光折变非线性表面波的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光折变表面波是一种可沿光折变非线性介质表面传播的光波,它能将光能量约束在光折变介质近表面狭层空间。其高能量密度的特点和可沿直线传播而实现的相位匹配,使各种表面非线性光学效应得以增强。因此,光折变表面波在波导制备、谐波产生和集成光学器件设计等方面具有潜在的应用价值。
     尽管人们对光折变表面波已经有了较深入的了解,但对光折变表面波的产生机制、模式调控及其稳定性等很多问题都还需要做进一步的研究。此外,随着双光子光折变晶体以及聚合物和液晶等新型光折变材料的发展,材料的光折变性能也比传统的无机晶体有了长足的提高和优化。本论文围绕光折变表面波相关问题作了系统的研究,主要内容包括:
     (1)研究了光折变表面波的产生机制,较系统地分析了光折变效应的三种非线性机制,扩散、漂移和光生伏打效应,对光折变表面波的作用。指出扩散非线性是光折变表面波形成的本质原因,漂移非线性和光伏非线性并不是光折变表面波形成的必要因素,但是可利用它们对光折变表面波模式进行调控。
     (2)研究了光折变表面波的激发和模式特征,给出了光折变表面波的模式与光波入射角和传播常数的关系,较大的入射角对应较大的传播常数和低阶模式的表面波,较小的入射角对应较小的传播常数和高阶模式的表面波。
     (3)分析了光折变表面波的稳定性。建立了等效振子模型并利用该模型实现了对光折变表面波稳定性的直观定量分析,指出外加电场存在一个阈值Eth=(k02n2-β2)/k02n4reff,如果电场高于此阈值,光折变表面波的稳定性将会被破坏同时利用快速傅里叶变换光束传播理论对稳定性进行了测试。
     (4)研究了双光子光折变晶体中光折变表面波的形成机制与特点。单光子光折变表面波所诱导的表面波导可以方便地被擦洗掉,但同时这种可擦洗性也使得表面波导存在不稳定性因素,不利于长期保存。由于双光子光折变效应特殊的两步激发机制,双光子光折变表面波可以诱导出不可擦洗的表面波导,这为表面波导永久性存储问题的解决提供了有效方案。
     (5)系统地研究了聚合物和液晶光折变材料中的光折变表面波。相对无机光折变晶体,聚合物和液晶光折变材料具有成本低廉、结构可控、工作波长范围宽、易于加工等优点,而且其光折变性能也比无机光折变晶体高出很多。我们建立了聚合物和液晶光折变表面波的理论分析模型,研究结果表明外电场不仅可以调节光折变表面波的空间频率,还可以有效地控制其贯穿深度,而且聚合物和液晶光折变表面波还具有较独特的偏振依赖性,比起无机光折变表面波更加灵活可控。此外,液晶光折变表面波的激发和调控所需的外加电场很低。以上特点使光折变表面波的性能得以提高,并有望得到更广泛的实际应用。
     本论文对光折变表面波进行了系统性的研究,创新点如下:
     1.首次建立了光折变表面波的等效振子模型,证明了扩散机制是形成光折变表面波的本质原因,漂移非线性和光伏非线性不是光折变表面波形成的必要因素,但是可利用它们对光折变表面波模式进行调控。给出了光折变表面波的模式与入射角和传播常数的关系,并提出了基于等效振子模型的稳定性分析方法,可定量分析外电场对表面波稳定性的影响。
     2.首次提出在双光子光折变介质中可以形成光折变表面波,从而诱导出可长期保存的表面波导。
     3.首次建立了有机聚合物和液晶光折变表面波的理论分析框架,并从理论上证明了在液晶光折变材料表面可以形成光折变表面波。由于聚合物和液晶材料特殊的取向增强光折变效应,外加电场不仅可以改变聚合物光折变表面波和液晶光折变表面波的空间频率,还可以有效地控制其贯穿深度。
The photorefractive surface waves (PR SWs) are a kind of waves which can propagate along the surface of the photorefractive materials. The most attractive feature of PR SWs is that the concentration of beam energy with high intensity in the narrow surface layer, which ensures various nonlinear surface optical phenomena to be enhanced. So PR SWs are potentially useful for waveguide fabrication, harmonic generation, integrated optics technique and so on.
     Although some elementary research about PR SWs has been done, there are still many problems, such as the formation mechanism, mode modulation, and stability of PR SWs, need to be studied further. In addition, with the development of new photorefractive materials, such as two-photon photorefractive crystal, photorefractive polymer and liquid crystal, the photorefractive performance has been improved dramatically. In this dissertation, the PR SWs are studied systematically. The main contents are shown as follows:
     (1) The formation mechanism of PR SWs is studied. The influences of diffusion, drift, and photovoltaic effect on the PR SWs are analyzed. The analytical results show that:diffusion nonlinearity is the essential cause for the formation of PR SWs. The drift and photovoltaic nonlinearity are not necessary in the formation of PR SWs;but they can be used to modulate the modes of PR SWs.
