暗间断延迟玉米开花的相关分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米起源于热带南美洲的墨西哥地区,短日的光周期条件才能诱导正常开花。虽然经过了长期的人工选择和自然进化,大多数温带玉米对光周期不敏感,但是多数热带玉米在长日照光周期条件下,仍然表现出光周期敏感现象。光周期敏感是温带玉米育种中利用热带种质资源的主要限制因素。所以,解析光周期敏感的机理对于玉米遗传育种研究就显得非常重要。在短日植物的光周期诱导成花中,暗期是成花的决定因素,暗间断是在短日植物生长发育的光周期敏感阶段,于暗期的中间短暂曝光,这种处理往往会抑制或延迟短日植物开花。因此,利用暗间断处理也是研究玉米光周期敏感的一个重要方法。本研究利用暗间断处理的方法,从表型和光周期途径信号传导的上、中、下游关键基因表达规律的变化等角度,试图解析玉米光周期敏感的分子机理。本研究首先以热带和温带玉米自交系为材料,分析了暗间断处理后玉米生长发育的特点;其次,克隆了玉米光周期途径上游光信号受体光敏色素基因phyB2,通过荧光定量PCR分析该基因在暗间断处理前后48小时的表达规律;最后,研究暗间断处理后光周期途径中控制生物钟的两个关键基因Hd6、 ZmCCA1以及信号输出关键基因GI-CO-FT的表达规律及其与玉米开花的关系。得出如下儿个研究结果:
     1、将热带玉米自交系CML288和温带玉米自交系黄早四与B73种植在短日条件下(9小时光/5小时暗),在光周期敏感时期进行暗间断,观测抽雄期、散粉期、吐丝期以及株高等的变化。结果表明,短日条件下连续暗间断处理后CML228抽雄期、散粉期、吐丝期推迟,株高降低;黄早四抽雄期、散粉期、吐丝期提前,株高增加;B73抽雄期、散粉期、吐丝期稍微推迟,株高略有降低。说明不同自交系对暗间断处理的反应不同,热带光周期敏感自交系对暗间断处理最敏感。对4-8叶期的不同发育时期暗间断处理进行比较发现,热带敏感自交系CML288在4叶期暗间断处理与短日照下的花期等性状没有差异,而在5叶期暗间断处理后抽雄期、散粉期、吐丝期推迟的天数最多,株高降低最大,说明5叶期是暗间断敏感的关键时期。在光周期敏感的5-8叶期之间,随着暗间断处理天数的增加,抽雄期、散粉期、吐丝期推迟的天数越多,说明暗间断处理具有一定的累加效应。用白光、红光和远红光进行暗间断,发现红光的效应最大。红光的暗间断效应可以被随后的远红光所逆转,表明光敏素是玉米主要的响应于暗间断的光接收器
     2、利用同源克隆技术,成功地克隆了phyB2的CDS序列。CDS序列全长3501bp,编码一条1166个氨基酸残基的肽链,包含6个保守结构域。黄早四与CML288的phyB2基因cDNA序列对比发现,一共存在17处单碱基的变异。其中,7处单碱基的变异引起了编码氨基酸的变化,而且有3处差异位于PHYB2保守的结构域内。研究了phyB2在短日照和暗间断后48小时内的表达节律。在短日照条件下,CML288叶片和茎尖中phyB2呈现双峰的表达模式,其表达峰值出现在暗期结束时和进入暗期后第6时;暗间断处理后,phyB2也呈现双峰的表达模式,但是其表达峰值比短日照条件下提前。在短日照条件下,黄早4叶片和茎尖中phyB2呈现双峰的表达模式,其表达峰值出现在暗期结束前的第3小时和暗期开始时;暗间断处理后,phyB2的表达模式基本没有改变。
     3、研究了自交系CML288和黄早四中生物钟基因Hd6、ZmCCA124小时在叶片和茎尖中短日照和暗间断处理后的表达规律。结果表明,在短日照条件下,Hd6基因在CML288的叶片和茎尖中光期表达量较低,进入暗期后在叶片中开始上升,在茎尖中光期前第4小时出现表达峰值;暗间断处理后,Hd6的表达量有所降低。在短日条件下,ZmCCA1基因在CML288叶片和茎尖中表达峰值都是出现在光期后第4小时。暗间断提高了ZmCCA1基因mRNA的积累,但是并没有改变这个基因在短日条件下的表达节律。
     短日照条件下,Hd6基因在黄早四的叶片和茎尖中的表达量从光期后第4小时开始升高,在叶片中暗期后第3小时达到表达峰值,而在茎尖中光期前第4小时达到表达峰值。暗间断处理后,Hd6基因在黄早四的叶片和茎尖中表达量降低,进入光期后很快就恢复为止常短日条件下的表达规律。短日条件下,ZmCCA1基因在黄早四叶片和茎尖中表达规律和CML288类似。暗间断处理提高了黄早四中ZmCCA1基因在暗期的表达量,但是在进入光期以后,ZmCCA1基因的表达就近于正常。
     4、CML288在短日照条件下,叶片和茎尖中的ZmGI在暗期前第3小时达到峰值;暗间断处理没有改变叶片中ZmGI的表达节律,却提高了它的表达量,但茎尖中ZmGI的表达峰值提前。短日条件下,CML288叶片和茎尖中conz1基因表达峰值出现在暗期后第6小时;暗间断使叶片中的conz1基因表达节律呈现双峰模式,而茎尖中conz1基因的表达水平一直处于较低状态,进入暗期后第3小时达到峰值。在短日条件下,ZCN8基因在CML288叶片和茎尖中暗期结束时表达量最高,夜晚表达量低;暗间断强烈抑制了ZCN8基因在CML288叶片和茎尖中的表达水平,在下一个周期表达量才开始恢复。
     在短日条件下,ZmGI基因在黄早四叶片和茎尖中的表达峰值出现在暗期前第3小时;暗间断处理后,推迟了叶片中ZmGI表达峰值出现的时间,提高了表达峰值,没有改变茎尖中ZmGI原有的表达节律,而是峰值有所降低。短日和暗间断条件下,conz1基因在黄早四叶片和茎尖中的表达规律基本一致。在短日条件下,ZCN8基因在黄早四中暗期结束时达到峰值,暗间断降低了ZCN8的表达水平,但是没有改变ZCN8的固有表达节律。
     5、暗间断处理光周期敏感的玉米自交系CML288后,phyB2基因峰值提前,可能使生物钟基因Hd6表达量降低和CCA1表达量升高,延长了生物钟周期,使生物钟信号输出基因GI表达量升高,进而引起conz1基因的表达类似于长日下的双峰表达模式;同时,暗间断处理也可能引起conz1基因出现双峰表达模式,从而抑制ZCN8基因的表达,最终引起开花延迟。
ABSTRACT:Maize (Zea mays L.) is domesticated from Mexico of south American, a plant requiring short day photoperiods to flower. Although the majority of maize varieties are generally characterized as day-neutral plants through centuries of domestication and artificial selection, numerous tropical landraces of maize remain sensitive to photoperiod. Photoperiod sensitivity was the major obstacle to using tropical for breeding programs of temperate maize. Therefore, it is vital for maize genetics and breeding to understand the genetic basis of photoperiod sensitivity (PS).Dark period is the main facter in flowering induce of short-day plants (SDPs). A short exposure to light in the middle of the night causes inhibition of flowering in SDPs, this phenomenon is called night break (NB) and has been used as a tool to study the phothperiodic control of flowering. So, NB is also an important method to study maize PS.
