长波长WDM解复用光接收集成器件及其微结构制备工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光波分复用技术是目前光纤通信系统能够满足通信带宽需求不断增长的支撑技术,近些年获得了人们的广泛研究。基于微结构的解复用光接收集成器件作为光波分复用系统中的关键器件,具有高速性能优越、集成度高以及信号探测能力强等优点,是近年来光纤通信迅速发展的重要保障。
     本论文深入研究了用于波分复用系统的长波长解复用光接收集成器件及其微结构的制备工艺。通过大量的器件理论仿真与实验研究,取得的主要研究成果以及创新点如下:
     1.对Si基多腔介质膜滤波器进行了深入的研究,在理论设计方面,对不同腔结构介质膜滤波器的透射谱进行了仿真,成功制备出具有平顶陡边光谱特性的多腔介质膜滤波器。该滤波器在1550nm处光谱透过率峰值达到75%,0.5dB带宽为0.48nm,3dB带宽为0.52nm,25dB带宽为0.87nm,可应用于100GHz通道间隔的波分复用系统。
     2.利用苯并环丁烯树脂(BCB)研究了用于实现光电集成制备的BCB低温键合技术。在此基础上,提出了一种具有平顶陡边响应特性的Si基光接收集成器件。利用传输矩阵法对器件的光谱响应特性进行了仿真分析,并对器件结构进行了优化。基于BCB低温键合工艺实现了InP基PIN光探测器与Si基多腔介质膜滤波器的准单片集成,制备了具有平顶陡边响应特性的Si基长波长集成解复用光探测器。器件具有优异的平顶陡边响应特性,0.5dB响应带宽为0.43nm,3dB带宽为0.5nm,25dB带宽为1.06nm,同时,峰值量子效率达到55%,3dB响应带宽达到16GHz。
     3.通过制备工艺的创新实现了可用于滤波腔的台阶梯微结构,以及可用于吸收腔的垂直楔形微结构和圆锥形微结构。利用湿法刻蚀工艺在Fabry-Perot滤波腔中实现了台阶梯的制备。利用动态掩膜技术在光探测器的吸收腔中制备了垂直楔形吸收腔结构,并在其基础上通过改进工艺,制备了锥形吸收腔结构。
     4.实现了一种具有平顶陡边光谱响应特性的Si基长波长集成解复用光探测器。器件采用垂直楔形微结构的设计,实现了器件的高量子效率;采用多腔介质膜滤波器,实现了优良的平项陡边光谱响应特性。利用BCB低温键合工艺实现了Si基多腔介质膜滤波器与InP基垂直楔形吸收腔结构的键合。测试结果显示,器件的峰值量子效率达到了58.42%,器件的0.5dB带宽为0.52nm,3dB带宽为0.65nm,25dB带宽为0.95nm,通带平坦度小于0.55dB,可应用于波分复用系统。
     5.提出并制备了基于锥形吸收腔的Si基长波长集成解复用光探测器。深入研究了圆锥形微结构的制备工艺,通过控制圆锥形结构形成层的厚度以及圆锥面掩膜的半径实现了对圆锥形结构底角的角度控制。利用BCB低温键合工艺实现了Si基多腔滤波器与InP基锥形吸收腔的键合。器件采用了多腔介质膜滤波器,实现了优良的平顶陡边光谱响应特性。此外,器件的圆锥形顶镜有效地将光波限制在吸收腔内,增加了光经过吸收层的次数,从而提高了量子效率。测试结果显示,器件的0.5dB带宽为0.5nm,3dB带宽为0.7nm,25dB带宽为1.06nm,并且器件峰值量子效率达到了60%,通带平坦度小于0.55dB,满足应用于100GHz通道间隔波分复用系统的要求。
     6.成功制备了一种具有平顶陡边响应的单片集成光探测器。器件基于“InP基PIN+GaAs基Fabry-Perot滤波腔”的基本结构,利用湿法刻蚀工艺在Fabry-Perot滤波腔中制作了台阶梯微结构,并利用GaAs/InP大失配异质外延技术实现了器件的集成。器件采用了台阶型滤波腔结构,实现了平顶陡边光谱响应特性。测试结果表明:器件的峰值量子效率达到了26%,0.5dB光谱响应线宽为3.9nm,3dB光谱响应线宽为4.2nm,3dB响应带宽达到17GHz。
     7.成功完成了对JGP450A9型磁控溅射系统软硬件升级的工作,实现了系统的全自动控制。
     8.研究了Au薄膜厚度对GaAs纳米线生长的影响,通过控制Au薄膜镀膜时间发现,随着Au薄膜厚度的增大,GaAs纳米线的平均直径增大,生长速率随之降低。此外,研究了不同工作气压对金属电极镀膜工艺的影响,当工作气压为0.32Pa时,平均沉积速率达到最大值,金属电极薄膜的致密度达到最佳值。
With the increasing demand for the bandwidth of the communication, the wavelength-division multiplex (WDM) technology, which is the promising technology to meet the rapid development of the optical communication, has been extensively studied in recent years. Demultiplexing integrated photodetectors with micro-sturctures, as the key device of the WDM system, are the powerful guarantee for the rapid development of the optical communication technology because of the wavelength-selective detection, high-speed, and high compact.