     (2) The generation and mode characteristics of PR SWs are analyzed; the relationship between the modes of PR SWs and the incident angles or propagating constants was presented:the large angles of incidence correspond to the large propagating constants and low-frequency modes, while the small angles of incidence correspond to the small propagating constants and high-frequency modes.
     (3) The stability of PR SWs is analyzed. The equivalent oscillator model is presented and used to do quantitative analysis of the PR SWs'stability. The analytical results show that:the electrical field has a threshold as Eth=(k02n2-β2)/k02n4reff, above which the PR SWs will be destructed. The spatial-partition fast Fourier transform beam propagation theory is used to test the stability of PR SWs.
     (4) The formation and properties of PR SWs in two-photon photorefractive medium are studied. The surface waveguides induced by single-photon PR SWs can be erased and recorded easily. However, the recording reversibility also makes them volatile and can not be stored for long period. Due to the two step photorefractive mechanism, the two-photon PR SWs can induce surface waveguides with no erasure problem, which supplies a feasible method for creating permanent surface waveguides.
     (5) The PR SWs in photorefractive polymer and liquid crystal are studied systematically. Organic photorefractive materials can provide many advantages over the traditional inorganic crystals, which include cheapness, flexibility of fabrication, wide working wavelength range, ease of processing, and improvement of PR effect. In this dissertation, the theoretic models for PR SWs in polymer and liquid crystal are presented, the analytical results show that:the applied external electric field can change not only the spatial frequency but also the penetration depth of the polymeric and liquid crystal PR SWs. Moreover, the properties of PR SWs in polymer and liquid crystal are polarization-dependent. Additionly, the PR SWs in liquid crystal can be excitated and modulated with much low electric field. These properties make the PR SWs in polymer and liquid crystal more controllable than that in inorganic photorefractive crystals. By taking advantage of the above characteristics, the performance of PR SWs can be improved dramatically and used widely.
     In this dissertation, the PR SWs are studied systematically. The innovative points are as follows:
     1. The equivalent oscillator model is presented for the first time. It is shown theoretically that the diffusion nonlinearity is necessary in the formation of PR SWs, while the drift and photovoltaic nonlinearity are not essential causes for the formation of PR SWs;but they can be used to modulate the modes of PR SWs. The relationship between the modes of PR SWs and the incident angles or propagating constants was presented. The method based on equivalent oscillator model to anlyze the stability is presented and can used to analyze quantitatively the influence of the applied external electric field on PR SWs.
     2. We predict that the PR SWs can be supported by two-photon photorefractive medium. The two-photon PR SWs can induce surface waveguides that can be stored for long period.
     3. The theoretical framework for PR SWs in polymer and liquid crystal is presented. It is shown theoretically that PR SWs can form in photorefractive liquid crystal. Due to the orientationally enhanced photorefractive effect, the applied external electric field can change not only the spatial frequency but also the penetration depth of the PR SWs in polymer and liquid crystal.
引文
[1]刘思敏,郭儒,许京军,编著.光折变非线性光学及其应用.北京:科学出版,2004
    [2]Yeh P. Introduction to Photorefractive Nonlinear Optics. New York:John Wiley and Sons, 1993
    [3]Garcia Quirino G S, Sanchez-Mondragon J J, Stepanov S. Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity. Phys. Rev. A,1995, 51(2):1571~1577
    [4]Smolyaninov 11, Lee C H, and Davis C C. Giant Enhancement of Surface Second Harmonic Generation in BaTiO3 due to Photorefractive Surface Wave Excitation. Phys. Rev. Lett,1999, 83:2429~2432
    [5]Zhang T H, Yang J, Kang H Z, et al. Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism. Phys. Rev. B,2006,73:153402(1~3)