     In this study, the genetic basis of maize photoperiod sensitivity were carried out from the aspects of phenotype and photoperiod signaling passway by using NB. Firstly, tropical and temperate maize inbred lines were conducted by NB to analyse characters of development traits. Secondly, phyB2as a main photoreceptor of maize were cloned, and their expression patterns were analysed before and after NB within48h by real-time RT-PCR. Finally, expression of circadian clock genes Hd6, ZmCCA1and signaling output pathway genes Gigantea (GI), Constans(CO), and Flowering Locus T (FT) were addressed to investigate the relationship between their expression patterns and maize flowering. The main results obtained-in this research were as following:
     1. A tropical maize inbred line CML288and two temperate inbred line B73, Huangzaosi were grown under inductive short-day (SD)9h light/15h dark cycles, continuous night break (NB) under SD condition were conducted in the most photoperiod sensitive developmental stage. Changes in day to tassel (DTT), day to pollen (DTP), day to silking (DTS) and plant height were measured after NB. The results indicated that DTT, DTP, DTS were delayed, and the plant height was decreased in CML288after NB, so is in B73with lower degree, while DTT, DTP, DTS were advanced, and the plant height was increased in Huangzaisi. All these demonstrated that different lines produce different NB responses and tropical photoperiod sensitive inbred line is the most sensitive to NB. NB effects were compared from4-leaf period to8-leaf period, the results showed that traits in flowering time and plant height of tropical photoperiod sensitive inbred line CML288were similar to that of SD condition when NB conducted at4-leaf period. The largest effects of NB on these traits occurred when NB were conducted at5th "leaf period, demonstrating that the5th-leaf stage is the most sensitive to NB. The dalay of DTT, DTP, DTS and inhibition in plant height were positively correlated to the days of NB treatment when continuous NB were conducted at the photoperiod sensitive developmental5-leaf to8-leaf period, indicated that NB treatment has additive effects.Red light(R) and Far Red light(FR) irradiation in the middle of night period also delayed flowering time of CML288,effect of R on inhibition of flowering was larger than that of FR, and FR could partly reverse these effect.These results implied that phytochrome was the photoreceptor in the NB effects on growth and development of maize.
     2.CDS of phyB2was cloned by homologous amplification in maize inbred lines CML288and Huangzaisi, a3501bp open reading encoded1166amino acids which has six conserved domains.There are seventeen single DNA letter differences in phyB2CDS of CML288and Huangzaisi. Multiple alignments of the predicted complete amino acid sequences of these two lines indicated that there are seven amino acid diversity, three of seven were located in conserved domains of PHYB2. Expression pattern of phyB2in48h under SD and NB conditions were conducted using real-time fluorescence quantitative PCR in the stem apexes and leaves of CML288and Huangzaisi. Under SD conditions, phyB2exprssion patterns in leaves and SAs of CML288peaked twice, the first peak occurred at dawn,the second peak occurred at6h after dusk. NB treatment brought forward the peak of phyB2in leaves of CML288. phyB2exprssion patterns in leaves and SAs of Huangzaisi.also peaked twice under SD conditions, the peaks occurred at3h before dawn and dusk, expression patterns hardly changed after NB.
     3.Expression pattern of circadian clock genes Hd6、ZmCCAl in24h under SD and NB conditions were conducted in the stem apexes and leaves of CML288and-Huangzaisi. Under SD conditions, Hd6exprssion levels was lower in leaves and SAs during light period, then increased in leaves after entering dark period, while peaked at4h before dawn. Hd6exprssion levels decreased after NB treatment. Under SD conditions, ZmCCAl exprssion levels peaked at at4h after dawn. NB treatment did not change this gene exprssion pattern but enhanced its level.
     Under SD conditions, Hd6exprssion levels in leaves and SAs of Huangzaisi increased at4h after dawn, then peaked at3h after dusk in leaves, while peaked at4h before dawn in SAs. NB treatment decreased its exprssion levels in leaves and SAs, then recovered to normal SD expression pattern after dawn. ZmCCAI exprssion patterns in leaves and SAs of Huangzaisi was similar to CML288, NB treatment increased its exprssion levels during dark period, but recovered to normal level after dawn.