     In this dissertation, long-wavelength integrated photodetector and its micro-sturctures fabrication technologies for WDM demultiplexing receiving application were studied. Both theoretically and experimentally, the photodetectors with flat-top steep-edge spectral response were studied. The main contents and innovations are listed as follows.
     1. The Si-based multi-cavity thin film filter was studied. On the theory design, the transmission spectrum of the filters based on different cavity structures were simulated. A novel thin film fiter with flat-top steep-edge spectral characteristics was fabricated successfully. The peak transmittance of75%around1550nm, the-0.5dB band of0.48nm, the3dB band of0.52nm, the25dB band of0.87nm are simultaneously obtained, which can be applied to100GHz channel spacing Wavelength Division Multiplexing systems.
     2. The BCB low temperature bonding process has been studied. On this basis, a novel Si-based photodetector with good flat-top steep-edge spectral response was proposed. The structure of the photodetector is optimized by theoretical simulation. The photodetector is fabricated by bonding a Si-based multi-cavity F-P filter with an InP-based PIN absorbing structure. A peak quantum efficiency of55%around1550nm, the-0.5dB band of0.43nm,3dB band of0.5nm, the25dB band of1.06nm, and3-dB bandwidth more than16GHz, were simultaneously obtained.
     3. The step micro-structure, the vertical taper micro-structure, the cone micro-structure were prepared by the innovation of the preparation process. The step micro-structure was realized in the Fabry-Perot filter by the wet etching technology. The vertical taper micro-structure was realized in the absorbing cavity of the photodetector by dynamic mask technology, and the cone micro-structure was realized by the improvation of the dynamic mask technology.
     4. It's the first time that a Si-based RCE photodetector with flat-top steep-edge spectral response was fabricated. The photodetector is fabricated by bonding a Si-based multi-cavity F-P filter with an InP-based vertical taper absorbing structure. An integrated device with a peak quantum efficiency of58.42%around1550nm is obtained, which is realized by vertical taper micro-structure. In addition, this photodetector has good performance in the flat-top and steep-edge spectral response, which is realized by the multi-cavity filter. The spectral linewidth is less than0.65nm. The passband flatness is less than0.55dB. The-0.5dB band is0.52nm, and the25dB band is0.95nm.
     5. A novel wavelength selective photodetector based on a conical absorbing structure has been proposed and fabricated. The preparation process of the cone mirror structure is studied. The base angle of the conical structures can be controlled by changing the depth of the conical forming layer and the radius of the conical mask layer. The top mirror of the absorption cavity was designed to be conical, which can increase the times of light reflection, so the quantum efficiency was improved. An integrated device with a peak quantum efficiency of58.42%around1550 nm is obtained. In addition, this photodetector has good performance in the flat-top and steep-edge spectral response, which is realized by the multi-cavity filter. The spectral linewidth is less than0.7nm. The passband flatness is less than0.55dB. The-0.5dB band is0.5nm, and the25dB band is1.06nm, which can be applied to100GHz channel spacing Wavelength Division Multiplexing systems.
     6. A monolithically integrated tunable photodetector with flat-top steep-edge spectral response was fabricated. The photodetector is based on GaAs Fabry-Perot filter and an InP PIN. The step structure in the Fabry-Perot filter is realized by wet etching technique, and the high quliaty GaAs/InP heteroepitaxy is realized by employing a thin low temperature buffer layer. By employing a step structure in the filter, this photodetector with flat-top and steep-edge spectral response is fabricated. A peak quantum efficiency of25%around1550nm, the-0.5dB band of3.9nm,3dB band of4.2nm, and3dB bandwidth more than17GHz, were simultaneously obtained.
     7. The upgrade of software and hardware for the JGP450A9magnectron sputtering system was finished, and the system can achieve fully automatic control.
     8. The influence of the Au film thickness on the GaAs nanowire growth was studied. By prolonging the deposition time, the thickness of the Au thin film increased, the average diameter of the GaAs nanowires increased, and the growth rate decreased. And, the influence of the working gas pressure on the deposition rate in magnetron sputtering was studied. When the working pressure was0.32Pa, the average deposition rate reached the maximum value, and the best density of metal electrode films could be obtained.
引文
[1]S. E. Miller, "Integrated optics:an introduction", Bell System Technical Journal, 48(5),1969, pp.2059-2069.
