ⅢA族元素掺杂ZnO透明导电薄膜的研究及在6H-SiC上的电极应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ⅢA族元素掺杂ZnO薄膜具备良好的透明导电性能(透过率>90%,电阻率10-4Ω·cm),且无毒污染、价格低廉,有望取代ITO成为新一代工业应用透明导电薄膜材料。本文研究了磁束缚电感耦合等离子体增强物理气相沉积法(ICP-PVD)制备的ⅢA族元素掺杂ZnO透明导电薄膜,分析了掺杂ZnO薄膜中的半导体性能及光学性能。另外,通过掺杂ZnO薄膜的晶体结构、表面、透明和半导体性能的比较,研究Al、Ga元素掺杂对ZnO透明导电薄膜应用的影响。ZnO与6H-SiC的结构相似,晶格失配度低(c轴~3.3%),因而是6H-SiC基光电器件的良好窗口材料,应用领域及前景非常广泛。因此本文进一步研究了Al、 Ga元素掺杂ZnO/6H-SiC异质结的结构、界面及能带排列,并实现了ZnO:Ga(GZO)透明导电薄膜在6H-SiC光导开关上的电极应用。主要工作内容如下:
     1.采用ICP-PVD法制备了一系列ZnO薄膜,确定了该仪器合适的工艺参数范围。在最佳工艺下制备的1mol%Ga掺杂ZnO薄膜结晶质量好,光学可见光平均透过率为93%,电阻率为7.68×10-4Ω.cm。另外研究了沉积氧分压对GZO薄膜的结晶、半导体性能及光学性能的影响。通过GZO薄膜的绿色光致发光分析,提出2.5及2.65eV附近存在两种个相连的施主受主对复合发光,分别对应于跃迁GaZnO+VZn-→GaZn++VZn2-和GaZnO+O1O→GaZn++O1-,并通过薄膜快速退火前后的光致发光全谱给予辅证。
     2.研究了ZnO:Al(AZO)及GZO薄膜的透过、半导体性能。在同样的制备工艺及同样的掺杂浓度下,AZO薄膜的导电性能要优于GZO薄膜,这归因于A1的散射半径比Ga小,因此AZO薄膜中的霍尔迁移率更高。而GZO薄膜的透过性能优于AZO薄膜,与掺杂元素的散射无关,归因于Ga元素充当了表面活性剂的作用。GZO薄膜的表面比AZO薄膜光滑,因此漫反射反射更少、透过率更高。提出Ga.Al共掺杂可能会使ZnO材料的电学性能和透过性能得到进一步的提高。Al.Ga掺杂ZnO薄膜材料的禁带宽度均高于本征ZnO,且在同等浓度掺杂下,Ga掺杂ZnO的禁带宽度要比Al掺杂ZnO高0.3eV左右。同步辐射紫外光电子能谱(SRPES)表明两者的能带结构不同,因此AZO与GZO的差别可能归因于Al和Ga的元素掺杂效应不同。Al掺杂能使ZnO价带中2p-3d耦合增强,而Ga掺杂对价带几乎没有影响,因此AZO的价带顶位置相对GZO更高。
     3.制备并研究了未退火处理的Al、Ga元素掺杂ZnO/6H-SiC异质结,分析了异质结的结构、界面及能带排列。通过SRPES能谱分析,GZO/6H-SiC异质结的价带能级偏移为1.34±0.04eV,导带的能级偏移为0.93±0.04eV;而AZO/SiC异质结的价带能级偏移为1.78±0.04eV,导带能级偏移为1.4±0.04eV,两者均为ⅡA型异质结结构。同样的制备工艺和掺杂浓度下,GZO/SiC异质结能级偏移与AZO/SiC异质结能级偏移相差约0.4eV,这可能归因于两者界面处晶格失配度变化不同,Ga-O比Al-O更接近Zn-O。另外我们制备了Si面向及C面向的GZO/SiC异质结并获得其能带结构,结果显示Si面向GZO/SiC异质结和C面向GZO/SiC异质结的价带能级偏移相差仅0.05eV。
     4.经过快速退火处理后,GZO/SiC异质结界面处的能带结构发生了变化。Si面向GZO/SiC异质结退火后增大0.1eV,而C面向GZO/SiC异质结退火后增大0.25eV。SRPES显示异质结界面出的能谱中出现了类似于SiO2的分量存在。这表明当GZO/SiC异质结经过快速退火处理后,C面向GZO/SiC结构中的氧化程度高于比Si面向GZO/SiC结构,前者类似活性氧化反应,后者类似钝性的氧化反应。该结果也表明快速退火并不适用于ZnO/SiC异质结的制备。
     5.电学性能及透过性能测试结果表明SiC衬底上制备的GZO薄膜的透过率约为96%,电阻率约为5.68×10-4Ω.cm,且与SiC之间的接触为欧姆接触,因此能应用为SiC光电器件的透明导电电极。在SiC晶片上沉积GZO薄膜作为SiC光导开关的电极,当外加500V电压,10mJ激光光照时可实现光导开关的导通,导通电阻为13.2Ω。
The ZnO thin film doped with ⅢA group elements is considered as a promising candidate for substituting ITO due to its merits, such as high transmittance (over90%in the visible range), outstanding electric properties (~10-4Ω·cm), innoxiousness and cheapness. In this paper, we prepared Al-and Ga-doped ZnO (AZO and GZO) transparent conductive films (TCF) by Inductively Coupled Plasma Enhanced Physical Vapor Deposition (ICP-PVD). The Structure, surface, transmittance, electrical and electric structure properties were investigated to compare the doping effect on application properties of ZnO TCF. The optical properties of GZO TCF were also studied to confirm the possible emissions and related defects.