     4.Under SD conditions, ZmGI exprssion peaked at3h before dawn in leaves and SAs of CML288. NB treatment did not change its exprssion pattern, but enhanced its exprssion levels in leaves, while brought forward its peak in SAs. conzl exprssion levels in leaves and SAs peaked at6h after dusk under SD conditions, conzl expression in leaves exhibited a diurnal expression pattern.with two peaks per day while its levels in SAs were lower all the time by NB treatment. ZCN8exprssion levels in leaves and SAs peaked at dawn under SD conditions, NB treatment dramatically inhibited its levels,but recovered to normal at the second cycle.
     Under SD conditions, ZmGI exprssion levels in leaves and SAs of Huangzaisi peaked at3h before dusk. NB treatment delayed its peak and enhanced its amplitude in leaves,while decreased its amplitude in SAs with normal expression pattern, conzl exprssion patterns in leaves and SAs was similar to that under SD conditions and NB treatment. ZCN8exprssion levels peaked at dawn under SD conditions. NB treatment decreased its amplitude,but did not changed its normal expression pattern.
     5.After NB treatment, phyB2peaked earlier in tropical photoperiod sensitive inbred line CML288,this result decreased circadian clock genes Hd6level, and increased ZmCCA1level,giving rise to longer circadian clock period. Longer circadian clock period induced higher ZmGI exprssion levels to produce two peaks expression pattern of conzl gene, inhibit ZCN8exprssion, resulting in flowering delay in the end.
引文
1.白书农,谭克辉.对光敏水稻研究的回顾与反思:植物光周期现象中叶片信息对茎端的形态建成事件有专一性吗?[J].科学通报,2001,46(9):788-792
    2. L eyser O, Day S:瞿礼嘉,邓兴旺译).植物发育的机制[M].北京:高等教育出版社,2006.156-159
    3. 敖君.儿个玉米自交系主要数量性状配合力分析[J].玉米科学,1999,7(1):41-42
    4. 蔡永萍.植物生理学[M].北京:中国农业大学出版社,2008
    5. 曹义植.成花诱导和花的发育.拟南芥[M].北京:高等教育出版社,2004:171-186
    6. 陈福禄,傅永福,林辰涛CO/FT调节元件与植物开花时间调节研究进展[J].中国农业科技导报,2009,11(2):17-22
    7. 陈克成,肖翊华.不同波长的光进行黑夜-中断对HPGMR育性的影响[J].武汉太学学报(自然科学版):1991(1):127-128
    8.陈彦惠,王利明,戴景瑞.热带、亚热带自交系与中国温带玉米种质杂交种的研究[J].中国农业大学学报,2000,5(1):50-57
    9.陈彦惠,张向前.热带玉米光周期敏感相关性状的遗传分析[J].中国农业科学,2003,36(3):248-25.
    10.丁焱,戴思兰,马月萍.高等植物成花的光周期调控北方园艺[J].2009(9):106-110
    11.樊丽娜,邓海华,齐永文.植物CO基因研究进展[J].西北植物学报,2008,28(6):1281-1287
    12.范玉琴,李德红.植物的蓝光受体及其信号转导[J].激光生物学报,2004,13(4):314-320
    13.房迈莼,王小菁,李洪清.光对植物生物钟的调节[J].植物学通报,2005,22(2):207-214
    14.高伟,陈晓,库丽霞,等.玉米类LFY基因的克隆及其在不同光周期条件下的表达[J].作物学报,2006(32):1256-1260
    15.郭瑞.玉米光周期敏感相关基因的QTLs定位及性状分析[D].郑州:河南农业大学硕十论文,2005
    16.洪宇,童哲.光敏色素在植物个体发育中的作用[J].植物生理学通讯,1998,34(6):417-422
    17.库丽霞,孙朝辉,王翠玲,张君,张伟强,陈彦惠.玉米光周期敏感相关性状发育动态QTL定位[J].作物学报,2010,36(4):602-611
    18.李合生,卢世峰.光敏素和湖北光诱导核不育水稻育性转换的关系初步研究[J].华中农业大学学报:1987,5(4):397-398.
    19.李秀菊,孟繁静.不同光周期处理对大豆开花结荚进程的影响[J].大豆科学,1996,15(4):289-294
    20.刘恒蔚,周瑞阳,徐俐.光敏色素与光敏感雌性不育苎麻育性转换的关系[J].作物学报:2006,32(4):597-600.
    21.刘良式.植物分子遗传学[M].北京:科学出版社,2003.
    22.刘圈炜,何云,齐胜利,王成章,陈继红,潘俊良,王彦华.光敏色素研究进展[J].中国农学通报2005,21(5):237-241
    23.刘小荣,张笠,王勇平.实时荧光定量PCR技术的理论研究及其医学应用[J].中国组织工程研究与临床康复,2010,14(2):329-332
    24.刘玉平,李建平,兰素缺.光周期迟钝基因对小麦农艺性状的影响[J].华北农学报,2001,16(4):59-64
    25.潘瑞炽.植物生理学[M].北京:高等教育出版社,2008
    26.任永哲,陈彦惠,库丽霞,等.玉米光周期反应及一个相关基因的克隆[J].中国农业科学,2006,39(7):1487-1494
    27.孙昌辉,邓晓建,方军,等.高等植物开花诱导研究进展[J].遗传,2007,29(10):1182-1190
    28.孙燕,许志茹.植物的蓝光受体[J].植物生理学通讯,2008,44(1):144-150
    29.童哲,赵玉锦,王台,等.植物的光受体和光控发育研究[J].植物学报:2000,42(2):11 1-115
    30.王成章,韩锦峰,胡喜峰,等.光周期对不同秋眠性苜蓿品种ABA含量的影响[J].作物学报,2005,31(10):1370-]372
    31.王翠玲,程芳芳,孙朝晖,库丽霞,陈晓,陈彦惠.玉米光周期敏感性的遗传特性及相关基因的研究进展[J].玉米科学,2008,16(1):11-14
    32.王伟,洪宇,童哲.光周期对光敏核不育水稻光敏色素A含量及其mRNA丰度的影响[J].植物学报,1997,39(10):914-921
    33.王忠.植物生理学(第二版)[M].中国农业出版社,2010,北京
    34.薛霜,独军政,高闪电,常惠芸.实时荧光定量PCR技术研究进展及其在兽医学中的应用[J].中国农学通报,2010,26(7):11-15
    35.闫海,周波,李玉花,等.植物的隐花色素及其光信号转导[J].植物生理学通讯,2005,41(6):841-846
    36.杨传平,刘桂丰,魏志刚.高等植物成花基因的研究[J].遗传,2002,24(3):379-384.