    [2]Vukusic J. "Optoelectronics:an introduction", Modern Optics,31(1),1984, pp.5-6.
    [3]Williams K.J. "Microwave Photonics:the Past and the future", Optical Fiber Communication Conference (OFC) 2013, pp.OTu2H.1.
    [4]Hayashi I. "Heterostruture lasers", IEEE Transactions on Electron Devices,31(11), 1984,pp.1630-1642.
    [5]Gunther R, Joost B, Dirk T, et al. "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits", Optics Express,13(25),2005, pp.10102-10108.
    [6]Poon A.W, Luo X.S, Xu F, et al. "Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection", Proceedings of the IEEE,97(7),2009, pp.1216-1238.
    [7]Cai H, Poon A.W. "Optical manipulation and transport of microparticles on silicon nitride micro-ring-resonator-based add-drop devices", Optical Letters,35(17),2010, pp.2855-2857.
    [8]Herben C, Maat D, Leijtens X, et al. "Polarization independent dilated WDM cross-connect on InP," IEEE Photonics Technology Letters,11(12),1999, pp.1599-1601.
    [9]Wang Q, Doris K.T, Wang YD, et al. "Heterogeneous Si/Ⅲ-Ⅴ integration and the optical vertical interconnect access", Optical Express,20(15),2012, pp.16754-16756.
    [10]Michael J.W. "PICs for next-generation optical access systems", Optical Fiber Communication Conference(OFC),2012, pp.OThlF.
    [11]Yoshimura T, Seki M. "Self-organized lightwave network for three-dimensional integrated optical interconnects", IEEE Optical Interconnects Conference,2012, pp.127-128.
    [12]Hsu K.C, Chen N.K, Chou S.Y, et al. "Bandpass Filter With Variable Bandwidth Based on a Tapered Fiber With External Polymer Cladding", IEEE Photonics Technology Letters,21(13),2009, pp.935-937.
    [13]Nada M, Muramoto Y, Yokoyama H, et al. "High-power-tolerant InAlAs avalanche photodiode for 25Gbit/s application", Electronics Letters,49(1),2013, pp.62-63.
    [14]Michael S.B, Jason P.J, Dhritiman B, et al. "Optical components for WDM lightwave networks", Proceedings of The IEEE,85(8),1997, pp.1724-1725.
    [15]Yu J.J, Zhou X. "Ultra-High-Capacity DWDM transmission system for 100G and beyond", IEEE Communications Magazine,48(3),2010, pp.S56-S64.
    [16]Essiambre R, Tkach R.W, "Capacity trends and limits of optical communication networks", Proceedings of the IEEE,100(5),2012, pp.1035-1055.
    [17]Mukherjee B, "WDM optical communication networks:progress and challenges", IEEE Journal on Selected Areas in Communications,18(10),2000, pp.1810-1824.
    [18]Zhang J.J, Nirwan A. "On the Capacity of WDM Passive Optical Networks", IEEE Transactions on communications,59(2),2011, pp.552-558.
    [19]Yoon-Suk Hurh, Gyo-Sun Hwang, Jin-Yong Jeon, et al. "1-Tb/s (100x12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200km", IEEE Photonics Technology Letters,17(3),2005, pp.696-698.
    [20]Zhou Y. F, Huang Y. Q, Duan X. F, et al. "Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response", Optics & Laser Technology,44(1),2012, pp.285-289.
    [1]Hayashi I. "Heterostruture lasers", IEEE Transactions on Electron Devices,31(11), 1984,pp.1630-1642.
    [2]Floyd P.D, Treat D.W, Bour D.P. "Heterogeneous integration of visible AlGaInP and infrared AlInGaAs lasers with GaN-based light sources", Electronics Letters, 35(24),1999, pp.2120-2121.
    [3]Gunther R, Joost B, Dirk T, et al. "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits", Optics Express,13(25),2005, pp.10102-10108.
    [4]Ahn J.H, Kim H.S, Lee K.J, et al. "Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials", Science Magazine,314(5806),2006, pp.1754-1757.
    [5]Williams K.J. "Microwave Photonics:the Past and the future", Optical Fiber Communication Conference (OFC) 2013, pp.OTu2H.1.
    [6]Poon A. W, Zhou L.J, Chen J.P, et al. "Integrated photonics research in China", Optics and Photonics News,22(9),2011, pp.22-29.
    [7]Zhen S, Liu L, Joost B, et al. "InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides", Optics express,18(2),2010, pp.1756-1761.
    [8]Dai D.X, He S.L. "Proposal of a coupled-microring-based wavelength-selective power splitter", IEEE Photonics Technology Letters,21(21),2009,1630-1632.