     At the same time, ZnO TCF is also an attractive candidate electrode for6H-SiC based photoelectric devices due to its similar wurtzite crystal structure and relatively small lattice mismatch (3.3%along the c-axis). In this paper, we prepared Al-and Ga-doped ZnO/6H-SiC heterojunctions, and characterized their structure, interface and band structure. The preliminary application of GZO TCF-electrode on6H-SiC based photoconductive switch was also realized.
     The main work included:
     1. A serial of ZnO thin films were prepared by ICP-PVD, the suitable process parameters were confirmed. The as deposited1mol%Ga-doped ZnO thin film show a good properties, with transmittance93%and resistivity7.68×10-4Ω·cm. The effect of oxygen partial pressure (PO2) on properties of GZO thin films was also discussed. The photoluminescence of GZO films deposited under different PO2were studied by Gauss fitting. The fitting results suggest two adjacent green emissions located at2.50eV and2.65eV were attributed to donor-acceptor pair combination, corresponding to GaZnO+VZn-→GaZn++VZn2-and GaZnO+OiO→GaZn++O1-transitions, respectively. The conclusion was consistent with the low temperature photoluminescence of GZO films before and after rapid thermal annealing.
     2. The2mol%Ga and Al doped ZnO thin films were grown under different deposition atmospheres to discuss the transparence electric and electronic properties. With the same doping concentration and experiment process, the conductivity of AZO films were better than that of GZO, which was due to the higher hall mobility induced by smaller Al scattering radiusl. But the transparence properties was revus, which was due to the smoother surface of GZO films induced by surfactant element Ga. This results suggest the Al and Ga co-doping might be enhanced transparent conductive properties of ZnO thin film. With the same2mol%doping concentration, the doping elements both increased the band gap energy of ZnO, but GZO were0.3eV higher than that of AZO. The Synchrotron radiation photoelectron spectroscopy (SRPES) measurements sugeest the valance band of AZO were different from that of GZO. Al doping effect is different from Ga, which might enhance the2p-3d coupling in ZnO valance band, which induced a higher valance band maximum.
     3. Ga doped ZnO (GZO) and Al doped ZnO (AZO) thin films were deposited on n-6H-SiC to form the heteroj unction structure. The band alignments of the doped ZnO/6H-SiC heterojunctions were studied by using the synchrotron radiation photoelectron spectroscopy. Band alignments of GZO/SiC and AZO/SiC heterojunctions were determined by the band offsets calculation. AZO/SiC heterojunction has bigger band offsets than ZnO/SiC and GZO/SiC heterojunction, which is due to the closer doping element covalence radius. Ga-0is more closer to Zn-O than Al-O. The higher mismatch induces higher band offsets on heterojunction interface. The Si-and C-faced GZO/SiC were also prepared and characterized, the valance band offset difference of them was just0.05eV.
     4. Band alignments of GZO/SiC heterojunctions were increased after rapid thermal annealing process, be0.1eV and0.25eV for Si-and C-faced, respectively. The SRPES showed a new component was formed on heterojunctions'interface after RTA, which was deduced to be "SiO2" component. This component was deeper and with higher concentration in C-faced GZO/SiC heterojunction than that in Si-faced GZO/SiC heterojunction. The result suggests that the RTA process was not suitable for ZnO/SiC heterojunction.