    37.袁继红.实时荧光定量PCR技术的实验研究[J].现代农业科技,2010,13:20-22
    38.岳兵,李合生,丰胜求,熊秋芳,于永红.3种不同短波光暗期间断对农恳58s育性的影响[J].华中农业大学学报:1997,16(5):318-322
    39.张凤路,Mugo S不同玉米种质对长光周期反应的初步研究[J].玉米科学,2001,9(4):54-56.
    40.张世煌,石德权.系统引进和利用外来玉米种质[J].作物杂志,1995(1):7-9.
    41.章东方,罗昭锋,顾江涛,等.植物光受体的研究进展[J].安徽农业科学,2003,31(3):391-394.
    42.赵鸿娟,刘芝华,朱玉贤.光敏素调节的基因表达[J].应用基础与工程科学学报:1993,1(1):59-66.
    43.郑慧玲.蛋白激酶CK2和昼夜节律钟[J].国际病理科学与临床杂志,2005,6:563-565
    44.周晓丽,朱国坡,李雪华,王艳玲,刘兴友.实时荧光定量PCR技术原理与应用[J].中国畜牧兽医,2010,37(2):87-89
    Austin DF, Lee M, Veldboom LR. Genetic mapping in maize with hybrid progeny across testers and generations:plant height and flowering. Theor Appl Genet,2001,102:163-176
    45. Aaron G, Peacock W, Elizabeth S.The molecular biology of seasonal fowering-responses in Arabidopsis and the cereals. Annals of Botany 2009:1-8
    46. Ahmad M, Cashmore AR.HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor.Nature 1993,366:162-166
    47. Alba R, Kelmenson PM, Cordonnier-Pratt, MM, and Pratt, LH.The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Mol. Biol.Evol.2000:17:362-373
    48. Allada R and Meissner RA.Casein kinase 2, circadian clocks, and the flight from mutagenic light. Molecular and Cellular Biochemistry.2005,274:141-149
    49. An H, Roussot C, Suarez-Lopez P, et al.CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development,2004, 131:3615-3626
    50. Aukerman MJ, Hirschfeld M, Wester L, Weaver M, Clack T, Amasino RM, and Sharrock RA. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype deflnes a role for phytochrome D in red/far-red light sensing. Plant Cell,1997,9: 1317-1326
    51. Ayre BG, Turgeon R. Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol,2004,35(4):2271-2278
    52. Bae K, and Edery I. Regulating a circadian clock's period, phase and amplitude by phosphorylation:insights from Drosophila. The Journal of Biochemistry,2006,140:609-617
    53. Balasubramanian S, Sureshkumar S, Agrawal M, Michael T.P., Wessinger C, Maloof JN., Clark R, Warthmann N, Chory J, and Weigel D.. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat. Genet,2006,38:711-715
    54. Ballare C.L.. Illuminated behaviour:Phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ,2009,32:713-725
    55. Ballare CL, Casal JJ, and Kendrick RE. Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and simulated shade light. Photochem. Photobiol,1991,54:819-826
    56. Basu, D., Dehesh, K., Schneider-Poetsch, H.J., Harrington, S.E., McCouch, S.R., and Quail, P.H. Rice PHYC gene:Structure, expression, map position and evolution. Plant Mol. Biol,2000,44:27-42.
    57. Batschauer A (1993) A plant gene for photolyase:an enzyme catalyzing the repair of UV-light-induced DNA damage. Plant J,1993,4:705-709
    58. Batschauer A. Photoreceptors of higher plants. Planta,1998,206:479-492
    59. Beggs CJ, Wellmann E. Photocontrol of flavonoid biosynthesis. In:Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants 2nd edition Kluwer Dordrecht Boston London,1994:733-751
    60. Birch CJ, Hammer GL. and Rickert KG. Temperature and photoperiod sensitivity in five cultivars of maize (Zea mays) from emergence to tassel initiation. Field Crops Research, 1998 b,55:93-107
    61. Birch CJ, Vos J, Kiniry JR, Bos HB, and Elings A. Phyllochron responds to acclimation to temperature and irradiance in maize. Field Crops Research,1998a,59:187-200
    62. Bonhomme R, Derieux M, Edmeades GO. Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation Weld trials. Crop Sci,1994,34:156-164
    63. Boonman A, Prinsen E, Voesenek LA, and Pons TL. Redundant roles of photoreceptors and cytokinins in regulating photosynthetic acclimation to canopy density. J. Exp. Bot,2009,60:1179-1190
    64. Bunning E. Fifty years of research in the wake of Wilhelm Pfeffer. Annual Review of Plant Physiology,1977,28:1-22
    65. Butler W L, Norris K H, Siegelman H W, Hendricks S B(1959).Detection,assay,and preliminary purification of the pigment controlling photoresponsive development of plants,Proc Natl Acad Sci USA,45:1703-1708
    66. Campos H, Cooper M, Edmeades GO, Llffler C, Schussler JR, Ibaflez M. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt. Maydica,2006,51:369-381
    67. Casal, J.J., Sanchez, R.A., and Yanovsky, M.J. The function of phytochrome A. Plant Cell Environ,1997,20:813-819
    68. Cermakian N, Sassone-Corsi P. Multilevel regulation of the circadian clock. Nature Reviews:Molecular Cell Biology,2000,1:59-67
    69. Chab D, Kola J, Olson M. S., Storchova H. Two FLOWERING LOCUS T (FT) homologs in chenopodium rubrum differ in expression patterns. Planta,2008,228:929-940
    70. Childs, K. L., F. R. Miller, M. M. Cordonnier-Pratt, L. H. Pratt, P. W. Morgan et al. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol,1997, 113:611-619
    71. Childs KL, Lu JL, Mullet JE. and Morgan PW. Genetic regulation of development in Sorghum bicolor. X. Greatly attenuated photoperiod sensitivity in a phytochrome-deficient sorghum possessing a biological clock but lacking a red light-high irradiance response. Plant Physiol,1995,108:345-351
    72. Childs KL, Pratt LH, and Morgan PW. Genetic regulation of development in Sorghum bicolor:VI. The ma3R allele results in abnormal phytochrome physiology. Plant Physiol, 1991,97:714-719