    [6]Kamshilin A A, Raita E, Prokofiev V V, et al. Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber. Appl. Phys. Lett,1995,67(22):3242~3244
    [7]Shao W W, Li L, Liu W W, et al. Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves. Appl. Phys. Lett,2009,95:211105(1~3)
    [8]Bai Y S and Kachru R. Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers. Phys. Rev. Lett,1997,78:2944~2947
    [9]Ramadan W, Fazio E, Mascioletti A, et al. Stationary self-confined beams at 633 nm in Bi12SiO20 crystals. J. Opt. A:Pure Appl. Opt,2003,5:S432~S436
    [10]Castro-Camus E and Magana L F. Prediction of the physical response for the two-photon photorefractive effect. Opt. Lett,2003,28:1129~1131
    [11]Nishioka H, Hayasaka K, Ohta S, et al. Femtosecond pulse amplification by a two-photon arranged photorefractive amplifier. Opt. Exp,2007,15:4830-4834
    [12]Ducharme S, Scott J C, Twieg R J, et al. Observation of the photorefractive effect in a polymer. Phys. Rev. Lett,1991,66:1846~1849
    [13]Khoo I C, Li H, and Liang Y. Observation of orientational photorefractive effects in nematic liquid crystals. Opt. Lett,1994,19:1723~1725
    [14]Pasquale P, Cipparrone G. Dynamic grating features for the surface-induced photorefractive effect in undoped nematics. J. Opt. Soc. Am. B,2004,21:996~1004
    [15]Pagliusi P, Provenzano C, Cipparrone G. Surface-induced photorefractivity in twistable nematics:toward the all-optical control of gain. Opt. Exp,2008,16:16343~16351
    [16]Ostroverkhova O, and Moerner W E, Organic Photorefractives:Mechanisms, Materials, and Applications. Chem. Rev,2004,104:3267~3314
    [17]Fujihara T, Sassa T, Muto T, et al. Surface waves in photorefractive polymer films. Opt. Exp, 2009,17:14151~14155
    [18]沈元壤.非线性光学原理:下册.北京:科学出版社,1987
    [19]Daisy R, Fischer B. Light waves at the interface of linear and photorefractive media. J Opt Soc Am B,1994,11 (6):1059~1063
    [20]Cronin-Golomb M. Photorefractive surface waves. Opt. Lett,1995,20(20):2075~2077
    [21]Garcia Quirino G S, Sanchez Mondragon J J, Stepanov S, et al. Guided modes in a dielectric slab with diffusion-type photorefractive nonlinearity. J. Opt. Soc. Am. B,1996,13 (11): 2530~2535
    [22]Torres-Cordoba R, Sanchez-Mondragon J J, Vysloukh V A. Propagation of spatial surface waves along the interface of photorefractive crystals. J. Opt. Soc. Am. B,2001,18(4): 540~546
    [23]Zhang T H, Ren X K, Wang B H, et al. Modes of photorefractive surface waves. J. Mod. Optic,2007,54(10):1445~1452
    [24]Zhang T H. Shao W W. Li K, et al. TE, TM modes photorefractive surface waves and their coupling. Opt.Comm,2008,281:1286~1292
    [25]Smolyaninov I I. Davis C C. Near-field optical study of photorefractive surface waves in BaTiO3 Opt. Lett,1999,24(19):1367~1369
    [26]Zhang T H, Yang J, Kang H Z, et al. Photorefractive surface waves at the interface of Sr0.6Ba0.4NbO3 and air with diffusion mechanism, J. Mod. Opt,2007,54(8):1165~1171
    [27]Belyi V N, Khilo N A. Surface light waves on the boundary of a photorefractive crystal with a diffusion-drift nonlinearity mechanism. Tech. Phys. Lett,1997,23 (6):467~468
    [28]Zimin A B, Petrov N S. Optical bistability in radiation reflection from the boundary of a photorefractive crystal with the drift-diffusion nonlinearity mechanism. Opt. Spectrosc,2001, 90(6):896~901
    [29]Petrov N S, Zimin A B. Surface electromagnetic waves at the interface of photorefractive crystals with a drift-diffusion nonlinearity mechanism. Opt. Spectrosc,2002,93(1):90~93
    [30]Aleshkevich V A, Vysloukh V A, Egorov A A. Nonlinear surface waves in photorefractive crystals. SPIE 1998,3404:384~387
    [31]Aleshkevich V, Vysloukh V A, Kartashov Y. Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity. Opt. Quantum Electron,2001,33:1205~1221
    [32]Aleshevich V, Kartashov Y, Egorov A. Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary. Phys. Rev. E,2001,64:056610(1~11)
    [33]Alvarado-Mendez E, Ojeda-Aguirre N A, Santos-Aguilar O, et al. Self-bending of spatial solitons in a nonlinear interface governed by drift and diffusion mechanism. SPIE,2001,4419: 530~533
    [34]Alvarado-Mendez E, Andrade-Lucio J A, Rojas-Laguna R, et al. Quasi-surfaces waves under drift and diffusion mechanism in nonlinear interfaces. Rev. Max. Fis,2004,50(5):478~483