     5. The transmittance and resistivity of2mol%Ga doped ZnO thin films deposited on SiC substrate were96%and5.68×10-4Ω·cm, respectively. The GZO and SiC contact performance as ohmic contact, which suggests that GZO film is a suitable electrode for SiC-based opt-electric device. The SiC Photoconductive switch has been successfully fabricated with GZO thin films as front electrode, which showed an on-state performance while be excitated with lOmJ laser under500V voltage. The on-state resistance was13.2Ohm.
引文
1马全宝,叶志镇.透明的高导电近红外反射ZnO:Ga薄膜的制备及特性研究.浙江大学博十学位论文.2007
    2 X. Jiang, FL Wong, MK Fung, et al. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Applied Physics Letters.2003,83:1875
    3 K. Ellmer. Magnetron sputtering of transparent conductive zinc oxide:relation between the sputtering parameters and the electronic properties. Journal of Physics D: Applied Physics.2000,33:R17
    4 T. Kawashima, H. Matsui, N. Tanabe. New transparent conductive films:FTO coated ITO. Thin Solid Films.2003,445(2):241-244
    5 Z. Wu, Z. Chen, X. Du, et al. Transparent, conductive carbon nanotube films. Science.2004,305(5688):1273
    6 X. Wang, L. Zhi, K. Mullen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters.2008,8(1):323-327
    7 D.Zhang, K.Ryu, X.Liu, et al. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Letters.2006,6(9):1880-1886
    8 X. Li, Y. Zhu, W. Cai, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters.2009 9(12):4359-4363
    9 J. Musil, R. Daniel, P. Zeman, et al. Structure and properties of magnetron sputtered Zr-Si-N films with a high (>= 25 at.%) Si content. Thin Solid Films.2005, 478(1-2):238-247
    10 J.G. Ryan, S.Roberts, G.J. Slusser, et al. The preparation and characterization of titanium boride films. Thin Solid Films.1987,153(1-3):329-339
    11 V. Craciun, D. Craciun, C. Ghica, et al. Growth of thin transparent titanium nitride layers by reactive laser ablation. Applied Surface Science.1999,138:593-598
    12 J. Dutta, J. Perrin, T. Emeraud, et al. Pyrosol deposition of fluorine-doped tin dioxide thin films. Journal of Materials Science.1995,30(1):53-62
    13 T.H. Fang, W.J.Chang. Nanomechanical characteristics of SnO2:F thin films deposited by chemical vapor deposition. Applied Surface Science.2005, 252(5):1863-1869
    14 C. Xu, J. Tamaki, N. Miura, et al. Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors and Actuators B:Chemical.1991,3(2):147-155
    15 F. Yang, S.R. Forrest. Organic Solar Cells Using Transparent SnO2-F Anodes. Advanced Materials.2006,18(15):2018-2022
    16 C.Agashe, MG Takwale, BR Marathe, et al. Structural properties of SnO2:F films deposited by spray pyrolysis. Solar energy materials.1988,17(2):99-117
    17 H.Kim, A. Pique. Transparent conducting Sb-doped SnO thin films grown by pulsed-laser deposition. Applied Physics Letters.2004,84:218
    18 MIB Bernardi, LE Soledade, IA Santos, et al. Influence of the concentration of Sb< sub> 2 O< sub> 3 and the viscosity of the precursor solution on the electrical and optical properties of SnO< sub> 2 thin films produced by the Pechini method. Thin Solid Films.2002,405(4):228-233
    19 S. Shanthi, C. Subramanian, P. Ramasamy. Growth and characterization of antimony doped tin oxide thin films. Journal of Crystal Growth.1999,197(4):858-864
    20 Y.S. He, J.C. Campbell, R.C. Murphy-et al. Electrical and optical characterization of Sb:SnO2. Journal of Materials Research.1993,8(12):3131-3134
    21 B. Orel, U. Lavrencic-Stankgar, Z. Crnjak-Orel, et al. Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO2 and SnO2:Sb powders and dip-coated films prepared via inorganic sol-gel route. Journal of Non-Crystalline Solids.1994,167(3):272-288
    22 C. Goebbert, M.A. Aegerter, D. Burgard, et al. Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled, crystalline SnO2:Sb particles. J. Mater. Chem..1999,9(1):253-258