    73. Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z,Hahn TR, Song PS. Phytochrome signaling is mediated through nucleoside diphopphate kinase 2.Nature,1999,401:610-613
    74. Christensen AH and Quail PH. Structure and expression of a maize phytochrome-encoding gene. Gene,1998,85:381-390
    75. Ciceri P,Gianazza E,Lazzari B,Lippoli G,Ganga A,Hoschek G.. Phosphorylation of Opaque 2 changes diurnally and impacts its DNA binding activity.Plant Cell,1997,9:97-108
    76. Clack T, Mathews S, Sharrock RA. The phytochrome apoprotein family in Arabidopsis is encoded by five genes:the sequences and expression of PHYD and PHYE. Plant Mol Biol,1994,25:413-427
    77. Clack T, Shokry A, Moffet M, Liu P, Faul M, and Sharrock RA. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. Plant Cell,2009,21:786-799
    78. Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, and Holland JB. Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics,2010,184:799-812
    79. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, and Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science,2007,316:1030-1033
    80. Daniel X, Sugano S, and Tobin EM. CK2 phosphorylation of CCA 1 is necessary for its circadian oscillator function in Arabidopsis. PNAS,2004,101:3292-3297
    81. Danilevskaya O N., Meng X, Hou Z, Ananiev E V., and Simmons C R. A Genomic and Expression Compendium of the Expanded PEBP Gene Family from MaizePlant Physiology,2008,146,250-264
    82. de Montaigu A, Toth R, Coupland G. Plant development goes like clockwork. Trends Genet,2010,26:296-306
    83. Dechaine JM, Gardner G., and Weinig C. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ,2009,32:1297-1309
    84. Dehesh K, Franci C, Parks BM, Seeley KA, Short TW, Tepperman JM, Quail PH. Arabidopsis HY8 locus encodes phytochrome A. Plant Cell,1993,5:1081-1088
    85. Dehesh KJ. Tepperman, A. H. Christensen and P. H. Quail. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol. Gen. Genet.1991,225: 305-313
    86. Devlin P F, Halliday KJ, Harberd N P, et al. The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action:novel phytochrome control internode elongation elongation and flowering time. Plant J,1996,10(6):1127-1134
    87. Devlin P F, Patcl S,Whitclam G C. Phytochrome E influences internode elongation and flowering time in Arabdiopsis. Plant Cell,1998,10:1479-1487
    88. Devlin PF. Signs of the time:environmental input to the circadian clock. Journal of Experimental Botany,2002,53:1535-1550
    89. Devlin PF, Kay SA. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity.The Plant Cell,2000,12,2499-2509
    90. Devlin, P.F., Robson, P.R., Patel, S.R., Goosey, L., Sharrock, R.A. and Whitelam, G.C. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and fowering time. Plant Physiol,1999,119,909-915
    91. Devlin PF, Rood SB, Somers DE, Quail PH, and Whitelam GC. Photophysiology of the elongated internode (ein) mutant of Brassica rapa:ein mutant lacks a detectable phytochrome B-like polypeptide. Plant Physiol,1992,100:1442-1447
    92. Ding ZJ, Doyle MR, Amasino RM and Davis SJ. A Complex genetic interaction between arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation.Genetics,2007,176:1501-1510
    93. Dodd AN, Salathia N, Hall A, Kevei E, Toth R, et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.Science,2005,309:630-633
    94. Donohue K, Heschel MS, Butler CM, Barua D, Sharrock RA,Whitelam GC, and Chiang, G.C. Diversification of phytochrome contributions to germination as a function of seed-maturation environment. New Phytol,2007,177:367-379
    95. Doyle M R, Davis S J, Bastow R M, et al. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature,2002,419(6902):74-77
    96. Dunlap JC, Loros JJ. Molecular bases for circadian clocks.Cell,1999,96 (2):271-290
    97. Ellis RH, SummerWeld RJ, Edmeades GO, Roberts EH. Photoperiod, temperature, and the interval from sowing to tassel initiation in diverse cultivars of maize. Crop Sci,1992, 32:1225-1232
    98. Emerson RA. Control of flowering in teosinte:short-day treatment brings early flowers. J Hered,1924,15:41-48
    99. Faure S, Higgins J, Turner A, Laurie DA. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics,2007,176:599-609
    100. Finlayson SA, Lee I, and Morgan PW. Phytochrome B and the Regulation of Circadian Ethylene Production in Sorghum. Plant Physiol,1998,116:17-25
    101. Francis C, Grogan CO, Sperling DW. IdentiWcation of photoperiod insensitive strains of maize (Zea mays L.). Crop Sci,1969,9:675-677
    102. Franklin KA, and Quail PH. Phytochrome functions in Arabidopsis development. J. Exp. Bot,2010,61:11-24
    103. Franklin KA, Davis SJ, Stoddart WM, Vierstra RD and Whitelam GC. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell, 2003a,15:1981-1989
    104. Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ and Whitelam GC. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol,2003b,131:1340-1346
    105. Franklin, K.A. Shade avoidance. New Phytol,2008,179:930-944
    106. Franklin, K.A., Allen, T., and Whitelam, G.C. Phytochrome A is an irradiance -dependent red light sensor. Plant J,2007,50:108-117.