    [9]Xie Y.Q, Gao S.M, He S.L. "Simultaneous all-optical, error-free time-division demultiplexing and NRZ-to-RZ format conversion using a silicon-on-insulator waveguide",17th Opto-electronics and communications conference(OECC),2012, pp.241-242.
    [10]Poon A.W, Luo X.S, Xu F, et al. "Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection", Proceedings of the IEEE,97(7), 2009,pp.l216-1238.
    [11]Cai H, Poon A.W. "Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices", Optical Letters,35(17), 2010, pp.2855-2857.
    [12]Huang H, Ren X.M, Ye X, et al. "Growth of stacking-faults-free Zinc blende GaAs nanowires on Si substrate by using AlGaAs/GaAs buffer layer", Nano Letters, 10(1), pp.64-68.
    [13]Yan X, Zhang X, Ren X.M, et al. "Formation Mechanism and Optical Properties of InAs Quantum Dots on the Surface of GaAs Nanowires", Nano Letters,12(4), 2012, pp.1851-1856.
    [14]Zirngibl M, Joyner C.H, Stulz L.W. "WDM receiver by monolithic integration of an optical preamplifier, waveguide grating router and photodiode array", Electronics Letters,31(7),1995,pp.581-582.
    [15]Herben C, Maat D, Leijtens X, et al. "Polarization independent dilated WDM cross-connect on InP," IEEE Photonics Technology Letters,11(12),1999, pp.1599-1601.
    [16]Coldren L.A, "Monolithic tunable diode lasers," IEEE Journal of Selected Topics in Quantum Electronics,6(6),2000, pp.988-999.
    [17]Yoshikuni Y, "Semiconductor arrayed waveguide gratings for photonic integrated devices," IEEE journal of selected topics in quantum electronics,8(6),2002, pp.1102-1114.
    [18]Suzaki Y, Asaka K, Kawaguchi Y, et al. "Multi-channel modulation in a DWDM monolithic photonic integrated circuit", IPRM (Sweden),2002, pp.681-683.
    [19]Masanovic M L, Lal V, Barton J S, et al. "Monolithically integrated Mach-Zehnder interferometer wavelength converter and widely tunable laser in InP," IEEE Photonics Technology Letters.15(8),2003, pp.1117-1119.
    [20]Radhakrishnan N, Meint S. "Photonic integration," LEOS Newsletters,21(3), 2007, pp.4-10.
    [21]D. Michael, B. Jared, P. Molly, et al. "A 400 Gb/s WDM Receiver Using a Low Loss Silicon Nitride AWG Integrated with Hybrid Silicon Photodetectors", Optical Fiber Communication conference(OFC),2013, pp.PDP5C.5.
    [22]Kang Y, Liu H. D, Morse M, et al. "Monolithic germanium/silicon avalanche photodiodes with 340GHz gain bandwidth product", Nature Photonics,3(1),2009, pp.59-63.
    [23]Zaoui W. S, Chen H. W, Bowers J. E, et al. "Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product," Optics Express,17(15),2009, pp.12641-12649.
    [24]M. Nada, Y. Muramoto, H. Yokoyama et al. "High-power-tolerant InAlAs avalanche photodiode for 25Gbit/s application," Electronics Letters,49(1),2013, pp. 62-63.
    [25]Cervantes-Gonzalez J. C, Donghwan A, Zheng X.G, et al. "Germanium metal-semiconductor-metal photodetectors evanescently coupled with upper-level silicon oxynitride dielectric waveguides," Applied Physics Letters,101(26),2012, pp.261109-261109-3.
    [26]Harris N. C, Tom B. J, Lim A. E, et al, "Noise characterization of a waveguide-coupled MSM photodetector exceeding unity quantum efficiency," Journal of Lightwave Technology,31(1),2013, pp.23-27.
    [27]E.A. Marcatili, "Bends in Optical Dielectric Guides". The Bell System Technical Journal,48(9),1969, pp.2103-2132.
    [28]Chen L, Michal L. "Ultra-low capacitance and high speed germanium photodetectors on silicon," Optics Express,17(10),2009, pp.7901-7906.
    [29]Luo X. S, Song J. F, Fang Q, Tu X.G, et al. "Thermal-tunable microring resonator-based WDM optical receiver for on-chip optical interconnect," Photonics Global Conference(PGC), Singapore,2012, pp.1-3.
    [30]Duan X.F, Huang Y.Q, Ren X.M, et al. "Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array", Optics Express,18(6),2010, pp.5879-5889.
    [31]Kishino K, M. iinlu, Chyi J, et al. "Resonant cavity-enhanced (RCE) photodetectors", IEEE Journal of Quantμm Electronics,27(8),1991, pp.2025-2034
    [32]Liu S. Q, Han Q, et al. "High-performance metamorphic InGaAs resonant cavity enhanced photodetector grown on GaAs substrate", Applied Physics Letters,98(20), 2011, pp.201104-201104-3.