    [35]Zhang T H, Ren X K, Wang B H, et al. Surface waves with photorefractive nonlinearity. Phys. Rev. A,2007,76:013827(1-7)
    [36]Ren X K, Zhang T H, Ma H H, et al. Surface waves in two-photon photorefractive media. Appl. Opt,2010,49:2215~2219
    [37]张天浩,路彦珍,康慧珍,等.铌酸锶钡光折变表面电磁波实验.物理学报,2005,54(10):4688~4691
    [38]Zhang T H, Yang D P, Lu Y Z, et al. Theoretical Research of PR SEW at the LiNbO3-Air Interface. In:G Q Zhang and D Kip, eds. Trends in Optics and Photonics Series, Photorefractive Effects, Materials, and Device. Washington D C:Optical Society of America, 2005, Vol 98 of OSA proceedings series,451~456
    [39]Khomenko A V, Garcia-Weidner A, Kamshilin A A. Amplification of optical signals in Bi12TiO20 crystal by photorefractive surface waves. Opt. Lett,1996,21(14):1014~1016
    [40]Khomenko A V, Garcia-Weidner A, Tentori D. Enhanced beam amplification in a photorefractive Bi12TiO20 crystal by internal reflections. Opt. Lett,1996,21(11):776~778
    [41]Kang H Z, Zhang T H. Ma H H, et al. Giant Enhancement of Surface Second Harmonic Generation using Photorefractive Surface waves with Diffusion and Drift Nonlinearities. Opt. Lett,2010,35:1605~1607
    [42]H. Z. Kang, Zhang T H, Wang B H, et al. (2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities. Opt. Lett,2009,34:3298~3300
    [1]刘思敏,郭儒,许京军,编著.光折变非线性光学及其应用.北京:科学出版,2004
    [2]Yeh P. Introduction to Photorefractive Nonlinear Optics. New York:John Wiley and Sons, 1993
    [3]Saleh B E A, Teich M C. Fundamentals of Photonics. New York:John Wiley and Sons,1991
    [4]Chen F S, LaMacchia J T, Fraser D B. Holographic Storage in Lithium Niobate. Appl. Phys. Lett,1968,13:223~224 Chen F S. Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3. J. Appl. Phys,1969,40 (8):3389~3396
    [5]Staebler D L, Amodei J J. Coupled-Wave Analysis of Holographic in LiNbO3. J. Appl. Phys, 1972,43:1042~1049
    [6]Glass A M, vonder L D, Negran T J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 Appl. Phys. Lett,1974,25:233~235
    [7]Lostritskii S M, Sevostyanov D G. Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals. Appl. Phys.B,1997,65:527~533
    [8]Bai Y S, Kachru R. Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers. Phys. Rev. Lett.1997,78:2944~2947
    [9]Ramadan W, Fazio E, Mascioletti A, et al. Stationary self-confined beams at 633 nm in Bi12SiO20 crystals. J. Opt. A, Pure Appl. Opt,2003,5:S432-S436
    [10]Vlad V I, Petris A, Bosco A, et al.3D-soliton waveguides in lithium niobate for femtosecond light pulses. J. Opt. A, Pure Appl. Opt,2006,8:S477-S482
    [11]Castro-Camus E, Magana L F. Prediction of the physical response for the two-photon photorefractive effect. Opt. Lett.2003,28:1129~1131
    [12]Nishioka H, Hayasaka K, Ohta S, et al. Femtosecond pulse amplification by a two-photon arranged photorefractive amplifier. Opt. Exp.2007,15:4830~4834
    [13]Ducharme S, Scott J C, Twieg R J, et al. Observation of the photorefractive effect in a polymer. Phys. Rev. Lett,1991,66:1846~1849
    [14]Ostroverkhova O, and Moerner W E, Organic Photorefractives:Mechanisms, Materials, and Applications. Chem. Rev,2004,104:3267-3314
    [15]Moerner W,Silence S, Hache F, et al. Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B,1994,11:320~330
    [16]Khoo I C, Li H, Liang Y, Observation of orientational photorefractive effects in nematic liquid crystals. Opt. Lett,1994,19,1723~1725
    [17]Khoo I C, Orientational photorefractive effects in nematic liquid crystal films. IEEE J. Quantum. Electron,32:1996,525~534
    [18]Chen Z, Wang F, Zhang B, et al. The design, fabrication and property study for photorefractive applications of novel organic materials. Opt. Mater,2003,23:253~259
    [19]Yoshimoto N, Morino S, Nakagawa M, et al. Holographic Bragg gratings in a photoresponsive cross-linked polymer-liquid-crystal composite. Opt. Lett,2002,27:182~184
    [20]Wiederrecht G P, Yoon B, Svec W A, et al. Photorefractivity in Nematic Liquid Crystals Containing Electron Donor-Acceptor Molecules That Undergo Intramolecular Charge Separation. J. Am. Chem. Soc,1997,119:3358~3364