    107. Furuya M. Phytochromes:their molecular species, gene families, and functions. Annu Rev Plant Physiol Plant Mol Biol,1993,44:617-645
    108. Furuya M, Schafer E. Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci,1996,1:301-307
    109. Garg AK, Sawers RJ, Wang H, Kim JK, Walker JM, Brutnell TP, Parthasarathy MV, Vierstra, RD and Wu RJ. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta,2005,223,627-636
    110. Garner WW, A Hard HA. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Mon. Weather Rev.,1920,48(7): 415.
    111.Gaut, B.S. Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res,2001,11,55-66
    112. Giauffret C, Lothrop J, Dorvillez D, Gouesnard B, Derieux M. Genotype × environment interactions in maize hybrids from temperate or highland tropical origin. Crop Sci,2000,40: 1004-1012
    113. Goosey L, Palecanda L, Sharrock RA. Differential patterns of expression of the Arabidopsis PHYB, PHYD and PHYE phytochrome genes. Plant Physiology,1997,115,959-969
    114. Gouesnard B, Rebourg C, Welcker C and Charcosset A.Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genetic Resources and Crop Evolution,2002,49:471-481
    115. Grifths S, Dunford RP, Coupland G, Laurie DA. The evolution of CON STAN S-l ike gene families in barley, rice, and arabidopsis. Plant Physiology,2003,131:1855-1867
    116. Guo H, Yang H, Mockler TC, Lin C. Regulation of flowering time by arabidopsis photoreceptors. Science,1998,279:1360-1363
    117. Halliday KJ, Koornneef M, Whitelam GC. Phytochrome B and at least one other phytochrome mediate the accelerated ?owering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiology,1994,104:1311-1315
    118. Halliday KJ, Salter MG, Thingnaes E, Whitelam GC. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. The Plant Journal,2003,33:875-885
    119. Halliday KJ, Whitelam GC. Changes in photoperiod or temperature reveal roles for phyD and phyE. Plant Physiology,2003,131:1913-1920
    120. Hamner K C and Bonner J. Photoperiodism in relation to hormones as factors in floral initiation and development. Botanical Gazette,1938,100:388-431
    121. Hanumappa M, Pratt LH, Cordonnier-Pratt, MM and Deitzer, GF. A photoperiod-insensitive barley line contains a light-labile phytochrome B. Plant Physiol 1999,119:1033-1040
    122. Hauser BA, Cordonnier-Pratt MM and Pratt LH. Temporal and photoregulated expression of?ve tomato phytochrome genes. Plant J,1998,14:431-439
    123. Hauser BA, Pratt LH and Cordonnier-Pratt MM. Absolute quantification of five phytochrome transcripts in seedlings and mature plants of tomato (Solanum lycopersicum L.). Planta,1997,201:379-387
    124. Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice.Plant Physiol,2004,135 (2):677-684
    125. Hayama R, Agashe B, Luley E, King R, and Coupland G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in pharbitis. Plant Cell,2007,19:2988-3000
    126. Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of ?owering by a ?uorescent differential display method. Plant Cell Physiology,2002,43:494-504
    127. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice.Nature,2003,422:719-722
    128. Hayes KR, Beatty M, Meng X, Simmons CR, Habben JE, Danilevskaya ON.Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One,2010,23;5(9):el2887
    129. Hazen S P, Schultz T F, Pruneda Paz J L, et al. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci USA, 2005,102(29):10387-10392
    130. Hecht V, Knowles CL,choor J KV,et al. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiology,2007,144:648-661
    131. Hemming MN, Peacock WJ, Dennis ES, Trevaskis B. Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiology,2008,147: 355-366
    132. Hennig L, Stoddart WM, Dieterle M, Whitelam GC, and Schafer E. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol,2002,128:194-200
    133. Hepworth SR, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBOJ,2002, 21:4327-4337
    134. Heschel MS, Butler CM, Barua D, Chiang GCK, Wheeler A, Sharrock RA, Whitelam GC, and Donohue K. New roles of phytochromes during seed germination. Int. J. Plant Sci.,2008,169:531-540
    135. Hoffman PD, Batschauer A, Hays JB. AT-PHH1, a novel gene from Arabidopsis thaliana related to microbial photolyases and plant blue light photoreceptors. Mol Gen Genet,1996, 253:259-265
    136. Huala E, Oeller PW, Liscum E, Han I-S, Larsen E, Briggs WR. Arabidopsis NPH1:a protein kinase with a putative redox-sensing domain. Science,1997,278:2120-2123
    137. Huang T,Bohlenius H,Eriksson S. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science,2005,309(5741):1694-1696.
    138. Hudson M and Smith H. The phytochrome B encoded by the HLG locus of Nicotiana plumbaginifolia is required for detection of photoperiod:hlg mutants show altered regulation of?owering and circadian movement. Plant J,1998,15,281-287
    139. Hudson, M., Robson, P.R., Kraepiel, Y., Caboche, M. and Smith, H.(1997) Nicotiana plumbaginifolia hlg mutants have a mutation in a PHYB-type phytochrome gene:they have elongated hypocotyls in red light, but are not elongated as adult plants. Plant J,1997, 12,1091-1101
    140. Hwang I, Chen H-C, Sheen J. Two-component signal transduction pathways in arabidopsis. Plant Physiology 2002,129:500-515
    141.1maizumi T, Tran HG, Swartz TE, et al. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature,2003,426(6964):302-306
    142. Imaizumi T, Schultz T F, Harmon F G et al. FKF1 F2Box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Nature,2005, 426(5732):302-306
    143. Imaizumi T, Kay SA. Photoperiodic control of?owering:not only by coincidence. Trends in Plant Science,2006,11:550-558
    144. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science,2005,309:293-297
    145.Ishikawa R, Shinomura T, Takano M, Shimamoto K.Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering. Genes Genet Syst,2009,84(2):179-84
    146. Ishikawa R, Tamaki S, Yokoi S, Inagaki N, Shinomura T, Takano M, and Shimamoto K Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell,2005,17:3326-3336
    147. Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of ?owering in rice (a short-day plant). The Plant Journal,2000,22: 391-399
    148. Izawa, T., Oikawa, T., Sugiyama, N., Tanisaka, T., Yano, M., and Shimamoto, K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice.Genes Dev,2002,16:2006-2020
    149. Jaeger KE, Graf A and Wigge PA. The control of flowering in time and space. Journal of Experimental Botany,2006,57:3415-3418
    150. Johnson E, Bradley M, Harberd NP,et al. Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiol,1994,105 (1):141-149.
