光学活性偶氮苯功能聚合物作为蛋白质吸附材料的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮苯类化合物具有独特的光学顺反异构特性,在异构化转变过程中会伴随着一些物理化学性质的改变。目前偶氮类材料被广泛地应用于药物可控释放、非线性光学元件、液晶材料、光调控生物敏感材料等方面。本论文制备了三种含不同端基的功能化偶氮苯聚合物,并利用傅立叶红外光谱仪(FT-IR)、核磁共振波谱仪(1H NMR)表征了其结构,详细研究了牛血清白蛋白(BSA)在含偶氮苯敏感膜上的吸附行为。本课题旨在研究在光、电两种外场影响下,BSA在偶氮苯聚合物膜表面的可逆吸附机理,为进一步研究开发光敏性传感器芯片提供理论基础。
     首先,考察BSA在聚-4-氯-4’-偶氮苯甲基丙烯酸酯(PMAAzoCl)薄膜表面的吸附行为。通过自由基聚合法制得PMAAzoCl,并采用紫外吸收光谱(UV)详细研究该聚合物的光学异构特性,在紫外-可见光循环照射下,PMAAzoCl发生明显的异构化转变,且光响应速度较快,其光致异构反应为一阶动力学反应。接着,利用旋转涂膜技术在金片和硅片表面制备聚合物膜,并在紫外-可见光交替照射下采用接触角仪(CA)考察聚合物膜表面浸润性的变化。采用表面等离子体谐振仪(SPR)在位研究BSA在聚合物膜表面的吸附动力学,重点研究在紫外-可见光循环照射下,聚合物结构的改变对蛋白质吸附的影响。SPR测试结果显示,在该聚合物膜表面BSA分子能够发生可逆吸附。
     为了考察聚合物化学结构对生物分子吸附的影响,又利用表面引发原子转移自由基聚合(SI-ATRP)方法在金膜及硅片表面制备了结构规整的偶氮苯聚合物刷,即聚-4-(6-羟基己氧基)-4’-羧基偶氮苯甲基丙烯酸酯(PMAAzoCOOH)。同时合成了在金膜及硅片表面进行接枝反应所需的两种引发剂6-巯基-2-溴-2-甲基丙酸己酯及N-(3-甲氧基硅基)正丙基-2-溴-异丁酰胺,并通过FT-IR与1H NMR表征了其化学结构,然后将其组装到金片和硅片表面,采用SI-ATRP法制备偶氮苯聚合物刷。接着,采用原子力显微镜(AFM)观察聚合物刷在紫外-可见光照射前后的表面形貌变化。在此基础上,采用SPR在位考察了BSA在聚合物膜表面的动态吸附,结果表明在紫外-可见光作用下,聚合物膜同样可以实现光控可逆的BSA分子的可逆吸附。
     最后,为了进一步研究外场对生物分子在偶氮苯类聚合物表面的吸附行为和机理,又利用循环伏安法(CV)和SPR考察了BSA在光电双重响应性聚合物膜表面的可逆吸附行为。为了得到具有双重响应性物质,本课题把吡咯分子引入到偶氮苯取代基中,并利用化学氧化聚合法制备出聚-4-(6-羟基己氧基)-4’-羧基偶氮苯甲基丙烯酸酯聚合物(PPyAzoCOOH),采用UV详细研究了聚合物的光学异构现象,与上述两种聚合物相比,PPyAzoCOOH的光致异构速率明显变慢;同时在紫外-可见光交替照射下采用AFM观察BSA在聚合物膜表面的吸附及解吸附。利用CV测试聚合物膜的导电性能及BSA在聚合物复合电极吸附前后的电化学活性变化,运用SPR检测BSA在聚合物膜表面的可逆吸附动力学,结果表明该偶氮苯吡咯聚合物具有良好的光电响应特性。
     通过对三种偶氮苯类聚合物体系光学异构性的比较,可以发现,随着偶氮苯分子的柔性间隔链长的增加,光学异构速率降低,而偶氮苯类聚合物的功能基团种类和外场条件则是影响BSA吸附的主要原因。
Recently, azobenzene derivatives have been intensively studied due to their trans-cis isomerization properties and the accompanied change of their physical properties. Therefore, they have been widely used in many fields, such as optical information storage materials, nonlinear optical materials, liquid crystal materials, light adjust and controlling materials of biological activity and nanophase materials. In the present work, three kinds of azobenzene-containing monomers were synthesized and polymerized to be applied as the sensitive layers for biomolecules binding. The chemical structures of them were characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Nucler Mgnetic Reonnce Spectroeter (1H NMR).