    23 J. Ederth, P. Heszler, A. Hultaker, et al. Indium tin oxide films made from nanoparticles:models for the optical and electrical properties. Thin Solid Films.2003,445(2):199-206
    24 H. Ohta, M. Orita, M. Hirano, et al. Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition. Applied Physics Letters.2000,76:2740
    25 I. Hamberg, C.G. Granqvist. Evaporated Sn-doped In2O3 films:Basic optical properties and applications to energy-efficient windows. Journal of Applied Physics.1986,60(11):R123-R160
    26 Y. Ohhata, F. Shinoki, S. Yoshida. Optical properties of rf reactive sputtered tin-doped In2O3 films. Thin Solid Films.1979,59(2):255-261
    27 D. Zhang,Z. Liu, C. Li, et al. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Letters.2004, 4(10):1919-1924
    28 M. Quaas, H. Steffen, R. Hippler, et al. The growth process of plasma-deposited ITO films investigated by grazing incidence X-ray techniques. Surface Science.2000,454:790-795
    29 S.S.Kim, S.Y.Choi, C.G. Park, et al. Transparent conductive ITO thin films through the sol-gel process using metal salts. Thin Solid Films.1999,347(1):155-160
    30 E.M.C. Fortunato, P.M.C. Barquinha, A.C. Pimentel, et al. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters.2004,85:2541
    31 K.J.Kim, Y.R. Park. Large and abrupt optical band gap variation in In-doped ZnO. Applied Physics Letters.2001,78:475
    32 Q. Wan, QH Li, YJ Chen, et al. Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Applied Physics Letters.2004,84:3085
    33 M. Lorenz, EM Kaidashev, H. Von Wenckstern, et al. Optical and electrical properties of epitaxial (Mg. Cd)< sub> x Zn< sub> 1-x O, ZnO, and ZnO:(Ga, Al) thin films on< i> c-plane sapphire grown by pulsed laser deposition. Solid-State Electronics.2003,47(12):2205-2209
    34 UN Maiti, PK Ghosh, S.F.Ahmed, et al. Structural, optical and photoelectron spectroscopic studies of nano/micro ZnO:Cd rods synthesized via sol-gel route. Journal of Sol-Gel Science and Technology.2007,41(1):87-92
    35 YS Wang, P.J. Thomas, P. O'Brien. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. The Journal of Physical Chemistry B.2006, 110(43):21412-21415
    36 T. Minami, H. Nanto, S. Takata. Highly conductive and transparent ZnO thin films prepared by rf magnetron sputtering in an applied external dc magnetic field. Thin Solid Films.1985,124(1):43-47
    37 ZA Wang, JB Chu, HB Zhu, et al. Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications. Solid-State Electronics.2009, 53(11):1149-1153
    38 J. Behrends, A. Schnegg, M. Fehr, et al. Electrical detection of electron spin resonance in microcrystalline silicon pin solar cells. Philosophical Magazine.2009, 89(28-30):2655-2676
    39 H. Zhu, E. Bunte, J. Hupkes, et al. Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells. Thin Solid Films.2009, 517(10):3161-3166
    40 V. Khranovskyy, U. Grossner, O. Nilsen, et al. Structural and morphological properties of ZnO:Ga thin films. Thin Solid Films.2006,515(2):472-476
    41 S.Wang, X.Li, J.Zhang. Effects of substrate temperature on the properties of heavy Ga-doped ZnO transparent conductive film by RF magnetron sputtering,2009, IOP Publishing:012017
    42 K. Iwata, T. Sakemi, A. Yamada, et al. Growth and electrical properties of ZnO thin films deposited by novel ion plating method. Thin Solid Films.2003, 445(2):274-277
    43 N. Ito, Y.Sato, PK Song, et al. Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films.2006,496(1):99-103
    44 EJ Luna-Arredondo, A. Maldonado, R. Asomoza, et al. Indium-doped ZnO thin films deposited by the sol-gel technique. Thin Solid Films.2005,490(2):132-136
    45叶志镇龚丽.ZnO基透明导电薄膜的制备与掺杂研究.浙江大学博士学位论文.2010
    46 DC Reynolds, DC Look, B. Jogai, et al. Valence-band ordering in ZnO. Physical Review B.1999,60:2340-2344