    151. Jung J H,Seo Y H,Seo P J,et al. The GIGANTEA-Regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis,Plant Cell,2007, 19:2736-2748
    152. Kadonaga, J.T. Regulation of RNA polymerase II transcription by sequence-speci?c DNA binding factors. Cell,2004,116:247-257
    153. Kay SA, Keith B, Shinozaki K, and Chua NH. The sequence of the rice phytochrome gene. Nucleic Acids Res,1989,17,2865-2866
    154. Keara A,and Peter H. Phytochrome functions in Arabidopsis development Journal of Experimental Botany,2010,61 (1):11-24,
    155.Kebrom TH, Burson BL and Finlayson SA. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol,2006,140:1109-1117
    156. Kerckhoffs LHJ, Schreuder MEL, Van Tuinen A, Koornneef M and Kendrick RE. Phytochrome control of anthocyanin biosynthesis in tomato seedlings:analysis using photomorphogenic mutants. Photochem. Photobiol,1997,65:374-381
    157. Kim KC, Hur Y, Maeng J. Isolation of a gene, PnFL-1, expressed in Pharbitis cotyledons during floral induction. Mol Cells,2003,16:54-59
    158. King RW, Moritz T, Evans LT, et al. Regulation of ?owering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiology,2006, 141:498-507
    159. Kneissl, J., Shinomura, T., Furuya, M., and Bolle, C. A rice phytochrome A in Arabidopsis: The role of the n-terminus under red and far-red light. Mol. Plant,2008,1:84-102
    160. Kobayashi Y, Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod2dependent flowering. Genes & Dev,2007,21:2371-2384
    161.Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant and Cell Physiology,2002,43:1096-1105.
    162. Liu JY, Yu JP, McIntosh L, Kende H, and Zeevaart JAD.Jsolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiology,2001,125:1821-1830.
    163. Long C, and Iino M. Light-dependent osmoregulation in pea stem protoplasts. Photoreceptors, tissue specificity, ion relationships, and physiological implications. Plant Physiol,2001,125:1854-1869
    164. Lopez P S. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature,2000,410:1116-1120
    165. Makoto T, Hiromi K, Tomoko S, Akio M, et al. Isolation and Characterization of Rice Phytochrome A Mutants.The Plant Cell,2001,13:521-534
    166. Markelz NH, Costich DE and Brutnell TP. Photomorphogenic responses in maize seedling development. Plant Physiol,2003,133,1578-1591
    167. Markelz NH, Costich DE and Brutnell TP. Photomorphogenic responses inmaize seedling development. Plant Physiol,2003,133:1578-1591
    168. Mas P. Circadian clock function in Arabidopsis thaliana:time beyond transcription. Trends Cell Biol,2008,18:273-281
    169. Mas P, Devlin PF,Panda S, et al. Functional interaction of phytochrome B and cryptochrome2. Nature,2000,408:207-211
    170. Meng X,. Muszynski M G, and. Danilevskaya ON. The FT-Like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize. The Plant Cell,2011, 23:942-960
    171. Miller T, Muslin E, Dorweiler J. A maize CONSTANS-like gene, conzl, exhibits distinct diurnal expression patterns in varied photoperiods.Planta,2008,227:1377-1388
    172. Mizoguchi T,Wheatley K, Hanzawa Y, et al. LHY and CCA1 Are Partially Redundant Genes Required to Maintain Circadian Rhythms in Arabidopsis. Developmental Cell, 2002,2(5):629-641
    173. Moira J. Sheehan,Lisa M. Kennedy, Denise E. Costich,and Thomas P. Brutnell (2007) Sub functionalization of PhyBl and PhyB2 in the control of seedling and mature plant traits in maize. The Plant Journal 49:338-353
    174. Moon Y H, Chen L, Pan R L, Chang H S, Zhu T, Maffeo D M,Sung Z R. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell,2003,15 (3):681-693
    175. Mouradov A, Cremer F, Coupland G. Control of flowering time:interacting pathways as a basis for diversity. Plant Cell,2002,14 (Supp 1.):S11-S130
    176. Moutiq R, Ribaut JM, Edmeades G, Krakowsky MD, Lee M.Elements of genotype by environment interaction:genetic components of the photoperiod response in maize. In: Kang M (ed) Quantitative genetics, genomics, and plant breeding. CABI Publishing, UK,2002
    177. Nagatani, A., Reed, J.W., and Chory, J. Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol,1993,102:269-277
    178. Neff MM, Chory J. Genetic interaction between phytochrome A, phytochrome B and cryptochrome 1 during Arabidopsis development. Plant Physiology,1998,118:27-36
    179. NiwaY, ItoS,Nakamichi N, Mizoguchi T, Niinuma K, Yamashino T and Mizuno T.Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1 and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis thaliana. Plant Cell Physiol,2007, 48(7):925-937
    180. Odile Filholl,Jean Louis Martiel,Claude Cochet.Protein kinase CK2:a new view of an old molecular complex. EMBO report,2004,5:351-355.