    [33]Huang H, Huang Y.Q, Ren X.M, et al. "Ultra-narrow spectral linewidth photodetector based on taper cavity", Electronics Letters,39(1),2003, pp.113-114.
    [34]Duan X.F, Huang Y.Q, Ren X.M, et al. "Long Wavelength Multiple Resonant Cavities RCE Photodetectors on GaAs substrates", IEEE Transaction on Electronics Device,58(11),2011, pp.3948-3953.
    [35]Lasse K, Antti S, Chen Y, et al. "Low-loss multiple-slot waveguides fabricated by optical lithography and atomic layer deposition," Photonics technology letters,24(22), 2012, pp.2074-2076.
    [36]Hahmann P, Fortagne O. "50 years of electron beam lithography:contribution from Jena(Germany)", Microelectronic Engineering,86(4-6),2009, pp.438-441.
    [37]Sasikanth M, Kyle P, Chen L, et al. "Ultra-low voltage, ultra-small mode volume silicon microring modulator", Optics Express,18(17),2010, pp.18235-18242.
    [38]Stefan E.K, Andreas S.T, Markus W, et al. "Ion multi-beam direct sputtering of Si imprint stamps and simulation of resulting structures." Journal of Micromechanics and Microengineering,22(5),2012, pp.055008-055008-9.
    [39]Martini I, Eisert D, Kamp M, et al. "Quantum point contacts fabricated by nanoimprint lithography", Applied Physics Letters,77(14),2000, pp.2237-2239.
    [40]Wang J, Schablitsky S.J, Chou S.Y. "Fabrication of a new broadband waveguide polarizer with a double-layer 190nm period metal-grating using nanoimprint lithography", Journal of Vaccum Science&Technology B,17(6),1999, pp.2957-2960.
    [41]Yu Z, Shablitsky S.J, Chou S.Y. "Nanoscale GaAs metal-semiconductor-metal photodetectors fabricated using nanoimprint lithography", Applied Physics Letters, 74(16),1999,2381-2383.
    [42]Chen Y, Macintyre D, Boyd E, et al. "Fabrication of high electron mobility transistors with T-gates by nanoimprint lithography", Journal of Vaccum Science&Technology B,20(6),2002, pp.2887-2890.
    [43]Koji H, Morita M, Masunaga H, et al. "Room-temperature nanoimprint lithography for crystalline poly(fluoroalkyl acrylate) thin films", Soft Matter,5(6), 2010,pp.870-875.
    [1]Ejeckam RE, Chua C.L, Zhu Z.H,et al. "High-performance InGaAs photodetector on Si and GaAs substrates", Applied Physics Letters,67(26),1995, pp.3936-3938.
    [2]Zhang L.Z, Cao Q, Zuo Y.H, et al. "Wavelength-Tunable Si-Based InGaAs Resonant Cavity Enhanced Photodetectors Using Sol-Gel Wafer Bonding Technology", IEEE Photonics Technology Letters,23(13),2011, pp.881-883.
    [3]Yu J.J, Zhou X. "Ultra-High-Capacity DWDM transmission system for 100G and beyond," IEEE Communications Magazine,48(3),2010, pp.S56-S64.
    [4]Zhou Y. F, Huang Y. Q, Duan X. F, et al. "Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response", Optics & Laser Technology,44(1),2012, pp.285-289.
    [5]Wu Z.G, Honda S, Matsui J, et al. "Tunable Monolithic DWDM Band-Selection Interleaver Filter Switch on Silicon-on-Insulator Substrate", Journal of Lightwave Technology,26(19),2008, pp.3363-3368.
    [6]Wang Q. J, Zhang Y, Soh Y.C. "Thin-Film Ⅲ-Ⅴ photodetectors integrated on silicon-on-insulator photonics ICs", Journal of Lightwave Technology,25(4),2007, pp.1053-1060.
    [7]Chen Q, Chitnis D, K. Walls. "CMOS Photodetectors Integrated With Plasmonic Color Filters", IEEE Photonics Technology Letters,24(3),2012, pp.197-199.
    [8]Atanassova E, Spasov D. "Thermal Ta2O5 alternative to SiO2 for storage capacitor application," Microelectronics Reliability, Oxford, New York, English, 42(8),2002, pp.1171-1177.
    [9]Sheng Z, Liu L, Brouckaert J, et al. "InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides," Optics Express,18(2),2010, pp.1756-1761.
    [10]Brouckaert J, Roelkens G, Thourhout D.V, et al. "Compact InAlAs-InGaAs Metal-Semiconductor-Metal Photodetectors Integrated on Silicon-on-Insulator Waveguides", IEEE Photonics Technology Letters,19(19),2005, pp.1484-1486.
