基于光控的环糊精的选择性包合实现热敏均聚物溶液的透过率的等温可逆转变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用主客体包合是调控热敏高分子的浊点的一种简便的方法。例如尺寸合适的环糊精(CD)与热敏高分子侧基发生包合,通过改变热敏高分子侧基的亲疏水性调控热敏高分子溶液的浊点。环糊精与聚合物侧基的包合是一个快速交换的平衡,环糊精浓度越高,环糊精与聚合物侧基形成的包合复合物浓度越高,溶液浊点升高的越多。
     由环糊精和偶氮苯化合物组成的光控超分子体系是超分子化学领域的活跃的研究方向。偶氮苯吡啶盐Azo-Py~+是一种水溶性的偶氮苯衍生物,在紫外光/可见光交替照射下,它的构型能发生反式/顺式可逆的转变。Azo-Py~+为反式构型时,可以与α-CD形成超分子复合物,而顺式的Azo-Py~+几乎不能与α-CD作用。
     在本论文中,我们以热敏高分子聚(3-乙氧基丙基)丙烯酰胺(PEPAm)为研究对象。根据我们的研究经验,α-CD可能与PEPAm侧基包合形成超分子复合物,使高分子溶液浊点升高。我们把PEPAm/α-CD超分子体系和Azo-Py~+/α-CD超分子体系结合起来。在PEPAm/α-CD/Azo-Py~+混合溶液中,通过光控的α-CD和偶氮苯基团的包合/解离可以调节溶液中自由环糊精的浓度,这会导致PEPAm溶液浊点发生可逆变化。
     在第二章中,我们通过自由基聚合的方法合成了PEPAm,测试了不同尺寸的环糊精对PEPAm溶液浊点的影响:在相同摩尔浓度时,α-CD使高分子溶液浊点显著升高,而β-CD和γ-CD对溶液浊点几乎没有影响。NOESY核磁实验结果表明PEPAm侧基和α-CD发生了包合作用。我们用Job’s method确定α-CD和PEPAm侧基包合的化学计量比为1,并用核磁滴定得方法测定包合常数为6.5±1.1L/mol。我们还研究了不同浓度α-CD对PEPAm溶液浊点的影响,发现PEPAm溶液浊点随α-CD浓度的增大而升高,并且浊点与α-CD浓度之间的关系可以用基于化学平衡推导出的方程来描述。
     在第三章中,我们在PEPAm/α-CD溶液中加入竞争性的客体Azo-Py~+。由于反式Azo-Py~+与α-CD的结合常数比其与PEPAm侧基的结合常数大很多,溶液中大部分的α-CD与Azo-Py~+结合,溶液中自由的α-CD浓度很低,导致溶液的浊点降低。PEPAm/α-CD/Azo-Py~+合溶液经紫外光照射后,Azo-Py~+构型由反式转变为顺式,顺式构型的Azo-Py~+与α-CD的结合常数很低,Azo-Py~+/α-CD复合物的解离使自由的α-CD浓度增大,导致PEPAm溶液的浊点升高。用可见光照射混合溶液,Azo-Py~+由顺式转变为反式,自由的α-CD浓度减小,导致溶液浊点降低。我们把PEPAm/α-CD/Azo-Py~+混合溶液恒定在38°C,成功实现了PEPAm/α-CD/Azo-Py~+混合溶液透过率的光控可逆变化,并且至少维持五个周期。
Host-guest inclusion complexation is a simple method of tuning cloud point ofthermosensitive polymers. For example, cyclodextrins (CD) with suitable size caninclude the side group of thermosensitive polymer and therefore change thehydrophilicity of the side group, which causes the increase of the cloud point ofpolymer solution. The inclusion complexation of side group of polymer withcyclodextrin is a fast exchange equilibrium. In the thermosensitive polymer solution,the higher the concentration of CD is, the more inclusion complex is formed, whichcauses a larger increase of the cloud point.
     Photocontrolled supramolecular system based on CD and azo compounds is a hotresearch topic in supramolecular chemistry field.4-(Phenylazo)benzylpyridiniumbromide (Azo-Py~+) is a water-soluble derivative of azobenzene, trans and cis formsof which can be reversibly interconverted upon light irradiation. Trans-Azo-Py~+canbe well-recognized by α-CD. However, when trans-Azo-Py~+is transformed tocis-Azo-Py~+, α-CD cannot include the cis isomer any more because of the mismatchbetween the host and guest.