     Firstly, BSA adsorption on poly (4-((4-chlorophenyl) diazenyl) phenyl methacrylate), which was prepared by the method of free radical polymerization, was investigated by surface plasmon resonance of spectroscopy (SPR) in details. At the very beginning, the polymer was dissolved in the solvent. The polymer solution was dropped onto the substrates, i.e., Si or Au, and formed the polymer film. FT-IR was used to characterize the chemical structure of monomers and polymer. And the reversible photoisomerization of polymer film was studied by contact angle (CA) and UV-Vis absorption spectrum. Moreover, the reversible processes of photoisomerization of azopolymer can be induced by UV light. It suggests that the rate of photoisomerization is fast and first-order constant. Afterwards, before and after the irradiation of UV light, the adsorption kinetics of BSA on azopolymer surface was measured by SPR. The results showed that BSA molecules can be adsorbed onto the polymer film reversibly.
     In order to understand the effect of the polymer structure on biomolecules anchor and improve the controllable ability of biomoleucles onto the azopolymer surfaces, the grafting polymer brushes which is regular structure and narrow distribution of molecular weight was prepared on Au and silicon substrates by the method of surface-initiated atom transfer radical polymerization (ATRP). Herein, 6-mercaptohexyl 2-bromo-2-methylpropanoate and 6-(3-dimethoxy (methyl) silyl)-2-bromide-2-methyl propanamide were used as initiators and self-assembled onto Au and silicon substrates, respectively. Also, the chemical structure and photo-properties of azopolymer were characterized by FT-IR and UV. Moreover, the variations of the morphology of the surface before and after UV irradiation were measured by Atomic Force Microscopy (AFM). While as the adsorption kinetics of BSA on azopolymer surface was measured in situ by SPR. Comparing with the first azopolymer, the similar result was obtained. BSA could be adsorbed onto the polymer surface reversibly. Furthermore, BSA adsorption was also depended on the type of functional groups contained in the azopolymer chains.
     Aim to enhance the controllability on biomolecules anchor on polymer matrix, pyrrole group was introduced into the azobenzene molecules. Polymer (poly 4-((4-((6-(1H-pyrrol-1-yl) hexyl) oxy) phenyl) diazenyl) benzoic acid, PPyAzoCOOH) was prepared by chemical method. Therefore, the polymer synthesized will be conductive and photo-isomerized. Herein, the homopolymer was prepared and spin-coated onto the Au surfaces. Afterwards, the chemical, photo and surface properties were measured by FT-IR, UV, AFM and CA. Comparing with the former two polymers, the rate of photoisomerization of azopolymer is much slower. Cyclic voltammogram was applied to detect the electrochemical properties of azopolymer before and after BSA binding.
     The photo-isomerization of three azopolymers is different and depended on the spacer lengenth between azobenzene group and the backbone of polymers. The rate of isomerization of azopolymers becomes slow with the spacer lengenth increasing. Furthermore, the BSA adsorption is affected mainly by the types of the functional groups of azopolymers and the conditions of the external fields.
引文
[1] M Alemani, M V Peters, S Hecht, et al. Electric Field induced Isomerization of Azobenzene by STM [J]. J. Am. Chem. Soc, 2006, 128: 14446 - 14447.
    [2] N Ma, Y P Wang, X Zhang, et al. Polymer Micelles as Building Blocks for the Incorporation of Azobenzene: Enhancing the Photochromic Properties in Layer - by - Layer Films [J]. Langmuir, 2006, 22: 3906 - 3909.
    [3] N Tamaoki, M Wada, Dynamic Control of Racemization Rate through E?Z Photoisomerization of Azobenzene and Subsequent Partial Photoresolution under Circular Polarized Light [J] J. Am. Chem. Soc, 2006, 128: 6284 - 6285.
    [4] C L Feng, Z H Zhang, W Knoll, G J et al. Ractive Thin Polymer Films as Platforms for the Immobilization of Biomolecules [J]. Biomacromolecules, 2005, 6: 3243 - 3251.
    [5] G Masci, L Giacomelli, V Crescenzi. Atom Transfer Radical Polymerization of N - Isopropylacrylamide [J]. Macromol.Rapid Commun, 2004, 25: 559 - 564.
    [6] J Liu, Y Lu. A DNAzyme Catalytic Beacon Sensor for Paramagnetic Cu2+ Ions in Aqueous Solution with High Sensitivity and Selectivity [J]. J. Am. Chem. Soc, 2007, 129: 9838 - 9839.
    [7] Y Aoshima, C Egami, Y Kawata, et al.Two - way Opticalmemory for Azobenzene Containing Urethane - urea Copolymer Films [J]. Opt.Commun, 1999, 165: 177 - 182.