    [11]Zhang R, Mansour R.R. "Low-Cost Dielectric-Resonator Filters With Improved Spurious Performance", IEEE Transactions on Microwave Theory and Techniques, 55(10),2007, pp.2168-2175.
    [12]Tang H.J, Hong W, Hao Z.C. "Optimal design of compact millimeter-wave SIW circular cavity filters", Electronics Letters,41(19),2005, pp.1068-1069.
    [13]Anna B, Vladimir A.T, Tatiana S.P. "Fine tunable multi-cavity Si photonic crystal filters", Silicon Photonics and Photonic Integrated Circuits Ⅲ,8431,2012, pp.84310H.
    [14]Popvic M.A, Christina M, Watts M.R. "Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters", Optics Express,14(3),2006, pp.1208-1222.
    [15]Yu T, Zhao H.F, Xue L, et al. "Fabry-Perot filter frequency stabilization control for multiple ITU wavelengths reference", Microwave and Optoelectronics Conference 2003,pp.291-294.
    [16]Michel J, Liu J, Kimerling C. "High-performance Ge-on-Si photodetectors", Nature Photonics,4(8),2010, pp.527-534.
    [17]Roelkens G, Brouckaert J, Taillaert D, et al. "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits," Optics Express,13(25), 2005, pp.10102-10108.
    [18]黄永清,任晓敏,黄辉,等.“特殊图案透明欧姆接触微结构提高谐振腔增强型光探测器的响应性能”,中国激光,33(5),2006,pp.617-618.
    [19]Vlad S, Sean H, Lukasz B, et al. "Colloidal quantum-dot photodetectors exploiting multiexciton generation", Science Magazine,324(5934),2009, pp.1542-1544.
    [20]Ahn D, Hong C.Y, Kimerling L.C, et al. "Coupling efficiency of monolithic, waveguide-integrated Si photodetectors", Applied Physics Letters,94(8),2009, pp.081108-081108-3.
    [21]Yuan J, Chen B, Holmes A.L, et al. "Near-infrared quantum efficiency of uncooled photodetectors based on InGaAs/GaAsSb quantum wells lattice-matched to InP", Electronics Letters,47(20),2011, pp.1144-1145.
    [22]Duan Xiaofeng, Huang Yongqing, Huang Hui, et al. "Monolithically integrated photodetector array with multistep cavity for multiwavelength receiving applications", Journal of Lightwave Technology,27(21),2009, pp.4697-4702.
    [I]Zuo Y.H, Mao R.W, Zheng Y.Y, et al, "A Si-Based Tunable Narrow-Band Flat-Top Filter With Multiple-Step-Type Fabry-Perot Cavity Structure", IEEE Photonics Technology Letters,17(10), 2005,pp.2134-2136.
    [2]Huang Y.Q, Huang H, Ren X.M, et al. "Characteristic Analysis of the High Frequency Response for High-Speed Long Wavelength Resonant Cavity Enhanced Photodetectors", Journal of Lasers,31(11),2004, pp.1385-1390.
    [3]钟源,黄永清,任晓敏,“平顶陡边响应的谐振腔增强型(RCE)光电探测器的分析”,半导体光电,23(1),2002,pp.8-11.
    [4]M S Unlu, S Strite. "Resonant cavity enhanced photonic devices". Journal of Applied Physics,78(2),1995, pp.607-639
    [5]Kishino K, M Unlu, J Chyi, et al. "Resonant cavity-enhanced (RCE) photodetectors", IEEE J. Quantμm Electronics,27(8),1991, pp.2025-2034
    [6]Ren X.M, Joe C.C, "A Novel Structure:One Mirror Inclined Three-Mirror Cavity High Performance Photodetector", Technical Proceedings:International Topic Meeting On Photoelectronics (ITMPE'97), Beijing,1997, pp.81-84.
    [7]Liu S.Q, Han Q, Zhu B, et al. "High-performance metamorphic InGaAs resonant cavity enhanced photodetector grown on GaAs substrate", Applied Physics Letters, 98(20),2011, pp.201104-201104-3.
    [8]Hors Z. "Detectors based on resonant cavity", Integrated Silicon Optoelectronics, 148,2010, pp.205-211.
    [9]Liu K, Huang Y.Q, Ren X.M, et al. "Theory and experiments of a three-cavity wavelength-selective photodetector". Applied Optics,39(24),2000, pp.4263-4269.
    [10]Duan X.F, Huang Y.Q, Ren X.M, et al. "Long Wavelength Multiple Resonant Cavities RCE Photodetectors on GaAs substrates", IEEE Transaction on Electronics Devices,58(11),2011, pp.3948-3953.