    [21]Pei Y, Yao F, Hou C, et al. High diffraction efficiency and a quasi-permanent grating in photorefractive nematic liquid crystal at low temperature. Opt. Lett,2005,30:631~633
    [22]Khoo I C, Liquid Crystals.2th Ed. New Jersey:John Wiley & Sons, Inc,2007
    [23]曹少魁,石军,张丽,编著.有机光折变材料.北京:科学出版社,2009
    [24]Hendrickx E, Volodin B L, Steele D D, et al. Phase stability of guest/host photorefractive polymers studied by light scattering experiments. Appl. Phys. Lett,1997(71):1159~1161
    [25]Okamoto K, Nomura T, Park S H, et al. Synthesis and characterization of photorefractive polymer containing electron transport material. Chem. Mater,1999(11):3279~3284
    [26]Wang L M, Ng M K, Yu L P. Complementary holographic gratings through electron-hole transport in a fully functionalized photorefractive molecular glass. Phys. Rev. B,2000(62): 4973~4984
    [27]You W, Hou Z, Yu L P. Dramatic enhancement of photorefractive properties by controlling the electron trap density in a monolithic material. Adv. Mater,2004(16):356~360
    [28]Schildkraut J S, Buettner A V, Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys,1992,72:1888~1893
    [29]Melz P J, Photogeneration in trinitrofluorenone-poly(n-vinylcarbazole). J. Chem. Phys.1972, 57:1694~1699
    [30]Rudenko E V, Sukhov A V. Photoinduced electrical conductivity and photorefraction in nematic liquid crystals. J. Exp. Theor. Phys. Lett,1994,59:142~146
    [31]Rudenko E V, Sukhov A V. Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity. J. Exp. Theor. Phys.1994,78:875~882
    [32]王新久,液晶光学和液晶显示.北京:科学出版社,2006
    [1]Daisy R, Fischer B. Light waves at the interface of linear and photorefractive media. J. Opt. Soc. Am. B,1994,11 (6):1059~1063
    [2]Garcia Quirino G S, Sanchez-Mondragon J J, Stepanov S. Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity. Phys. Rev. A,1995, 51(2):1571~1577
    [3]Garcia Quirino G S, Sanchez Mondragon J J, Stepanov S, et al. Guided modes in a dielectric slab with diffusion-type photorefractive nonlinearity. J. Opt. Soc. Am. B,1996,13(11): 2530~2535
    [4]Torres-Cordoba R, Sanchez-Mondragon J J, Vysloukh V A. Propagation of spatial surface waves along the interface of photorefractive crystals. J. Opt. Soc. Am. B,2001,18(4): 540~546
    [5]Cronin Golomb M, Photorefractive surface waves, Opt Lett,1995,20(20):2075~2077
    [6]Smolyaninov I I and Davis C C, Near-field optical study of photorefractive surface waves in BaTiO3,Opt. Lett,1999,24(19):1367~1369
    [7]Zhang T H, Ren X K, Wang B H, et al. Modes of photorefractive surface waves. J. Mod. Optic, 2007,54(10):1445~1452
    [8]Zhang T H, Shao W W, Li K, et al. TE, TM modes photorefractive surface waves and their coupling. Opt. Commun,2008,281:1286~1292
    [9]Zhang T H, Yang J, and Kang H Z, et al. Photorefractive surface waves at the interface of Sr0.6Ba0.4NbO3 and air with diffusion mechanism, Journal of Modern Optics,2007,54(8): 1165~1171
    [10]Zhang T H, Wang B H, Ren X K, et al. Influence of the external field on photorefractive surface waves, Opt. Commun,2006,256:649~654
    [11]Zimin A B, Petrov N S. Optical bistability in radiation reflection from the boundary of a photorefractive crystal with the drift-diffusion nonlinearity mechanism. Opt. Spectrosc,2001, 90(6):896~901
    [12]Belyi V N, Khilo N A. Surface light waves on the boundary of a photorefractive crystal with a diffusion-drift nonlinearity mechanism. Tech. Phys. Lett,1997,23 (6):467~468
    [13]Petrov N S, Zimin A B. Surface electromagnetic waves at the interface of photorefractive crystals with a drift-diffusion nonlinearity mechanism. Opt. Spectrosc,2002,93(1):90~93
    [14]Aleshkevich V, Vysloukh V A, Kartashov Y. Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity. Opt. Quantum Electron,2001,33:1205~1221
    [15]Aleshkevich V A, Vysloukh V A, Egorov A A. Nonlinear surface waves in photorefractive crystals. SPIE 1998,3404:384~387
    [16]Aleshevich V, Kartashov Y, Egorov A. Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary. Phys. Rev. E,2001,64:056610(1~11)
    [17]Alvarado-Mendez E, Ojeda-Aguirre N A, Santos-Aguilar O, et al. Self-bending of spatial solitons in a nonlinear interface governed by drift and diffusion mechanism. SPIE,2001,4419: 530~533