    [8] T S Lee, D Y Kim, X L Jinag, et al. Photoinduced Surface Relief Gratings in High - tg main - chain Azoaromatic Polymer Films [J]. J Polym Sci, PartA: Polym.Chem, 1998, 36: 283 - 289.
    [9]张会旗,李晨曦,黄文强,等.含对硝基偶所苯基团的侧链液晶高分子的合成及其光致变色性能研究[J].高分子通报, 1998, (2): 184 - 190.
    [10] T Yoshida, S Kanaoka, S Aoshima. Photosensitive Copolymers with Various Types of Azobenzene Side Groups. Synthesized by Living Cationic Polylnerization [J]. Journal of Polymer Seienee. PartA: Polymer Chemistry, 2005, 43: 4292 - 4297.
    [11] Y N He, J J Yin, P C Che. Epoxy - based Polymers Containing Methyl - substituted Aobenzene Chromophores and Photoinduced Surface Rellief Graftings [J]. European Polymer Journal, 2006, 42 (2): 42292 - 422301.
    [12] N Tirelli, R A Solaro, F Ciardelli, et al. Structure - activity Relationship of New NLO Organic Materials Based on Push - Pull Azodyes. 4. Side - Chain Polymers [J]. Polymer, 2000, 41: 415 - 421.
    [13] L Andruzzi, A Altomare, F Ciardelli, et al. Holographic Gratings in Azobenzene Side - Chain Polymethaeyrlates [J]. Macromoleeules, 1999, 32: 448 - 454.
    [14] L Angiolini, D Caretti, L Giorgini, et al. Optically Active Methacrylic Polymers Bearing Side - Chain Conjugated Azoaromatic Chromophores [J]. Synth Met, 2000, 115: 235 - 239.
    [15]陈清元,沈家瑞,陈建海.偶氮聚合物作为结肠靶向药物载体的研究进展[J].功能高分子学报, 2001, 14: 252 - 256.
    [16] M Onoue, M R Han, E Ito, et al. Step - wise Decomposition Process of Azobenzene Self- Assembled Monolayers [J]. Surface Science, 2006, 600: 3999 - 4003.
    [17] G S Kumar, D C Neckers. Photochemistry of Azobenzene - containing Polymers [J]. Chem. Rev, l989, 89: 1915 - 1925.
    [18] J Y Kim , T Fukuda. Synthesis and optical properties of Azo - methacrylic copolymers with rigid tolane moiety [J]. Reactive and Functional Polymers, 2007, 67, 693 - 699.
    [19] M H?ckel, L Kador, D Kropp, et al. Polymer Blends with Azobenzene - containing Block Copolymers as Stable Rewritable Volume Holographic Media [J]. Adv. Mater, 2007, 19: 227 - 231.
    [20] V M Churikov, M F Hung, et al. Real - Time Monitoring of All - optical Poling of Azo - Dye Polymer Thin Film [J]. Opt.Lett, 2000, 25: 960 - 962.
    [21] X G Wang, J I Chen, S Marturunkakul, et al. Epoxy - based Nnoliner Optical Polymers Functionalized with Tricyanovinyl Chromophores [J]. Chem. Mate, 1997, 9: 45 - 50.
    [22] Ono Hiroshi, Nozomu Kowatari, Nobuhiro Kawatsuki. Holographic Grating Generation in Thick Polymer Films Containing Azo Dye Molecules [J]. Optical Materials, 2001, 17 (3): 387 - 394.
    [23] P Rochon, E Batalla, A Natansohn. Optically Induced Surface Grafting on Azoaromatic Polymer Films [J]. Appl. Phys. Lett, 1995, 66: 136 - 138.
    [24]刘晓华,王晓工,刘德山.一种水溶性偶氮聚电解质德合成及光响应性[J].清华大学学报(自然科学版), 2002, 42(5): 622 - 624.
    [25] J Gao, Y He, F Liu, X Zhang, et al. Azobenzene - containing Supramolecular Side -chain Polymer Films for Laser - Induced Surface Relief Gratings [J].Chem. Mater, 2007, 19, 3877 - 3881.
    [26] L Zhang, B Zou, X Zhang, et al. Self - Asembled Monolayers of New Dendron - thiols: Manipulation of the Patterned Surface and Wetting Properties [J]. Chem Commun, 2001: 1906 - 1907.
    [27] M Narita, F Hoshino, M Mouri, et al. Photoinduced Immobilization of Biomolecules on the Surface of Azopolymer Films and Its Dependence on the Concentration and Type of the Azobenzene Moiety [J]. Macromolecules, 2007, 40, 623 - 629.