    [11]Huang H, Huang Y.Q, Ren X.M, et al. "Ultra-narrow spectral linewidth photodetector based on taper cavity". IEEE Electron Lett.,39(1),2003, pp.113-114.
    [12]Wang C, Zaki-K.A, "Dielectric resonators and filters," IEEE Microwave Magazine,8(5),2007, pp.115-127.
    [13]Atanassova E, Spasov D. "Thermal Ta2O5 alternative to SiO2 for storage capacitor application," Microelectronics Reliability,42(8),2002, pp.1171-1177.
    [14]Anna B, Vladimir A.T, Tatiana S.P. "Fine tunable multi-cavity Si photonic crystal filters", Silicon Photonics and Photonic Integrated Circuits Ⅲ,8431,2012, pp.8431 OH.
    [15]Popvic M.A, Christina M, Watts M.R. "Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters", Optics Express,14(3),2006, pp.1208-1222.
    [16]Binetti P.A, Leijtens X.J, Vries T, et al. "InP/InGaAs photodetector on SOI photonic circuitry", IEEE Photonics Journal,2(3),2010, pp.299-305.
    [17]Ann D, Hong C.Y, Kimerling L.C, et al. "Coupling efficiency of monolithic, waveguide-integrated Si photodetectors", Applied Physics Letters,94(8),2009, pp.081108-081108-3.
    [18]Wang J, Lee S.J. "Ge-photodetectors for Si-based optoelectronic integration", Sensors,11(1),2011, pp.696-718.
    [19]Zhang X.Q, Huang Y.Q, Duan X.F, et al. "A novel Si-based photodetector with flat-top and steep-edge spectral response", Optics Communications,285(21),2012, pp.4338-4343.
    [20]Das N.R. "Si-based photodetectors in optical communication",2009 International Conferenceon Emerging Trendsin Electronic and Photonic Devices&Systems (ELECTRO),2009, pp.436-441.
    [21]Duan X.F, Huang Y.Q, Ren X.M, et al. "Long Wavelength Multiple Resonant Cavities RCE Photodetectors on GaAs substrates", IEEE Transactions on Electron Devices,58(11),2011, pp.3948-3953.
    [22]Huang H, Huang Y.Q, Ren X.M, et al. "Crack-free GaAs epitaxy on Si by using growth Application to Si-based wavelength-selective photodetector", Journal of Applied Physics,104(11),2008, pp.113114-113114-5.
    [1]Liu L, Xie S, Mao L.H, et al. "Transient simulation and optimization of InP/InGaAs unitraveling carrier photodetector", Optoelectronics Letters,6(3),2010, pp.191-194.
    [2]Zhang J.J, Nirwan A. "On the Capacity of WDM Passive Optical Networks", IEEE Transactions on Communications,59(2),2011, pp.552-558.
    [3]Michael S.B, Jason P.J, Dhritiman B, et al. "Optical components for WDM lightwave networks", Proceedings of The IEEE,85(8),1997, pp.1724-1725.
    [4]Gholamreza A, Vahid A, Kamyar S. "Design and Analysis of Resonant Cavity Enhanced-Waveguide Photodetectors for Microwave Photonics Application", IEEE Photonics Technology Letters,18(5),2006, pp.1597-1599.
    [5]Y. H. Zuo, R. W. Mao, Y. Y Zheng, et al. "A Si-Based Tunable Narrow-Band Flat-Top Filter With Multiple-Step-Type Fabry-Perot Cavity Structure", IEEE Photonics Technology Letters,17(10),2005, pp.2134-2136.
    [6]黄成,黄辉,王文娟,等.“一种具有平顶陡边响应的InP基长波长可调谐光探测器的设计”,半导体光电,26(2),2005,pp.100-104.
    [7]Hsu K.C, Chen N.K, Chou S.Y, et al. "Bandpass filter with variable bandwidth based on a tapered fiber with external polymer cladding", IEEE Photonics Technology Letters,21(13),2009, pp.935-937.
    [8]Zhang X, Huang Y.Q, Ren X.M, et al. "Falt-top steep-edge photodetector with cascaded grating structure", Communications and Photonics Conference and Exhibition(ACP),2009, pp.1-2.
    [9]Wang W, Huang Y.Q, Duan X.F, et al. "Monolithically integrated tunable dual-wavelength photodetector with flat-top response", Optics Communications, 285(5),2012, pp.638-644.
    [10]Poon A.W, Luo X.S, Xu F, et al. "Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection", Proceedings of the IEEE,97(7),2009, pp.1216-1238.
    [11]Yu J.J, Zhou X. "Ultra-High-Capacity DWDM transmission system for 100G and beyond", IEEE Communications Magazine,48(3),2010, pp.S56-S64.
    [12]Duan X. F, HuangY. Q, Ren X. M, et al. "Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array", Optics Express,18(6),2010,5879-5889.
