Zernike相衬波前传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从空间滤波的原理出发,推导出Zernike相衬波前传感技术的理论公式,突破了经典相衬法的弱相位近似条件,得出在一般相位条件下差分型相衬传感器的输出光强与入射光波的波前相位之间点与点一一对应成正弦函数关系的结论,表明其作为一种高分辨率波前传感技术在自适应光学系统中有广阔的应用前景。为了检验相衬波前传感技术的测量误差,本文通过数值模拟的方法,根据理想相移条件下的差分型相衬传感器的输出光强进行了波前复原及误差分析,结果表明该技术的测量误差在可以接受的范围之内,当入射波前畸变较小时误差较小,当波前畸变较大时测量误差与相位复原过程中的相位解包裹技术的精确度密切相关。针对传统相衬法对波前倾斜像差的高度敏感性,本文介绍了一种基于光寻址铁电液晶空间光调制器的差分型相衬波前传感系统。最后,本文将相衬法与几种传统的波前传感技术进行了性能比较。
Starting from the principle of spatial filtering, the theoretical formulas of Zernike’s phase contrast wave-front sensing technology are deduced, and the small phase distortion limitation in the traditional phase contrast method is relaxed. In the general phase condition, the output intensity of the differential phase contrast wave-front sensor presents a point to point sine function’s relationship with the input phase in its pupil, which means that there is a huge potentiality to use it as a high resolution wave-front sensor in the adaptive optics (AO) system. In order to the check the measuring error of the sensor, the phase is reconstructed according to the output intensity of the differential sensor in the ideal phase shifting condition and the comparison between it with the input phase is also made by means of numerical simulation. It is demonstrated that the measuring error is acceptable when the amplitude of the input phase distortion is small, and it also relates with the accuracy of the phase unwrapping when the amplitude of the phase distortion is large. A differential phase contrast wave-front sensing system based on an optical addressed ferroelectric liquid crystal spatial light modulator (OA-FLCSLM) is introduced, different from the traditional phase contrast method which is highly sensitive to the wave-front tilt. At last, a comparison of some important performance characteristics between the phase contrast method with several other kinds of traditional wave-front sensing technology is made.
引文
[1] 周仁忠主编,自适应光学,北京:国防工业出版社,1996
    [2] 姜文汉,自适应光学技术,自然杂志,2006,28(1):7-13
    [3] 李新阳,《自适应光学系统模式复原算法和控制算法的优化研究》,中科院光电技术研究所博士学位论文,2000
    [4] 张德良,《自适应光学系统在战术强激光系统中的应用研究》,中科院光电技术研究所博士学位论文,1997
    [5] 张强,《氧碘化学激光器光束净化》,四川大学博士学位论文,1999
    [6] 姜文汉,光电技术研究所的自适应光学技术,光电工程,1995,22(1):1-13
    [7] 鲜浩等,用 Hartmann-Shack 传感器测量激光光束的波前相位,光电工程,1995,22(2): 46-49
    [8] 张志伟,《自适应光学在空间光学遥感器上的应用研究》,北京理工大学博士学位论文,1999
    [9] 伍波,《激光小尺度畸变波前检测与控制研究》,四川大学硕士学位论文,2004
    [10] E.E.Bloemhof , J.A.Westphal , Design considerations for a novel phase-contrast adaptive-optic wavefront sensor,SPIE,2002,4494:363-370
    [11] E.E.Bloemhof,J.K.Wallace,Phase-contrast wavefront sensing for adaptive optics,SPIE,2004,5553:159-169
    [12] E.E.Bloemhof, J.K.Wallace, Phase contrast techniques for wavefront sensing and calibration in adaptive optics,SPIE,2003,5169:309-320
    [13] E.E.Bloemhof,J.K.Wallace,Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics,Opt. Express,2004,12:6240-6245
    [14] E.E.Bloemhof,J.K.Wallace,Basic system design of a broad-band, real-time phase contrast wavefront sensor for adaptive optics,SPIE,2005,5903:295-303