    [28]黄汉生.国外导电聚合物的开发动向[J].化工新型材料, 2003, 31(10): 37 - 40.
    [29] Atilla Cihaner, Fatih Algi. Electrochemical and Optical Properties of An Azo Dye Based Conducting Copolymer [J]. Turk J Chem, 2009, 33: 759 - 767.
    [30] J A Delaire, K Nakatani. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials [J]. Chem. Rev., 2000, 100 (5): 1817 - 1846.
    [31]张志刚,吴洪才,孟令杰,等.聚3 -丁酰基吡咯偶氮苯甲烯的非线性光学性能[J].西安交通大学学报, 2005, 39 (2): 174 - 177.
    [32] Dirk Apitz, Ralph Peter Bertram, Nils Benter, et al. Conductivity of Oriented Bis - azo Polymer Films. [J] ChemPhysChem, 2006, 7, 468 - 474.
    [33]黄美荣,王健,李新贵.聚吡咯衍生物的合成及液晶性能[J].高分子通报, 2003,(4): 44 - 52.
    [34] M Manuela, M Raposo, G. Kirsch, et al. Synthesis and UV - Visible Properties of Thienyl - Substituted Pyrrole Azo Dyes. 8th International Electronic Conference on Synthetic Organic Chemistry. ECSOC - 8. 1 - 30.
    [35] P Anilkumar, M Jayakannan. Divergent Nanostructures from Identical Ingredients: Unique Amphiphilic Micelle Template for Polyaniline Nanofibers, Tubes, Rods and Spheres [J]. Macromolecules. 2008, 41: 7706 - 7715.
    [36] C Eiras, V Zucolotto, O N Oliveira et al. Electrochemical Synthesis of Polypyrrole - Azo Dyes Composite Films [J]. Syn. Metals, 2003, 135 - 136: 161 - 162.
    [37] Stephane Dufresne, Michael Gaultois, W G Skene. Environmentally Friendly Preparation of a Conjugated Polyazostilbene: A Photophysical and Electrochemical Investigation [J]. Optical Materials, 2008, 30: 961 - 967.
    [38] J S Wang, K Matyjaszewski. Controlled“Living”Radical Polymerization: ATRP in ThePresence of Transition - Metal Complexes [J]. J. Am. Chem. Soc. 1995, 117: 5614 - 5622.
    [39] J S Wang, K Matyjaszewski. Controlled“Lining”Radical Polymerization: Halogen Atom Transfer Radical Polymerization Promoted by A Cu (I)/Cu (II) Redox Process [J]. Macromolecules, 1995, 28: 7901 - 7910.
    [40] M Kato, M Kamigaito, M Sawamoto, et al. Polymerization of MMA with CCl4/ RuCl2 (PPh3)3/MeAl (ODBP) 2 Initiating System [J]. Macromolecules, 1995, 28: 1721 - 1723.
    [41] V Nicolay Tsarevsky, K Matyjaszewski.“Green”Atom Transfer Radical Polymerization: From Process Design to Preparation of Well - Defined Environmentally Friendly Polymeric Materials [J]. Chemical reviews, 2007, 107(6): 2270 - 2299.
    [42] W Feng, J Brash, S Zhu. Atom Transfer Radical Grafting Polymerization of 2 - Methacryloyl Oxyethyl Phosphoryl Choline from Silicon Wafer Surfaces [J]. J. Polym. Sci. Polym. Chem, 2004, 42, 2931 - 2942.
    [43] J Y Wang, W Chen, A H Liu, et al. Controlled Fabrication of Cross - Linked Nanoparticles/Polymer Composite Thin Films through the Combined Use of Surface - Initiated Atom Transfer Radical Polymerization and Gas/Solid Reaction [J]. J Am Chem. Soc., 2002, 124: 13358 - 13359.
    [44] A M Balachandra, G L Baker, M L Bruening. Preparation of Composite Membranes by Atom Transfer Radical Polymerization Initiated From a Porous Support [J]. J Membr Sci, 2003, 227: 1 - 14.
    [45] B Boer, H K Simon, M P L Werts, et al.“Living”Free Radical Photopolymerization Initiated from Surface - Grafted Iniferter Monolayers [J]. Macromolecules, 2000, 33: 349 - 356.
    [46] M Ejaz, Y Tsujii, T Fukuda. Controlled Grafting of A Well - Defined Polymer on A Porous Glass Filter by Surface - Initiated Atom Transfer Radical Polymerization [J]. Polymer. 2001, 42: 6811 - 6815.
    [47] W Huang, G L Baker, M L Bruening. Controlled Synthesis of Cross - Linked Ultrathin Polymer Films by Using Surface - Initiated Atom Transfer Radical Polymerization [J]. Angew Chem. Int Ed., 2001, 40: 1510 - 1512.