    [13]刘凯,黄永清,任晓敏.“考虑不同层材料折射率差时的谐振腔增强型光电探测器分析”,光电子·激光,9(5),1998,pp.360-363.
    [14]段晓峰.“用于WDM光网络的解复用光接收集成器件的研究”,[学位论文],北京,北京邮电大学,2010.
    [15]刘安平,段利华,周勇."InGaAs/GaAs应变量子阱激光器MOCVD生长研究”,光电子·激光,21(2),2010,PP.163-165.
    [16]Huang H, Huang Y.Q, Wang X.Y, et al. "Long wavelength resonant cavity photodetector based on InP/air-gap bragg reflectors", IEEE Photonics Technology Letters,16(1),2004, pp.245-247.
    [17]Gao Y, Zhong Z.Y, Feng S.Q, et al. "High-speed normal-incidence p-i-n InGaAs photodetectors grown on silicon substrates by MOCVD", IEEE Photonics Technology Letters,24(4),2012, pp.237-239.
    [18]Duan X.F, Huang Yo.Q, Huang H, et al. "Monolithically Integrated Photodetector Array with Multistep Cavity for Multiwavelength Receiving Applications", Journal of Lightwave Technology,27(21),2009, pp.4697-4702.
    [1]Musil J, Baroch P, Vlcek J, et al. "Reactive magnetron sputtering of thin films: present status and trends", Thin Solid Films,475(1-2),2005, pp.208-218.
    [2]Musil J, Vicek J. "A perspective of magnetron sputtering in surface engineering", Surface and Coatings Technology,112(1-3),1999, pp.162-169.
    [3]Kelly P.J, Arnell R.D. "Magnetron sputtering:A review of recent developments and applications", Vacuum,56(3),2000, pp.59-172.
    [4]Safi I. "Recent aspects concerning DC reactive magnetron sputtering of thin films: a review", Surface and Coatings Technology,127(2-3),2000, pp.203-218.
    [5]Bra'uer G, Szyszka B, Vergohl M, et al. "Magnetron sputtering-milestones of 30 years original research article", Vacuum,84(12),2010, pp.1354-1359.
    [6]Gudmundsson J.T. "The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool", Vacuum,84(12),2010, pp.1360-1364.
    [7]Sarakinos K, Alami J, Konstantinidis S. "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art", Surface and Coatings Technology,204(11),2010, pp.1661-1684.
    [8]Sreejith K, Arthur E. H, John S. C, et al. "The influence of operating parameters on pulsed D.C. magnetron sputtering plasma", Vacuum,85(5),2010, pp.634-638.
    [9]Anders A. "Discharge physics of high power impulse magnetron sputtering", Surface and Coatings Technology,205(2),2011, pp.Sl-S9.
    [10]Zhou J, Wu Z, Liu Z.H, et al. "Influence and determinative factors of ion-to-atom arrival ratio in unbalanced magnetron sputtering systems", Journal of University of Science and Technology,15(6),2008, pp.775-781.
    [11]Gudmundsson J.T, Brenning N, Lundin D, et al. "High power impulse magnetron sputtering discharge", Journal of Vacuum Science & Technology A,30(3),2012, pp.030801.
    [12]Wu T, Wen X.L, Deng L.J, Xu K.W. "The effect of plating on magnetron sputtering:Residual stress, and scratch behavior of Au/NiCr/Ta multi-layers", Applied Surface Science,253(4),2006, pp.2222-2225.
    [13]Yan X, Zhang X, Ren X.M, et al. "Formation Mechanism and Optical Properties of InAs Quantum Dots on the Surface of GaAs Nanowires", Nano Letters,12(4), 2012, pp.1851-1856.
    [14]Musil J, Vicek J. "Magnetron sputtering of films with controlled texture and grain size", Materials Chemistry and Physics,54(1-3),1998, pp.116-122.
    [15]程守洙,江之永,普通物理学[M],北京:高等教育出版社,1982:263.
    [16]徐学基,诸定昌,气体放电物理[M],上海:复旦大学出版社,1996:135,127,89,130.
    [17]成都电讯工程学院选编,气体放电及离子管[M],北京:人民教育出版社,1961:107.
    [18]Svadkovski I.V, Golosov D.A, Zavatskiy S.M. "Characterisation parameters for unbalanced magnetron sputtering systems", Vacuum,68(4),2002, pp.283-290.
    [19]Sagas J.C, Fontana L.C, Maciel H.S. "Influence of electromagnetic confinement on the characteristics of a triode magnetron sputtering system", Vacuum,85(6),2011, pp.705-710.
    [20]Mattias S, Daniel L, Jens J, et al. "On the film density using high power impulse magnetron sputtering", Surface and Coatings Technology,205(2),2010, pp.591-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700