    47 A. Teke, U. Ozgiir, S. Dogan, et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Physical Review B.2004,70(19):195207
    48 DC Reynolds, DC Look, B. Jogai, et al. Polariton and free-exciton-like photoluminescence in ZnO. Applied Physics Letters.2001,79:3794
    49 DW Hamby, DA Lucca, MJ Klopfstein, et al. Temperature dependent exciton photoluminescence of bulk ZnO. Journal of Applied Physics.2003,93:3214
    50 JF Muth, RM Kolbas, AK Shanna, et al. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. Journal of Applied Physics.1999,85:7884
    51 SF Chichibu, T. Sota, G. Cantwell, et al. Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal. Journal of Applied Physics.2003,93:756
    52 YS Park, CW Litton, TC Collins, et al. Exciton spectrum of ZnO. Physical Review.1966,143(2):512
    53 WY Liang, AD Yoffe. Transmission spectra of ZnO single crystals. Physical Review Letters.1968,20(2):59-62
    54 DC Reynolds, DC Look, B. Jogai, et al. Neutral-donor-bound-exciton complexes in ZnO crystals. Physical Review B.1998,571:74065-12155
    55 H. Alves, D. Pfisterer, A. Zeuner, et al. Optical investigations on excitons bound to impurities and dislocations in ZnO. Optical Materials.2003,23(1-2):33-37
    56 K. Thonke, T. Gruber, N. Teofilov, et al. Donor-acceptor pair transitions in ZnO substrate material. Physica B:Condensed Matter.2001,308:945-948
    57 C. Boemare, T. Monteiro, MJ Soares, et al. Photoluminescence studies in ZnO samples. Physica B:Condensed Matter.2001,308:985-988
    58 C. Klingshirn. ZnO:material, physics and applications. Chemphyschem.2007, 8(6):782-803
    59 C. Klingshirn, R. Hauschild, H. Priller, et al. ZnO rediscovered—once again!?. Superlattices and Microstructures.2005,38(4):209-222
    60 C. Klingshirn, J. Fallert, H. Zhou, et al.65 years of ZnO research-old and very recent results. physica status solidi (b).2010,247(6):1424-1447
    61 DG Thomas. The exciton spectrum of zinc oxide. Journal of Physics and Chemistry of Solids.1960,15(1-2):86-96
    62 JJ Hopfdeld. Fine structure in the optical absorption edge of anisotropic crystals. Journal of Physics and Chemistry of Solids.1960,15(1-2):97-107
    63刘建军.掺Ga对ZnO电子态密度和光学性质的影响.物理学报.2010(9):6466-6472
    64 HC Park, D. Byun, B.Angadi, et al. Photoluminescence of Ga-doped ZnO film grown on c-A12O3 (0001) by plasma-assisted molecular beam epitaxy. Journal of Applied Physics.2007,102(7):073114-073114-073115
    65 T. Makino, Y. Segawa, S. Yoshida, et al. Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga. Applied Physics Letters.2004,85(5):759-761
    66 T. Makino, Y. Segawa, S. Yoshida, et al. Spectral shape analysis of ultraviolet luminescence in n-type ZnO:Ga. Journal of Applied Physics.2005,98(9):-
    67 T. Makino, Y. Segawa, S. Yoshida, et al. Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga. Applied Physics Letters.2004,85:759
    68 Z. Yang, DC Look, JL Liu. Ga-related photoluminescence lines in Ga-doped ZnO grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters.2009,94:072101
    69 J. A. Sans, J. F. Sanchez-Royo, A. Segura, et al. Chemical effects on the optical band-gap of heavily doped ZnO:M-Ⅲ (M=Al,Ga,In):An investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations. Physical Review B.2009,79(19):-
    70熊志华.Zn0掺杂改性的第一性原理研究.2008
    71 DC Look, GC Farlow, P. Reunchan. et al. Evidence for native-defect donors in n-type ZnO. Physical Review Letters.2005,95(22):225502
    72 A. Janotti, C.G. Van de Walle. Native point defects in ZnO. Physical Review B.2007,76(16):165202
    73 A. Janotti, C.G. Van de Walle. New insights into the role of native point defects in ZnO. Journal of Crystal Growth.2006,287(1):58-65
    74 K. Vanheusden, WL Warren, CH Seager, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics.1996, 79(10):7983-7990