    [48] Z Zhang, T Chao, S F Chen, et al. Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides [J].Langmuir, 2006, 22 (24):10072–10077.
    [49] R R Shah, D Morrissey, M Husemann, et al. Using Atom Transfer Radical Polymerization to Amplify Monolayers of Initiators Patterned by Microcontact Printing Into Polymer Brushes For Pattern Transfer [J]. Macromolecules, 2000, 33: 597 - 605.
    [50] J B Kim, M L Bruening, G L Baker. Surface - Initiated Atom Transfer Radical Polymerization on Gold at Ambient Temperature [J]. J Am Chem. Soc, 2000, 122: 7616 - 7617.
    [51] H Kong, W W Li, C Gao, et al. Poly (N - isopropylacrylamide) - Coated Carbon Nanotubes: Temperature - Sensitive Molecular Nanohybrids in Water [J]. Macromolecules, 2004, 37: 6683 - 6686.
    [52] F J Xu, S P Zhong, L Yung, et al. Surface - Active and Stimuli - Responsive Polymer - Si (100) Hybrids from Surface - Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion [J]. Biomacromolecules, 2004, 5: 2392 - 2403.
    [53] I Ryoko, S Piyawan, P Vipavee, et al. Control of Nanobiointerfaces Generated from Well- Defined Biomimetic Polymer Brushes for Protein and Cell Manipulations [J]. Biomacromolecules, 2004, 5: 2308 - 2314.
    [54] A Hatzor, P S Weiss. Molecular Rulers for Scaling Down Nanostructures [J]. Science, 2001, 291: 1019 - 1020.
    [55]王国建,陶春锋.两亲性嵌段共聚物改性的多壁碳纳米管的制备[J].功能材料, 2007, 6 (38): 12 - 15.
    [56] D M Jones, A Brown, W T Huck. Surface - Initiated Polymerizations in Aqueous Media: Effect of Initiator Density [J]. Langmuir, 2002, 18: 1265 - 1269.
    [57] W Huang, J B Kim, M L Bruening, et al. Functionalization of Surfaces by Water - Accelerated Atom - Transfer Radical Polymerization of Hydroxyethyl Methacrylate and Subsequent Derivatization [J]. Macromolecules, 2002, 35:1175 - 1179.
    [58] Lee Kwan pill, Kang Haejeong, Joo Duck, et al .Adsorption Behavior of Urokinase by the Polypropylene Film with Amine, Hydroxylamine and Poly Groups [J]. Radiation Physics and Chemistry, 2001, 60: 473 - 482.
    [59] Saito Kyoichi. Charged Polymer Brush Grafted Onto Porous Hollow - Fiber Membrane Improves Separation and Reaction in Biotechnology [J]. Separation Science and Technology, 2002, 37(3): 535 - 554.
    [60] U Velten, S Tossati, R A Shelden, et al. Graft Polymerization of Styrene on Mica:Formation and Behavior of Molecular Droplets and Thin Films [J]. Langmuir, 1999, 15: 6940 - 6945.
    [61] M Kim, Kiyphara Satoshi, Konishi Satosh, et al. Ring - Opening Reaction of Poly - GMA Chain Grafted Onto A Porous Membrane [J]. Journal of Membrane Science, 1996, 117: 33 - 38.
    [62] H Mori, A H E Müller. New Polymeric Architectures with (Meth) Acrylic Acid Segments [J]. Prog. Polym. Sci., 2003, 28: 1403 - 1439.
    [63] D Neugebauer, Y Zhang, T Pakula, et al. Heterografted PEO–Pnba Brush Copolymers [J]. Polymer, 2003, 44: 6863 - 6871.
    [64] S Hou, Z F Li, et al. Poly (Methyl Methacrylate) Nanobrushes on Silicon Based on Localized Surface - Initiated Polymerization [J]. Applied Surfaced Science, 2004, 222: 238 - 345.
    [65]武宝利,张国梅,春光,等.生物传感器的应用研究进展[J].中国生物工程杂志, 2004, 24 (7): 65 - 69.
    [66]司士辉主编.生物传感器[M].北京:化学工业出版社, 2003.
    [67] S Q Lud, M G Nikolaides, I Haase, et al. Field Effect of Screened Charges: Electrical Detection of Peptides and Proteins by a Thin Film Resistor [J]. ChemPhysChem, 2006, 7(2): 379 - 384.
    [68] M Pohanka, P Skladal, M Kroca. Biosensors for Biological Warfare Agent Detection [J]. Def. Sci. J. 2007, 57 (3): 185 - 193.