    [15] E.W.Justh,M.A.Vorontsov,Adaptive wavefront control using a nonlinear Zernike filter,SPIE,2000,4124:189-200
    [16] E.W.Justh,M.A.Vorontsov,Nonlinear analysis of a high-resolution optical wave-front control system,IEEE,2000,39:3301-3306
    [17] M.A.Vorontsov,E.W.Justh,etc.,Advanced phase-contrast techniques for wavefront sensingand adaptive optics,SPIE,2000,4124:98-109
    [18] M.A.Vorontsov,E.W.Justh,etc.,Adaptive optics with advanced phase-contrast techniques. I. High-resolution wave-front sensing,J.Opt.Soc.Am.,2001,18(6):1289-1298
    [19] E.W.Justh,M.A.Vorontsov,etc.,Adaptive optics with advanced phase-contrast techniques. II. High-resolution wavefront control,J.Opt.Soc.Am.,2001,18(6):1300-1311
    [20] G.W.Carhart,M.A.Vorontsov,Adaptive aberration correction based on an opto-electronic Zernike wave front sensor and the decoupled stochastic parallel gradient descent control technique,SPIE,2002,4493:166-173
    [21] M.K.Giles,A.J.Seward,T.M.Giles,Closed-loop phase-contrast adaptive optics system using liquid crystal phase modulators: experimental results,SPIE,2002,4493:174-183
    [22] M.A.Vorontsov,Decoupled stochastic parallel gradient descent optimization for adaptive optics integrated approach for wave-front sensor information fusion,J.Opt.Soc.Am.,2002,19(2):356-368
    [23] L.Beresnev,M.A.Vorontsov,J.Gowens,Dynamical phase distorsion sensing with non-linear Zernike filter based on FLC light valve,Ferroelectrics,2002,278:177-189
    [24] L.Beresnev,M.A.Vorontsov,J.Gowens,Sub-millisecond phase contrast wavefront sensor based on an optically addressed ferroelectric liquid crystal spatial light modulator,SPIE,2002,4493:71-79
    [25] A.V.Koryabin,M.A.Vorontsov,L.A.Beresnev,Wave front measurements of distant distorting layers along propagation path,SPIE,2003,5162:103-112,
    [26] E.W.Justh,P.S.Krishnaprasad,M.A.Vorontsov,Analysis of a high-resolution optical wave-front control system,Automatica,2004,40:1129-1141
    [27] M.A.Vorontsov,E.W.Justh,etc.,Wavefront phase sensors using optically or electrically controlled phase spatial light modulators,United States Patent,Patent No.: US6911637B1,Date: Jun.28, 2005
    [28] 候静,《自适应光学波前探测新概念研究》,国防科技大学硕士学位论文,2002
    [29] 李新阳,姜文汉等,湍流大气中哈特曼传感器的模式波前复原误差,强激光与粒子束,2000,12(2):149-154
    [30] 李大海,《激光光束波前畸变的径向剪切干涉诊断及其控制新方法研究》,四川大学博士学位论文,2002
    [31] 向华,《点衍射干涉仪的干涉图像处理》,北京理工大学硕士学位论文,2001
    [32] 唐福元,泽尔尼克与相衬显微镜,物理与工程,2004,14(4):45-47
    [33] F.Zernike,How I discovered phase contrast,Science,1955,121:345–349
    [34] 刘晓元,《普通显微镜改装成相衬显微镜的研制》,国防科技大学硕士学位论文,1996
    [35] 张逸新,迟泽英编著,光波在大气中的传输与成像,北京:国防工业出版社,1997
    [36] J.W.顾德门著,顾本源等译,傅立叶光学导论,北京:科学出版社,1976
    [37] A.Seward,F.Lacombe,M.Giles,Focal plane masks in adaptive optics systems,SPIE,1999,3762:283-293
    [38] 黄佐华,岑剑常等,白光相衬实验,华南师范大学学报,1988,1:118-124
    [39] 于起峰,陆宏伟,刘肖琳著,基于图像的精密测量与运动测量,北京:科学出版社,2002
    [40] 朱振才,秦伟芳,铁电液晶空间光调制器,激光与红外,1995,25(5):21-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700