    [18]Alvarado-Mendez E, Andrade-Lucio J A and Rojas-Laguna R, et al. Quasi-surfaces waves under drift and diffusion mechanism in nonlinear interfaces. Rev. Max. Fis,2004,50(5): 478~483
    [19]张天浩,路彦珍,康慧珍,等.铌酸锶钡光折变表面电磁波实验.物理学报,2005,54(10):4688~4691
    [20]Zhang T H, Kang H Z, Lu Y Z, et al. Photorefractive Surface Electromagenetic Waves at the Interface between SBN Crystal and Air. In:G Q Zhang and D Kip, eds. Trends in Optics and Photonics Series, Photorefractive Effects, Materials, and Device. Washington DC:Optical Society of America,2005. Vol 98 of OSA proceedings series,412~415
    [21]Zhang T H, Ren X K, Wang B H, et al. Surface waves with photorefractive nonlinearity. Phys Rev A.2007.76:013827(1~7)
    [22]Smolyaninov I I, Lee C H, Davis C C. Giant Enhancement of Surface Second Harmonic Generation in BaTiO3 due to Photorefractive Surface Wave Excitation. Phys. Rev. Lett,1999, 83:2429~2432
    [23]Zhang T H. Yang J, Kang H Z. et al. Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism. Phys. Rev. B.2006,73:153402(1~3)
    [24]Kamshilin A A, Raita E, Prokofiev V V. et al. Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber. Appl. Phys. Lett,1995,67(22):3242~3244
    [25]Shao W W, Li L, Liu W W, et al. Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves. Appl. Phys. Lett.2009,95:211105(1-3)
    [26]刘思敏,郭儒,许京军,编著.光折变非线性光学及其应用.北京:科学出版,2004.6,136~182
    [27]Christodoulides D N, Carvalho M I, Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B,1995,12:1628~1633
    [28]Crosignani B, Segev M, Engin D. Self-trapping of optical beams in photorefractive media. J. Opt. Soc. Am. B,1993,10:446~453
    [29]Thylen L. The beam propagation method:an analysis of its applicability. Opt. Quantum Electron,1983,15:433~439
    [30]Kawano K, Kitoh T. Introduction to optical waveguide analysis. John Wiley & Sons, Inc New York,2001,165~177
    [31]Zang W P, Cheng H, Tian J G. A novel three-dimensional wide-angle beam propagation method based on split-step Fast Fourier Transform. Chin. Phys. Lett,2009,26:024202
    [32]Pantelakis P, Kriezis E E. Modified two-dimensional fast Fourier transform beam propagation method for media with random variations of refractive index. J. Opt. Soc. Am. A, 1996,13:1884~1890
    [33]Xu C L, Huang W P. Finite difference beam propagation method for guide-wave optics. Progress in Electromagnetics Research,1995, PIER 11:1~49
    [34]Bhattacharya D, Sharma A. Finite difference split step method for non-paraxial semivectorial beam propagation in 3D. Opt. Quantum Electron,2008,40:933~942
    [35]Hayata K, Misawa A, Koshiba M. Split-step finite-element method applied to nonlinear integrated optics. J. Opt. Soc. Am. B,1990,7:1772~1784
    [36]Feit M D, Fleck J A, et al. Computation of mode properties in optical fiber waveguides by a propagating beam method. Appl Opt,1980,19:1154~1164
    [37]Liu J, Banerjee P P, Song Q W. Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3. J. Opt. Soc. Am. B,1994,11:1688~1693
    [1]Garcia-Quirino G S, Sanchez-Mondragon J J, Stepanov S. Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity. Phys. Rev. A,1995,51: 1571-1577
    [2]Cronin-Golomb M, Photorefractive surface waves. Opt. Lett,1995,20:2075~2077
    [3]Smolyaninov I I, Davis C C. Near-field optical study of photorefractive surface waves in BaTiO3. Opt Lett,1999,24(19):1367~1369
    [4]Aleshkevich V, Vysloukh V, Kartashov Y. Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity. Opt. Quant. Electron,2001,33:1205~1221
    [5]Garcia Quirino G S, Sanchez Mondragon J J, Stepanov S, et al. Guided modes in a dielectric slab with diffusion-type photorefractive nonlinearity. J. Opt. Soc. Am. B,1996,13 (11): 2530~2535
    [6]Zhang T H, Shao W W, Li K. et al. TE. TM modes photorefractive surface waves and their coupling. Opt. Commun,2008,281:1286~1292
    [7]Zhang T H, Yang J, Kang H Z, et al. Photorefractive surface waves at the interface of Sr0.6Ba0.4NbO3 and air with diffusion mechanism, J. Mod. Optic,2007,54(8):1165~1171
    [8]Zhang T H. Ren X K. Wang B H. et al. Modes of photorefractive surface waves. J. Mod. Optic, 2007,54(10):1445~1452
    [9]Zhang T H, Ren X K, Wang B H, et al. Surface waves with photorefractive nonlinearity. Phys. Rev. A,2007,76:013827(1-7)