    181.Ogiso E, Takahashi Y, Sasaki T, Yano M, and Izawa T. The role of casein kinase Ⅱ in flowering time regulation has diversified during evolution. Plant Physiology,2010,152: 808-820
    182. Olga N. Danilevskaya, Xin Meng, Zhenglin Hou, Evgueni V. Ananiev, and Carl R. Simmons. A Genomic and Expression Compendium of the Expanded PEBP Gene Family from Maize.Plant Physiology,2008,146:250-264
    183. O'Neill SD, Zhang XS, and Zheng CC. Dark and circadian regulation of mRNA accumulation in the short-day plant Pharbitis nil. Plant Physiology,1994,104:569-580
    184. Park K H. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA genes. Science,1999,285:1579-1582
    185. Parks, B.M., and Quail, P.H. hy8, a new class of Arabidopsis long hypocotyl mutants de?cient in functional phytochrome A. Plant Cell,1993,5:39-48
    186. Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes ?owering and encodes a protein showing similarities to zinc ?nger transcription factors. Cell,1995,80:847-857
    187. Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D. Phytochromes:photosensory perception and signal transduction. Science,1995,268:675-680
    188. Reed JW, Nagpal P, Poole DS., Furuya M, and Chory J.Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell,1993,5:147-157.
    189. Riera M, Figueras M, Lopez C, Goday A, and Pages M. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. PNAS, 2004,101:9879-9884
    190. Riera M, Peracchia G, Nadal E, Ari?o J and Pages M. Maize protein kinase CK2:regulation and functionality of three β regulatory subunits. The Plant Journal,2001,25:365-374
    191. Robson, P., Whitelam, G.C., and Smith, H. Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome B. Plant Physiol,1993,102:1179-1184
    192. Russell WK, Stuber CW. EVects of photoperiod and temperatures on the duration of vegetative growth in maize. Crop Sci,1983,23:847-850
    193. Safldou A A, Mariac C, Luong V, et al. Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics,2009, 182:899-910
    194. Sage-Ono K, Ono M, Harada H, and Kamada H. Accumulation of a clock-regulated transcript during flower-inductive darkness in Pharbitis nil. Plant Physiology,1998,116: 1479-1485
    195. Searle I and Coupland G. Induction of flowering by seasonal changes in photoperiod. The EMBO Journal,2004,23:1217-1222
    196. Sharrock R, and Clack T. Heterodimerization of type Ⅱ phytochromes in Arabidopsis. Proc. Natl. Acad. Sci,2004,101:11500-11505
    197. Sharrock, R.A., and Quail, P.H. Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev,1998,3:1745-1757
    198. Shinomura, T., Uchida, K., and Furuya, M. Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol,2000,122:147-156
    199. Smith EM, Lin JM, Meissner RA and Allada R. Dominant-negative CK2a induces potent effects on circadian rhythmicity. Plos Genetics,2008,4:99-109
    200. Smith H. Physiological and ecological function within the phytochrome family. Annu Rev Plant Physiol Plant Mol Biol,1995,46:289-315
    201. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F,Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of ?owering in Arabidopsis. Nature,2001,410:1116-1120
    202. Sugano S, Andronis C, Ong MS, Green RM, and Tobin EM.The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. PNAS,1999,96:12362-12366
    203. Sugiyama N, Izawa T, Oikawa T, Shimamoto K. Light regulation of circadian clock-controlled gene expression in rice. Plant J,2001,26:607-615
    204. Takahashi Y, Shomura A, Sasaki T and Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Genetics,2001,98: 7922-7927
    205. Takano M,InagakiN, XieX,et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005,17(12):3311-3325
    206. Takano M, Inagaki N, Xie X, et al. Distinct and Cooperative Functions of Phytochromes A, B, and C in the Control of Deetiolation and Flowering in Rice The Plant Cell,2005, 17:11-3325
    207. Takano M, Inagaki N, Xie X, et al. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc. Natl. Acad. Sci. USA,2009,106:14705-14710
    208. Tamaki S, Matsuo S, Wong HL, et al. Hd3a protein is a mobile flowering signal in rice. Science,2007,316:1033-1036
    209. Thomas B.Light signals and flowering. Journal of Experimental Botany,2006,57: 3387-3393
    210. Thomas B and Vince-Prue D. Photoperiodism in Plants.1997,(San Diego, London CA: Academic Press).
    211. Valverde F, Mouradov A, Soppe W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic ?owering. Science,2004,303:1003-1006
    212. Wang CL, Cheng FF, Sun ZH, et al.Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor Appl Genet,2008,117:1129-1139
    213. Wang X, Wu L, Zhang S, et al.Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Rep,2011,30(7):1261-72
    214. Weller, J.L., Murfet, I.C., and Reid, J.B. Pea mutants with reduced sensitivity to far-red light de?ne an important role for phytochrome A in day-length detection. Plant Physiol,1997, 114:1225-1236
    215. Wenkel S, Turck F, Singer K, et al. CONSTANS and the CCA AT box binding complex share a functionally important domain and interact to regulate flowering of arabidopsis. The Plant Cell 2006,18:2971-2984
    216. Whitelam GC, Johnson E, Peng J, et al. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell,1993,5:757-768
    217. Wu LC, Wang TG, Huang QC, et al. Determination of the photoperiod-sensitive inductive phase in maize with leaf numbers and morphologies of stem apical meristem. Agricultural sciences in china,2008,7:554-560
    218. Xue W, Xing Y, Wei X, et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008,40:761-767
    219. Yang YH, Cheng P, and Liu Y. Regulation of the Neurospora circadian clock by casein kinase Ⅱ. Genes and Development,2002,16:994-1006
    220. Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis ?owering time gene CONSTANS. The Plant Cell,2000,12:2473-2484
    221.Yanovsky M J, Kay S A. Molecular basis of seasonal time measurement in Arabidopsis. Nature,2000,419:308-312
    222. Zeevaart JAD. Florigen coming of age after 70 years. The Plant Cell,2006,18:1783-1789
    223. Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS. The wheat TaGI1,involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog.Plant Molecular Biology,2005,58:53-64
    234. Zheng C C, Potter D, O'Neill S D. Phytochrome gene expression and phylogenetic analysis in the short-day plant Pharbitis nil (Convolvulaceae):Differential regulation by light and an endogenous clock.American Journal of Botany,2009,96(7):1319-1336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700