    [69] H A Clark, R Kopelman, R Tjalkens, et al. Optical Nanosensors for Chemical Analysis inside Single Living Cells. 2. Sensors for Ph and Calcium and the Intracellular Application of PEBBLE Sensors [J]. Anal Chem. 1999, 71(21): 4837 - 4843.
    [70]何星月,刘之景.生物传感器的研究现状及应用[J].传感器. 2002, 8(10): 1 - 6.
    [71]缪煜清,刘仲明,官建国.纳米技术在生物传感器中的应用[J].传感器技术, 2002, 21 (11): 61 - 64.
    [72]崔大付,李向明.表面等离子体谐振(SPR)生化分析仪的研制[J].现代科学仪器, 2001, 6: 34 - 38.
    [73] J H Kim, J H Cho, G S Cha, et al. Conductimetric Membrane Strip Immunosensor with Polyaniline - Bound Gold Colloids as Signal Generator [J]. Biosensors and Bioelectronics. 2000, 14 (12): 907 - 915.
    [74] R W Wood. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum [J]. Phil.Magm, 1902, 4: 396 - 402.
    [75] U Fano. The Theory of Anomalous Diffraction Gratings and of Quasi - Stationary Waves on Metallic Surfaces (Sommerfeld's Waves) [J]. Opt.Soc.Am. 1941, 31: 213 - 222.
    [76] C Nylander, B Liedberg, T Lind. Gas Detection by Means of Surface Plasmons Resonance [J]. Sensors and Actuators B, 1982, 3: 79 - 88.
    [77] B Liedberg, C Nylander, I Lundstrom. Sufface Plasmon Resonace Gas Detection and Biosensing [J]. Sensors Actuators, 1983, 4: 299 - 304.
    [78] R C Jorgenson, S S Yee. A Fiber - Optic Chemical Sensor Based on Surface Plasmon Resonance [J]. Sens. Actuators B, 1993, 12: 213 - 220.
    [79] V Silin, A Plant. Biotechnological Applications of Surface Plasmon Resonance [J]. Trends Biotechnol, 1997, 15: 353 - 359.
    [80] H Raether. Surface Plasmons: on Smooth and Rough Surfaces and on Gratings [M]. Springer Tracts Mod Phys, 1988.
    [81] G S Coles, G Williams, B Smith. Selectivity Studies on Tin Oxide - Based Semiconductor Gas Sensors [J]. Sensor and Actuators, 1991, B5: 3 (1): 7 - 14.
    [82] E A Smith, R M Corn. Surface Plasmon Resonance Imaging as a Tool to Monitor Biomolecular Interactions in an Array Based Format [J] Appl. Spectroscopy, 2003, 57: 320 - 332.
    [83] C D Chen, S F Cheng, L K Chau, et al. Sensing Capability of the Localized Surface Plasmon Resonance of Gold Nanorods. Biosens [J]. Bioelectron, 2007, 22: 926 - 932.
    [84] H G Dallmann, R L Thimmig, C S McHenry. Dnax Complex of Escherichia Coli DNA polymerase III Holoenzyme Physical Characterization of the Dnax Subunits and Complexes [J]. J. Biol. Chem., 1995, 270: 29555 - 29562.
    [85] W Olsonm, H G Dallmann, C S Mchenry. Dnax Complex of Escherichia Coli DNA polymerase III Holoenzyme [J]. J. B iol. Chem., 1995, 270: 29570 - 29577.
    [86] G Panayotou, T Brown, T Banlow. Direct Measurement of the Substrate Preference of Uracil - DNA Glycosylase [J]. J. Biol. Chem., 1998, 273: 45 - 50.
    [87] I Babic, S E Andrew, F R Jiril. Muts Interaction with Mismatch and Alkylated Base Containing DNA Molecules Detected by Optical Biosensor [J]. Mutation Res., 1996, 372 (1): 87 - 96.
    [88] L K Chau, Y F Lin, S F Cheng, et al. Fiber - Optic Chemical and Biochemical Probes Based on Localized Surface Plasmon Resonance [J]. Sens. Actuators B 2006, 113: 100 - 105.
    [89] N S Lai, C C Wang, H L Chiang, et al. Detection of Antinuclear Antibodies by A Colloidal Gold - Modified Optical Fiber: Comparison With ELISA [J]. Anal. Bioanal. Chem, 2007, 388: 901 - 907.
    [90] S M Alam, G M Davies, S C Jameson, et al. Qualitative and Quantitative Differences in T Cell Receptor Binding of Agonist and Antagonist Ligands [J]. Travers P J.Immunity, 1999, 10 (2): 227 - 237.