    [10]Smolyaninov I I, Lee C H, Davis C C. Giant Enhancement of Surface Second Harmonic Generation in BaTiO3 due to Photorefractive Surface Wave Excitation. Phys. Rev. Lett,1999, 83:2429~2432
    [11]Zhang T H, Yang J, Kang H Z, et al. Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism. Phys. Rev. B,2006,73:153402(1~3)
    [12]Kamshilin A A, Raita E, Prokofiev V V, et al. Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber. Appl. Phys. Lett,1995,67(22):3242~3244
    [13]Shao W W, Li L, Liu W W, et al. Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves. Appl. Phys. Lett.2009,95:211105(1~3)
    [14]Bai Y S, Kachru R. Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers. Phys. Rev. Lett,1997,78:2944~2947
    [15]Ramadan W, Fazio E, Mascioletti A, et al. Stationary self-confined beams at 633 nm in Bi12SiO20 crystals. J. Opt. A:Pure Appl. Opt,2003,5:S432~S436
    [16]Vlad V I, Petris A, Bosco A, et al.3D-soliton waveguides in lithium niobate for femtosecond light pulses. J. Opt. A:Pure Appl. Opt.2006,8:S477~S482
    [17]Castro-Camus E and Magana L F. Prediction of the physical response for the two-photon photorefractive effect. Opt. Lett.2003,28:1129~1131
    [18]Nishioka H, Hayasaka K, Ohta S, et al. Femtosecond pulse amplification by a two-photon arranged photorefractive amplifier. Opt. Exp.2007,15:4830~4834
    [19]Hou C F, Pei Y B, Zhou Z X, et al. Spatial solitons in two-photon photorefractive media. Phys. Rev. A,2005,71:053817(1~6)
    [20]Lu K, Zhao W, Yang Y, et al. One-dimensional incoherently coupled grey solitons in two-photon photorefractive media. Appl. Phys. B,2007,87(3):469~473
    [21]Zhang G Y, Liu J S, Screening-photovoltaic spatial solitons in biased two-photon photovoltaic photorefractive crystals. J. Opt. Soc. Am. B,2009,26,113~120
    [22]Ren X K, Zhang T H, Ma H H, et al. Surface waves in two-photon photorefractive media. Appl. Opt,2010,49:2215~2219
    [23]Liu B, Liu L, Xu L. Characteristics of Recording and Thermal Fixing in Lithium Niobate. Appl. Opt.1998,37:2170~2176
    [1]Garcia-Quirino G S, Sanchez-Mondragon J J, and Stepanov S, Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity. Phys. Rev. A, 1995,51:1571~1577
    [2]Cronin-Golomb M, Photorefractive surface waves. Opt. Lett,1995,20:2075~2077
    [3]Smolyaninov I I, Davis C C. Near-field optical study of photorefractive surface waves in BaTiO3. Opt Lett,1999,24(19):1367~1369
    [4]Zhang T H, Ren X K, Wang B H, et al. Modes of photorefractive surface waves. J. Mod. Optic, 2007,54(10):1445~1452
    [5]Zhang T H, Ren X K, Wang B H, et al. Surface waves with photorefractive nonlinearity. Phys. Rev. A,2007,76:013827(1-7)
    [6]Ren X K, Zhang T H, Ma H H, et al. Surface waves in two-photon photorefractive media. Appl. Opt,2010,49:2215~2219
    [7]Smolyaninov I I, Lee C H, Davis C C. Giant Enhancement of Surface Second Harmonic Generation in BaTiO3 due to Photorefractive Surface Wave Excitation. Phys. Rev. Lett,1999, 83:2429~2432
    [8]Zhang T H, Yang J, Kang H Z, et al. Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism. Phys. Rev. B,2006,73:153402(1~3)
    [9]Kamshilin A A, Raita E, Prokofiev V V, et al. Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber. Appl. Phys. Lett,1995,67(22):3242~3244
    [10]Shao W W, Li L, Liu W W, et al. Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves. Appl. Phys. Lett.2009,95:211105(1~3)
    [11]Ducharme S, Scott J C, Twieg R J, et al. Observation of the photorefractive effect in a polymer. Phys. Rev. Lett,1991,66:1846~1849
    [12]Ostroverkhova O, Moerner W E. Organic Photorefractives:Mechanisms, Materials, and Applications. Chem. Rev,2004,104:3267~3314
    [13]Moerner W, Silence S, Hache F, et al. Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B,1994,11:320~330
    [14]Shih M, Sheu F, Photorefractive polymeric optical spatial solitons. Opt. Lett,1999,24: 1853~1855
    [15]Chen Z, Asaro M, Ostroverkhova O, et al. Self-trapping of light in an organic photorefractive glass. Opt. Lett,2003,28:2509~2511
    [16]Fujihara T, Sassa T, Muto T, et al. Surface waves in photorefractive polymer films. Opt. Exp, 2009,17:14151~14155
    [17]Khoo I C, Li H, Liang Y. Observation of orientational photorefractive effects in nematic liquid crystals. Opt. Lett,1994,19:1723~1725