     In this work, poly(ethoxypropylacrylamide)(PEPAm) was studied. According toour experience, α-CD could form supramolecular complex with side chain of PEPAm,which probably causes the increase of the cloud point of PEPAm solution. The twosupramolecular systems of PEPAm/α-CD and Azo-Py~+/α-CD were combined. InPEPAm/α-CD/Azo-Py~+solution, photocontrolled inclusion and exclusion of Azo-Py~+with α-CD can be used to change the concentration of free α-CD, which can causereversible changes of the cloud point of PEPAm solution.
     In the second chapter, we synthesized PEPAm by radical polymerization, andinvestigated effects of different sizes of CD on cloud point of PEPAm solution. α-CDshowed a significant effect on cloud point of PEPAm whereas β-CD and γ-CD hadalmost no effect. The inclusion complexation between α-CD and the side group of PEPAm was confirmed by the NOESY NMR spectrum. The inclusion stoichiometryof α-CD and PEPAm equals1, which was determined with Job’s method. Anassociation constant of6.5±1.1L/mol was obtained by NMR titration. Finally, thecloud point of PEPAm increased with an increase in the molar concentration of α-CD.The relationship between cloud point and the concentration of α-CD can be describedwith an equation based on inclusion complexation equilibrium.
     In the third chapter, Azo-Py~+is added to PEPAm/α-CD solution. Most of α-CDformed inclusion complexes with Azo-Py~+, because the association constant ofAzo-Py~+and α-CD is much larger than that of PEPAm and α-CD. The cloud point ofthe solution decreased owing to the decrease in the concentration of free α-CD. Astrans-Azo-Py~+was isomerized to cis-Azo-Py~+upon irradiation with UV light, theconcentration of free α-CD was increased because the association constant ofcis-Azo-Py~+and α-CD is less than that of trans-Azo-Py~+and α-CD. Consequently, thecloud point of PEPAm solution was increased. Succeeding irradiation with visiblelight led to reverse conversion of Azo-Py~+configuration. The cloud point wasdecreased owing to the decrease in the concentration of free α-CD. Furthermore, thetransmittance of the solution can be changed reversibly for at least5cycles withalternate irradiations of UV and visible light at38°C.
引文
1. Lehn, J. M., Supramolecular Chemistry—Scope and Perspectives Molecules,Supermolecules, and Molecular Devices Angew.Chem.Int.Ed.1988,27,89-112.
    2.沈家骢,张希,超分子科学—21世纪新概念与高技术的一个重要源头.科学导报1994,10.
    3.童林荟,《环糊精化学--基础与应用》,2001,10-20.
    4.金征宇,徐.,陈寒青,李学红,《环糊精化学制备与应用》,2009.
    5. Uekama K, H. F., Irie T, Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis. Chem. Rev.1998,98,2045-2076.
    6. Sun T, Z. H., Yan H, Li J, Cheng G, Hao A, Qiao H, Xin F., Sensitivefluorescent vesicles based on the supramolecular inclusion of β-cyclodextrins withN-alkylamino-L-anthraquinone. Supramol. Chem.2011,23(5),351-364.
    7.郭明雨,江.,基于环糊精包结络合作用的大分子自组装,化学进展2007,19(4),557-566.
    8. Yu Y L, N. M., Ikeda T, Photomechanics: Directed bending of a polymer filmby light. Nature2003,425(6954),145-145.
    9. Natansohn A, R. P., Photo-Induced Chirality On Achiral Side Chain LiquidCrystalline Polymethacrylates. Chem. Rev.2002,102(11),4139-4175.
    10. Gibbons W M, S. P. J., Sun S T, Swetlin B J., Surface-mediated alignment ofnematic liquid crystals with polarized laser light. Nature1991,351(6321),49-50.
    11. Breslow R, D. S. D., Biomimetic Reactions Catalyzed by Cyclodextrins andTheir Derivatives. Chem. Rev.1998,98,1997-2012.
    12. Dugave C, D. L., Cis Trans Isomerization of Organic Molecules andBiomolecules: Implications and Applications. Chem. Rev.2003,103,2475-2532.
    13.郝爱友*,孙.,李.,辛.李.侯.,基于环糊精和偶氮化合物的光控可逆超分子体系.化学进展2012.
    14. Wang, Y.; Ma, N.; Wang, Z.; Zhang, X., Photocontrolled ReversibleSupramolecular Assemblies of an Azobenzene-Containing Surfactant withα-Cyclodextrin. Angewandte Chemie International Edition2007,46(16),2823-2826.