    [91] F Blanchard, L Duplomb, S Raher, et al. Mannose 6 - Phosphate/Insulin - like Growth Factor II Receptor Mediates Internalization and Degradation of Leukemia Inhibitory Factor but Not Signal Transduction [J]. J. Biol. Chem., 1999, 274 (35): 24685 - 24693.
    [92] H Sota, Y Hasegawa. Detection of Conformational Changes in an Immobilized Protein Using Surface Plasmon Resonance [J]. Anal. Chem. 1998, 270: 2019 - 2024.
    [93] S Paynter, D A Russell. Surface Plasmon Resonance Measurement of Ph - Induced Responses of Immobilized Biomolecules: Conformational Change or Electrostatic Interaction Effects [J]. Analytical Biochemistry, 2002, 309: 85 - 95.
    [94] J EGestwicki, H V Hsieh, J B. Pritner. Using Receptor Conformational Change to Detect Low Molecular Weight Analytes by Surface Plasmon Resonance [J]. Anal. Chem., 2001, 73: 5732 - 5737.
    [95] L A Luck, M J Moravan, J E Garland, et al. Chemisorptions of Bacterial Receptors for Hydrophobic Amino Acids and Sugars on Gold for Biosensor Applications: A Surface Plasmon Resonance Study of Genetically Engineered Proteis [J]. Biosens. Bioelectron, 2003, 19: 249 - 259.
    [96] S Boussaad, J Pean, N J Tao. High - Resolution Multiwavelength Surface Plasmon Resonance Spectroscopy for Probing Conformational and Electronic Changes in Redox Proteins [J]. Anal. Chem, 2001, 72: 222 - 226.
    [97] P Nilsson, B Persson, M Uhlen, et al. Real Time Monitoring of DNA Manipulating Using Biosensor Technology [J]. Analytical Biochemistry, 1995, 224: 400 - 408.
    [98] B Persson, K Stenhag, P Nisson. Analysis of Oligonucleotide Probe Affnities Using Surface Plasmon Resonance: A Means for Mutational Analytical [J]. Biochemistry,1997, 246: 34 - 44.
    [99] H Akiyama, Nobuyuki Tamaoki. Synthesis and Photoinduced Phase Transitions of Poly (N - isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units [J]. Macromolecules. 2007, 40: 5129 - 5132.
    [100] P Ahonen, T Laaksonen, D J Schirin. et al. Photoswitching electron transport properties of an azobenzene containing thiol - SAM [J]. Physical Chemistry Chemical Physics, 2007, 9: 4898 - 4901.
    [101]陈清元,沈家瑞,陈建海.偶氮聚合物作为结肠靶向药物载体的研究进展[J].功能高分子学报, 2001, 14: 252 - 256.
    [102]闫福丰,赵瑞,梁平,等.光学活性偶氮苯自组装膜的制备及其蛋白吸附行为[J].化学学报, 2009, 67(12): 1401 - 1405.
    [103]张治红,梁平,闫福丰,等.聚丙烯酰吡咯作为蛋白质吸附材料的研究[J].化学学报, 2009, 67(17): 2019 - 2024.
    [104] X Tao, J B Li, H Mohwald. Self - Assembly Optical Behavior and Permeability of a Novel Capsule Based on an Azo Dye and Polyelectrolytes [J]. Chemistry - A European Journal. 2004, 10 (14): 3397 - 3403.
    [105]张雪勤,郑云,程镕时,等.两亲性三嵌段共聚物PAA - PHB - PAA的合成及表征[J].高等学校化学学报, 2006, 4: 784 - 786.
    [106]高超,钱卉,颜德岳,等.用ATRP法构筑核壳型梯度极性的多羟基多臂星状超支化聚合物及聚合物刷-三层聚合物刷的合成与表征[J].高分子学报, 2004, 6: 884 - 888.
    [107] X H He, D Y Yan, Y Y Mai. Synthesis of novel multi - arm star azobenzene side - chain liquid crystalline copolymers with a hyperbranched core [J]. European Polymer Journal, 2004, 40 (8): 1759 - 1765.
    [108] Y H Kim. Hyperbranched Polymers 10 years after [J]. J Polym Sci,Part A:Polym Chem. 1998, 36: 1685 - 1698.
    [109] A Lederer, D Voigt, Clausnitzer C, et al. Structure Characterization of Hyperbranched Poly(Ether Amide)SⅠ. Preparative Fractionation [J]. Journal of Chromatography A, 2002, 976: 171 - 179.
    [110]金桥,徐建平,沈家骢,等.由平面合成聚合物刷—表面引发原子转移自由基聚合研究进展[J].高分子通报. 2006, 5: 1 - 6.