    75 K. Vanheusden, CH Seager, WL Warren, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Applied Physics Letters.1996,68:403
    76 FK Shan, GX Liu, WJ Lee, et al. Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition. Applied Physics Letters.2005, 86(22):221910-221910-221913
    77 T.M. B(?)rseth, BG Svensson, A.Y. Kuznetsov, et al. Identification of oxygen and zinc vacancy optical signals in ZnO. Applied Physics Letters.2006,89:262112
    78 DC Reynolds, DC Look, B. Jogai. Fine structure on the green band in ZnO. Journal of Applied Physics.2001,89:6189
    79 QX Zhao, P. Klason, M. Willander, et al. Deep-level emissions influenced by O and Zn implantations in ZnO. Applied Physics Letters.2005,87:211912
    80 M.Liu, AH Kitai, P. Mascher. Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. Journal of Luminescence.1992, 54(1):35-42
    81 S.H.Jeong, B.S.Kim. B.T. Lee. Photoluminescence dependence of ZnO films grown on Si (100) by radio-frequency magnetron sputtering on the growth ambient. Applied Physics Letters.2003,82(16):2625-2627
    82 NY Garces, L.Wang. L. Bai, et al. Role of copper in the green luminescence from ZnO crystals. Applied Physics Letters.2002,81:622
    83 U. Ozgur, Y.I. Alivov, C.Liu, et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics.2005,98:041301
    84 EV Lavrov, J. Weber, F. Borrnert, et al. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Physical Review B.2002,66(16):165205
    85 C.G. Van de Walle. Hydrogen as a cause of doping in zinc oxide. Physical Review Letters.2000,85(5):1012-1015
    86 A. Janotti, C.G. Van de Walle. Hydrogen multicentre bonds. Nature Materials.2006,6(1):44-47
    87 XL Wu, GG Siu, CL Fu, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Applied Physics Letters.2001,78:2285
    88 Z. Fan, P. Chang, J.G. Lu, et al. Photoluminescence and polarized photodetection of single ZnO nanowires. Applied Physics Letters.2004,85:6128
    89 YF Mei, GG Siu, R.K.Y. Fu, et al. Room-temperature electrosynthesized ZnO thin film with strong (002) orientation and its optical properties. Applied Surface Science.2006,252(8):2973-2977
    90 D.H. Kim. H. Jeon, G. Kim, et al. Comparison of the optical properties of undoped and Ga-doped ZnO thin films deposited using RF magnetron sputtering at room temperature. Optics Communications.2008,281(8):2120-2125
    91 Y.I. Alivov, B. Xiao, Q. Fan, et al. Band offset measurements of ZnO/6H-SiC heterostructure system. Applied Physics Letters.2006,89:152115
    92 A. Ashrafi. Band offsets at ZnO/SiC heterojunction:Heterointerface in band alignment. Surface Science.2010,604(21-22):L63-L66
    93 Y. H. Lu, B. Xu, R. Q. Wu, et al. Two-dimensional electron or hole gas at ZnO/6H-SiC interface. AIP,2010
    94刘学超.钴掺杂氧化锌半导体薄膜制备与磁性研究.中科院博十学位论文.2008
    95 D. K. Lee D. H. Kang, K. B. Kim, J. J. Lee, and J. H. Joo,. Ion energy distribution change at the transition of power-coupling modes in an immersed-coil-type inductively coupled Ar discharge.. Appl. Phys. Lett..2004, 84:3283-3285
    96赵红雨.纳米复合超硬薄膜的研究.中国科学院研究生院博士学位论文.2004:37-45
    97范秋林,赵红雨,宋力昕,et al.磁约束电感耦合等离子体增强反应溅射沉积nc-TiN
    98 H.Y.ZHAO, Q.L. FAN, L.X. SONG, et al. Research Status and Development of Superhard Nanocomposite Films [J]. Journal of Inorganic Materials.2004,1
    99 S. H. Bae B. J. Jin, and S. Y. Lee. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition.. Mater. Sci. Eng. B.2000,71:301-306
    100 Q.B.Ma. Vacuum.2008,82:9-14
    101 J.F.Chang, M.H.Hon. Thin Solid Films.2001,386:79
    102 U. Grossner V. Khranovskyy, V. Lazorenko, G. Lashkarev, B.G. Svensson, R. Yakimova,. Phys. Status Solidi c.2006,3(4):780
    103 E.G.Fu, D.M.Zhuang, G.Zhang, et al. Applied Surface Science.2003,217:88
    104 T. Yamada. Surface & Coatings Technology.2007,202:973-976
    105 U. Grossner V. Khranovskyy, V. Lazorenko, G. Lashkarev, B.G. Svensson and R. Yakimov.nko, G. Lashkarev, B.G. Svensson and R. Yakimov,. Superlatt. Microstruct..2007,42:379
