Physics Reports,2011,498(4):189-241.
    [80]ALVER U, ZHOU W, BELAY A, et al. Optical and structural properties of ZnO nanorods grown on graphene oxide and reduced graphene oxide film by hydrothermal method [J]. Applied Surface Science,2012,258(7):3109-3114.
    [81]HUANG J-S, LIN C-F. Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing [J]. Journal of Applied Physics,2008,103(1):014304-014309.
    [82]LEE Y, ZHANG Y, NG S L G, et al. Hydrothermal growth of vertical ZnO nanorods [J]. Journal of the American Ceramic Society,2009,92(9):1940-1945.
    [83]ZHANG C. High-quality oriented ZnO films grown by sol-gel process assisted with ZnO seed layer [J]. Journal of Physics and Chemistry of Solids,2010,71(3):364-369.
    [84]SHI Y, YANG Z, CAO H, et al. Controlled c-oriented ZnO nanorod arrays and m-plane ZnO thin film growth on Si substrate by a hydrothermal method [J]. Journal of Crystal Growth, 2010,312(4):568-572.
    [85]GREENE L E, LAW M, GOLDBERGER J, et al. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays [J]. Angewandte Chemie International Edition,2003, 42(26):3031-3034.
    [86]WANG M, YE C-H, ZHANG Y, et al. Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method [J]. Journal of Crystal Growth, 2006,291(2):334-339.
    [87]VAYSSIERES L, KEIS K, LINDQUIST S-E, et al. Purpose-built anisotropic metal oxide material:3D highly oriented microrod array of ZnO [J]. The Journal of Physical Chemistry B, 2001,105(17):3350-3352.
    [88]ZHAO J, JIN Z G, LI T, et al. Growth of ZnO nanorods by the chemical solution method with assisted electrical field [J]. Journal of the American Ceramic Society,2006,89(8):2654-2659.
    [89]GOVENDER K, BOYLE D S, KENWAY P B, et al. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution [J]. Journal of Materials Chemistry,2004,14(16):2575-2591.
    [90]YAMABI S, IMAI H. Growth conditions for wurtzite zinc oxide films in aqueous solutions [J]. Journal of Materials Chemistry,2002,12(12):3773-3778.
    [91]WU P Y, PIKE J, ZHANG F, et al. Low-temperature Synthesis of Zinc Oxide Nanoparticles [J]. International journal of applied ceramic technology,2006,3(4):272-278.
    [92]XU S, LAO C, WEINTRAUB B, et al. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces [J]. Journal of Materials Research, 2008,23(08):2072-2077.
    [93]LI Q, BIAN J, SUN J, et al. Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method [J]. Applied Surface Science,2010, 256(6):1698-1702.
    [94]GEE J M, GORDON R, LIANG H. Optimization of textured-dielectric coatings for crystalline-silicon solar cells; proceedings of the Photovoltaic Specialists Conference,1996, Conference Record of the Twenty Fifth IEEE,1996 [C].1996,1(1):733-736.
    [95]LIU Bingfa, CHEN Nan, DU Guoping, et al. Minicrystallization in directionally solidified multicrystalline silicon and its effect on the photovoltaic properties of solar cells [J]. physica status solidi (a),2011,208(10):2478-2481.
    [96]CHEN J, YE H, A L, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications [J]. Solar Energy Materials and Solar Cells, 2011,95(6):1437-1440.
    [97]ROSS A R, LUETTGEN S L. Speciation of Cyclo (Pro-Gly)3 and Its Divalent Metal-Ion Complexes by Electrospray Ionization Mass Spectrometry [J]. Journal of the American Society for Mass Spectrometry,2005,16(9):1536-1544.
    [98]KAWAMOTO Y, KANNO R, QIU J. Upconversion luminescence of Er3+in transparent SiO2-PbF2-ErF3 glass ceramics [J]. Journal of materials science,1998,33(1):63-67.
    [99]BROWN R A. Theory of transport processes in single crystal growth from the melt [J]. AIChE Journal,1988,34(6):881-911.
    [100]ZHANG Z, HUANG Q, HUANG Z, et al. Analysis of microcrystal formation in DS-silicon ingot [J]. Science China Technological Sciences,2011,54(6):1475-1480.
    [101]杨平.电子背散射衍射技术及其应用[M].冶金工业出版社,2007.
    [102]SOPORI B. Silicon solar-cell processing for minimizing the influence of impurities and defects [J]. Journal of electronic materials,2002,31(10):972-980.
    [103]ELGHITANI H, MARTINUZZI S. Influence of dislocations on electrical properties of large grained polycrystalline silicon cells. Ⅱ. Experimental results [J]. Journal of Applied Physics, 1989,66(4):1723-1726.
    [104]ISTRATOV A, HIESLMAIR H, VYVENKO O, et al. Defect recognition and impurity detection techniques in crystalline silicon for solar cells [J]. Solar energy materials and solar cells,2002,72(1):441-451.
    [105]LUQ UE A, HEGEDUS S. Handbook of photovoltaic science and engineering [M]. Wiley. com,2011.
    [106]SOPORI B, CHEN W. Influence of distributed defects on the photoelectric characteristics of a large-area device [J]. Journal of Crystal Growth,2000,210(1):375-378.
    [107]HIRTH J P, LOTHE J. Theory of dislocations [J]. Progress of Metal Physics,1949,1(1): 77-126.
    [108JUSAMI N, YOKOYAMA R, TAKAHASHI I, et al. Relationship between grain boundary structures in Si multicrystals and generation of dislocations during crystal growth [J]. Journal of Applied Physics,2010,107(1):013511-013515.
    [109]FUJIWARA K, PAN W, SAWADA K, et al. Directional growth method to obtain high quality polycrystalline silicon from its melt [J]. Journal of Crystal Growth,2006,292(2): 282-285.
    [110]SCHMID E, W RZNER S, FUNKE C, et al. The correlation between spatial alignment of dislocations, grain orientation, and grain boundaries in multicrystalline silicon [J]. Crystal Research and Technology,2012,47(3):229-236.
    [111]唐明华,刘志义,胡双开,et al. ZrC/奥氏体相界面形变诱导相变动力学[J].中南大学学报:自然科学版,2010,41(1):120-124.
    [112]娄中士,左然,苏文佳,et al.大晶粒多晶硅铸锭生长的热场设计与模拟[J].人工晶体学报,2011,40(6):1602-1606.
    [113]ABBOTT M, TRUPKE T, HARTMANN H, et al. Laser isolation of shunted regions in industrial solar cells [J]. Progress in Photovoltaics:Research and Applications,2007,15(7): 613-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700