    [111] R Michael, Tomlinson, Jan Genzer. Formation of Surface Grafted Copolymer Brushes with Continuous Composition Gradients [J]. Chem Commun. 2003, 35 (22): 1350 - 1351
    [112]王辉取代偶氮苯化合物的合成及光致变色性能研究[M].华中师范大学, 2004.
    [113]刘晓华,王晓工.一种光响应性热敏聚合物的合成及性能表征[J].高分子学报, 2001, 6: 773 - 778.
    [114] Emil Koft, Francis H Case. Substituted 1, 10 - Phenanthrolines, XII.Beno and Pyride Derivatives [J]. J Org Chem., 1962, 27(3): 865 - 868.
    [115] M D Jones, A A Brown, T S Wilhelm Huck. Surface - Initiated Polymerizations in Aqueous Media: Effect of Initiator Density [J]. Langmuir. 2002, 18, 1265–1269.
    [116] Y P Wang, X W Pei, X Y He. Synthesis and Characterization of Surface - Initiated Polymer Brush Prepared by Reverse Atom Transfer Radical Polymerization [J]. European Polymer Journal, 2005, 41: 737–741.
    [117] P Dietrich, F Michalik, R Schmidt ea al. An Anchoring Strategy for Photoswitchable Biosensor Technology: Azobenzene - Modified SAMs on Si(111) [J]. Appl Phys A, 2008, 93: 285–292.
    [118] X G Li, M R Huang, L X Wang, et al. Synthesis and Characterization of Pyrrole and M- Toluidine Copolymers [J]. Synth Met, 2001, 123 (3): 435 - 441.
    [119] H K Jun, S H Yong, B S Lee. Electrical Properties of Polypyrrole Gas Sensors Fabricated Under Various Pretreament Conditions [J]. Sensors and ActuatorsB, 2003, 96: 576 - 581.
    [120] S Geetha, R K Chepuri, M Vijayan, et al. Biosensing and Drug Delivery by Polypyrrole [J]. Analytica Chimica Acta, 2006, 568: 119 - 125.
    [121] X G Li, L X Wang, J Yi, et al. Charge Distribution and Crystalline Structure in Polyethylene Nucleated with Sorbitol [J]. J Appl Polym Sci, 2001, 82 : 510 - 518.
    [122] M Kijima, S Abe, H Shirakawa. Liquid Crystalline Poly(N - Substituted Pyrrole)S Synthesized by Dehalogenative Polycondensation of 2,5 - Dibromopyrroles [J]. Synth Met, 1999, 101: 61 - 61.
    [123] Y Chen, T William, T Corrie, et al. Imrie et al. Ryder Pyrrole and Polypyrrole - based Liquid Crystals Containing Azobenzene Mesogenic Groups [J]. J. Mater. Chem., 2002, 12: 579–585.
    [124] Y Chen, T Corrie, Karl S, et al. Ryder Pyrrole and Polypyrrole - based Liquid Crystals [J]. J. Mater. Chem., 2001, 11: 990–995.
    [125] S Hossein Hosseini, M Mohammadi. Preparation and Characterization of New Poly - Pyrrole Having Side Chain Liquid Crystalline Moieties [J]. Materials Science and Engineering C 2009, 29: 1503–1509.
    [126] Weihua Hu, Chang Ming Li, Xiaoqiang Cui, et al. In Situ Studies of Protein Adsorptions on Poly (pyrrole - co - pyrrole propylic acid) Film by Electrochemical Surface Plasmon Resonance [J]. Langmuir. 2007, 23 (5): 2761 - 2767.
    [127] P Anilkumar, M Jayakannan. Divergent Nanostructures from Identical Ingredients: Unique Amphiphilic Micelle Template for Polyaniline Nanofibers, Tubes, Rods and Spheres. Macromolecules, 2008, 41: 7706 - 7715.
    [128] Elzbieta Luboch, Ewa Wagner - Wysiecka, Marina Fainerman - Melnikova. Pyrrole Azocrown Ethers. Synthesis, Complexation, Selective Lead Transport and Ion - Selective Membrane Electrode Studies [J]. Supramolecular Chemistry, 2006, 18 (7): 593–601.
    [129] Toyoki Kunitake, Jong - Mok Kim, Yuichi lshikawa. Superstructures and Related Spectral Changes of Bilayer Membranes of a Single - chain, Phosphate Amphiphile [J]. J. Chem. Soc, Perkin Trans. 1991, 885 - 890.
    [130] K Tamada, J Nagasawa, F Nakanishi, et al. Structure and Growth of Hexyl Azobenzene Thiol SAMs on Au (111) [J]. Langmuir, 1998, 14: 3264 - 3271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700