    106 Y. R. Park, D. Jung, K. C. Kim, et al. Physical properties of transparent conducting indium doped zinc oxide thin films deposited by pulsed DC magnetron sputtering. Journal of Electroceramics.2009,23(2-4):536-541
    107 H.C.Park, D.Byun, B.Angadi, et al. J.Appl.Phys..2007,102:0731114
    108 Z.Z. Li. Green emissions and related defects in ZnO:Ga thin films. Vacuum.2012
    109 HJ Ko, YF Chen, Z. Zhu, et al. Photoluminescence properties of ZnO epilayers grown on CaF (111) by plasma assisted molecular beam epitaxy. Applied Physics Letters.2000,76:1905
    110 HJ Ko, YF Chen, SK Hong, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Applied Physics Letters.2000, 77:3761
    111 PJ Dean. Bound excitons and donor-acceptor pairs in natural and synthetic diamond. Physical Review.1965,139(2A):A588
    112 C.E.Kim. P. Moon, S.Kim, et al. Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films. Thin Solid Films.2010,518(22):6304-6307
    113 T.Y. Ma. D.K. Shim. Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films. Thin Solid Films.2002,410(1):8-13
    114 K.K.Kim, S.Niki, J.Y. Oh, et al. High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing. Journal of Applied Physics.2005,97:066103
    115 J.H. Kim, B. Du Ahn, C.H. Lee, et al. Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. Journal of Applied Physics.2006,100:113515
    116 NA Suvorova, IO Usov, L. Stan, et al. Structural and optical properties of ZnO thin films by rf magnetron sputtering with rapid thermal annealing. Applied Physics Letters.2008,92:141911
    117 Y.C. Lee, S.Y. Hu, W. Water, et al. Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates. Journal of Luminescence.2009,129(2):148-152
    118 A. Janotti, C. G. Van de Walle. Native point defects in ZnO. Physical Review B.2007,76(16):-
    119 K. Vanheusden, CH Seager, WL Warren, et al. Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis. Journal of Luminescence.1997,75(1):11-16
    120 Fortunato E Assunc-ao V, Marques A,'Aguas H, Ferreira I.. Costa M E V and Martins R. Thin Solid Films.2003,427:401
    121 Zheng-Zheng Li, Zhi-Zhan Chen, Wei Huang, et al. The transparence comparison of Ga-and Al-doped ZnO thin films. Applied Surface Science.2011, 257(20):8486-8489
    122 P. F. Zhang R. Q. Zhang, T. T. Kang, H. B. Fan, X. L. Liu, S. Y. Yang, H.Y. Wei, Q. S. Zhu, and Z. G. Wang,. Appl. Phys. Lett..2007,91:162104
    123 Park. H. Jang. K., Jung. S., Van Duy. N, Kim. Y., Cho. J., Choi. H., Kwon. T., Lee. W., Gong. D., Park. S., Yi. J., Kim. D. and Kim. H.. Thin Solid Films.2010, 518:2808
    124 U. Grossner V. Khranovskyya, V. Lazorenko, G. Lashkarev, B.G. Svensson and R. Yakimov.nko, G. Lashkarev, B.G Svensson and R. Yakimov,. Superlatt. Microstruct..2007,42:379
    125 E. Fortunato V. Assuncao, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa and R.Martins,. Thin Solid Films.2003,427:401
    126 U. Grossner V. Khranovskyy, V. Lazorenko, G. Lashkarev, B.G Svensson and R. Yakimova. Superlatt. Microstruct..2006,39:275
    127熊志华江风益.ZnO掺杂改性第一性原理计算.南昌大学博十学位论文.2008
    128 GW Cong, WQ Peng, HY Wei, et al. Aluminium doping induced enhancement of p-d coupling in ZnO. Journal of Physics:Condensed Matter.2006,18:3081
    129刘建军.掺Ga对ZnO电子态密度和光学性质的影响.物理学报.2010(009):6466-6472
    130 Y.I.Alivov, D. Johnstone, U. Ozgur, et al. Electrical and optical properties of n-ZnO/p-SiC heterojunctions. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1 REGULAR PAPERS SHORT NOTES AND REVIEW PAPERS.2005,44(10):7281
    131 Y.I.Alivov,U. Ozgur, S. Dogan, et al. Photoresponse of n-ZnO/p-SiC heteroj unction diodes grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters.2005,86:241108
    132邹崇文NSRL表面物理站的调试及宽禁带半导体的SRPES研究.中国科学技术大学.2006