    [18]Assanto A, Peccianti M. Spatial Soliton in Nematic Liquid Crystals. IEEE J. Quantum Electron,2003,39(1):13~21
    [19]Fratalocchi A, Assanto G, Brzdakiewicz K A, et al. Discrete propagation and spatial solitons in nematic liquid crystals. Opt. Lett.,2004,29(13):1530~1532
    [20]Ren X K, Yang D P, Zhang T H, et al. Polymeric photorefractive surface waves. Opt. Commun, (accepted)
    [21]Ren X K, Yang D P, Zhang T H, et al. Photorefractive surface waves in liquid crystal. J. Opt, 2010,12:055201(1~4)
    [22]Schildkraut J S, Buettner A V. Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys,1992,72:1888~1893
    [23]Melz P J. Photogeneration in trinitrofluorenone-poly(n-vinylcarbazole). J. Chem. Phys,1972, 57:1694~1699
    [24]Grunnet-Jepsen A, Thompson C L, Twieg R J, et al. High performance photorefractive polymer with improved stability. Appl. Phys. Lett,1997,70:1515~1517
    [25]Christodoulides D N, Carvalho M. Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B,1995,12:1628~1633
    [26]Sandalphon, Kippelen B, Meerholz K, et al. Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites. Appl. Opt,1996,35:2346~2354
    [27]Li L, Zhao Y, Li F, et al. Orientation-enhanced photorefractive effect in PVK-PBA:DR1:TNF polymer. Chin. Phys. Lett,2004,21:1535~1538
    [28]Moylan C R, Wortmann R, Twieg R J, et al. Improved characterization of chromophores for photorefractive applications. J. Opt. Soc. Am. B,1998,15:929~932
    [29]Schloter S, Hofmann U, Strohriegl P, et al. High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores. J. Opt. Soc. Am. B,1998,15:2473~2475
    [30]Wu J W. Birefringent and electro-optic effects in poled polymer films:steady-state and transient properties. J. Opt. Soc. Am. B,1991,8:142~152
    [31]Ono H, Kawatsuki N, High-performance photorefractivity in high-and low-molar-mass liquid crystal mixtures. J. Appl. Phys.1999,85:2482~2487
    [32]Pagliusi P, Macdonald R, Busch S, et al. Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation. J. Opt. Soc. Am. B,2001,18:1632-1638
    [33]Lee W, Chiu C S. Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes. Opt. Lett,2001,26:521-523
    [34]Kim K H, Kim E J, Lee S J, et al. Effects of applied field on orientational photorefraction in porphyrin:Zn-doped nematic liquid crystals. Appl. Phys. Lett,2004,85:366-368
    [35]Ono H, Kawamura T, Frias N M, et al. Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites. J. Appl. Phys,2000,88: 3853~3858
    [36]Khoo I C. Liquid Crystals.2th Ed. New Jersey:John Wiley & Sons, Inc,2007
    [37]Rudenko E V, Sukhov A V. Photoinduced electrical conductivity and photorefraction in nematic liquid crystals. J. Exp. Theor. Phys. Lett,1994,59:142~146
    [38]Rudenko E V, Sukhov A V. Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity. J. Exp. Theor. Phys.1994,78:875~882
    [39]Khoo 1 C, Orientational photorefractive effects in nematic liquid crystal films. IEEE J. Quantum. Electron,32:1996,525-534
    [40]Chen Z, Wang F, Zhang B, et al. The design, fabrication and property study for photorefractive applications of novel organic materials. Opt. Mater,2003,23:253~259
    [41]Yoshimoto N, Morino S, Nakagawa M, et al. Holographic Bragg gratings in a photoresponsive cross-linked polymer-liquid-crystal composite. Opt. Lett,2002,27:182~184
    [42]Wiederrecht G P, Yoon B, Svec W A, et al. Photorefractivity in Nematic Liquid Crystals Containing Electron Donor-Acceptor Molecules That Undergo Intramolecular Charge Separation. J. Am. Chem. Soc,1997,119:3358~3364
    [43]Pei Y, Yao F, Hou C, et al. High diffraction efficiency and a quasi-permanent grating in photorefractive nematic liquid crystal at low temperature. Opt. Lett,2005,30:631~633
    [44]王新久,液品光学和液品显示.北京:科学出版社,2006
    [45]Zhang J, Ostroverkhov V, Singer K D, et al. Electrically controlled surface diffraction gratings in nematic liquid crystals. Opt. Lett,2000,25:414~416
    [46]Pasquale P, Cipparrone G. Dynamic grating features for the surface-induced photorefractive effect in undoped nematics. J. Opt. Soc. Am. B,2004,21:996~1004
    [47]Pagliusi P, Provenzano C, Cipparrone G. Surface-induced photorefractivity in twistable nematics:toward the all-optical control of gain. Opt. Exp,2008,16:16343~16351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700