    133 G. Alfieri, EV Monakhov, BG Svensson, et al. Defect energy levels in hydrogen-implanted and electron-irradiated n-type 4H silicon carbide. Journal of Applied Physics.2005,98:113524
    134 PF Zhang, XL Liu, RQ Zhang, et al. Valence band offset of ZnO/GaAs heterojunction measured by x-ray photoelectron spectroscopy. Applied Physics Letters.2008,92:012104
    135 BL Zhang, GS Sun, Y. Guo, et al. Valence band offset of InN/4H-SiC heterojunction measured by x-ray photoelectron spectroscopy. Applied Physics Letters.2008,93:242107
    136 A. Ashrafi, Y. Segawa. Anomalous lattice relaxation mechanics in ZnO/SiC heterostructure. Journal of Applied Physics.2008,103:093527
    137 A. Ashrafi, M. Aminuzzaman. ZnO epitaxy on SiC (000) substrate:Comparison with ZnO/SiC (0001) heterostructure. Applied Surface Science.2011
    138 Y. H. Lu. Two-dimensional electron or hole gas at ZnO/6H-SiC interface. Appl. Phys. Lett..2010,96(19):192109
    139 H.Wang, M. H. Xu, J. W. Xu, et al. Effects of annealing temperature and thickness on microstructure and properties of sol-gel derived multilayer Al-doped ZnO films. Journal of Materials Science-Materials in Electronics.2010, 21(2):145-148
    140 H. J. Cho, S. U. Lee, B. Hong, et al. The effect of annealing on Al-doped ZnO films deposited by RF magnetron sputtering method for transparent electrodes. Thin Solid Films.2010,518(11):2941-2944
    141 K.M.Lin, Y.Y.Chen. Improvement of electrical properties of sol-gel derived ZnO:Ga films by infrared heating method. Journal of Sol-Gel Science and Technology.2009,51(2):215-221
    142 H. Morkoc, S. Strite, GB Gao, et al. Large-band-gap SiC, Ⅲ-V nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. J. Appl. Phys.1994, 76(3):1363-1398
    143 JB Casady, R.W.Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:A review. Solid-State Electronics.1996,39(10):1409-1422
    144 I. Gunjishima D. Nakamura, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, K. Takatori,. Nature.2004,430:1009
    145 W.J. Choyke, H. Matsunami, G. Pensl. Silicon carbide:recent major advances. Springer Verlag,2004
    146 C.M. Tanner, J. Choi, J.P. Chang. Electronic structure and band alignment at the HfO/4H-SiC interface. Journal of Applied Physics.2007.101:034108
    147 T. Minami. Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology.2005,20:S35
    148 J. Meyer, P. Gorrn, S. Hamwi, et al. Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition. Applied Physics Letters.2008,93:073308
    149黄维.碳化硅基平面型光导开关的制备与性能研究.中科院博十学位论文.2011
    150 GG Jernigan, RE Stahlbush, NS Saks. Effect of oxidation and reoxidation on the oxide-substrate interface of 4H-and 6H-SiC. Applied Physics Letters.2000, 77:1437
    151 B. Hornetz, H.J. Michel, J. Halbritter. Oxidation and 6H-SiC-SiO2 interfaces. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.1995,13(3):767-771
    152 M. Maeda, K. Nakamura, T. Ohkubo. Oxidation of silicon carbide in a wet atmosphere. Journal of Materials Science.1988,23(11):3933-3938
    153 B. Hornetz, HJ Michel, J. Halbritter. ARXPS studies of SiO-2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001-2) surfaces. Journal of Materials Research.1994,9(12):3088-3094
    154 M. Schurmann, S. Dreiner, U. Berges, et al. Structure of the interface between ultrathin SiO_{2} films and 4H-SiC (0001). Physical Review B.2006,74(3):035309
    155 Li.z.z.. Except of rapid thermal annealing on the Ga-doped ZnO/SiC heterojunction-Prepared.2012
    156黄维,陈之战,陈义,et al.组合材料方法研究膜厚对Ni/SiC电极接触性质的影响.物理学报.2010(5):3466-3472
    157 JA Costello, RE Tressler. Oxidation Kinetics of Hot-Pressed and Sintered a-SiC. Journal of the American Ceramic Society.1981,64(6):327-331
    158 H.S. Lee, M. Domeij. C.M. Zetterling, et al. Surface passivation oxide effects on the current gain of 4H-SiC bipolar junction transistors. Applied Physics Letters.2008,92:082113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700