    15.翟春熙;黄飞鹤,准轮烷和轮烷研究新进展,中国科学B辑(化学)2009,39(4),315-328.
    16. Tomatsu, I.; Hashidzume, A.; Harada, A., Photoresponsive hydrogel systemusing molecular recognition of alpha-cyclodextrin. Macromolecules2005,38(12),5223-5227.
    17. Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A.,Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins andAzobenzene Polymers. Angewandte Chemie International Edition2010,49(41),7461-7464.
    18. Liao, X. J.; Chen, G. S.; Liu, X. X.; Chen, W. X.; Chen, F.; Jiang, M.,Photoresponsive Pseudopolyrotaxane Hydrogels Based on Competition of Host-GuestInteractions. Angew. Chem.-Int. Edit.2010,49(26),4409-4413.
    19. Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kunitake, M.; Nakashima, N., ALight-Driven Molecular Shuttle Based on a Rotaxane. Journal of the AmericanChemical Society1997,119(32),7605-7606.
    20. Tomatsu, I.; Hashidzume, A.; Harada, A., Cyclodextrin-Based Side-ChainPolyrotaxane with Unidirectional Inclusion in Aqueous Media. Angewandte Chemie2006,118(28),4721-4724.
    21. Ma, X.; Wang, Q.; Qu, D.; Xu, Y.; Ji, F.; Tian, H., A Light-DrivenPseudo[4]rotaxane Encoded by Induced Circular Dichroism in a Hydrogel. AdvancedFunctional Materials2007,17(5),829-837.
    22. Ueno A, T., Okumura, Chem. Commun.1980,837-838.
    23. Lee, W.-S.; Ueno, A., Photocontrol of the Catalytic Activity of aβ-Cyclodextrin Bearing Azobenzene and Histidine Moieties as a Pendant Group.Macromolecular Rapid Communications2001,22(6),448-450.
    24.Ferris, D. P.; Zhao, Y.-L.; Khashab, N. M.; Khatib, H. A.; Stoddart, J. F.; Zink,J. I., Light-Operated Mechanized Nanoparticles. Journal of the American ChemicalSociety2009,131(5),1686-1688.
    25. Liu, R.; Zhang, Y.; Feng, P., Multiresponsive Supramolecular NanogatedEnsembles. Journal of the American Chemical Society2009,131(42),15128-15129.
    26. Banerjee, I. A.; Yu, L.; Matsui, H., Application of Host Guest Chemistry inNanotube-Based Device Fabrication: Photochemically Controlled Immobilization ofAzobenzene Nanotubes on Patterned α-CD Monolayer/Au Substrates via MolecularRecognition. Journal of the American Chemical Society2003,125(32),9542-9543.
    27.赵宇,利用环糊精与聚合物侧链的包合调控聚(甲基丙烯酸2-(二甲胺基)乙酯)溶液的浊点.《吉林大学硕士论文》2009.
    28. Fujishige, S.; Kubota, K.; Ando, I., Phase transition of aqueous solutions ofpoly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). The Journal ofPhysical Chemistry1989,93(8),3311-3313.
    29. Schulz, D. N.; Peiffer, D. G.; Agarwal, P. K.; Larabee, J.; Kaladas, J. J.; Soni,L.; Handwerker, B.; Garner, R. T., Phase behaviour and solution properties ofsulphobetaine polymers. Polymer1986,27(11),1734-1742.
    30. Plate, N. A.; Lebedeva, T. L.; Valuev, L. I., Lower Critical SolutionTemperature in Aqueous Solutions of N-Alkyl-Substituted Polyacrylamides. PolymerJournal1999,31(1),21-27.
    31. Schild, H. G., Poly(N-isopropylacrylamide): experiment, theory andapplication. Prog. Polym. Sci.1992,17(2),163-249.
    32. Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Adv.Drug Delivery Rev.2001,53(3),321-339.
    33. Aoki, T.; Muramatsu, M.; Torii, T.; Sanui, K.; Ogata, N., Thermosensitivephase transition of an optically active polymer in aqueous milieu. Macromolecules2001,34(10),3118-3119.
    34. Gan, L. H.; Gan, Y. Y.; Doon, G. R., Poly(N-acryloyl-N '-propylpiperazine):A new stimuli-responsive polymer. Macromolecules2000,33(21),7893-7897.
    35. Gan, L. H.; Deen, G. R.; Gan, Y. Y.; Tam, K. C., Water sorption studies ofnew pH-responsive N-acryloyl-N '-methyl piperazine and methyl methacrylatehydrogels. Eur. Polym. J.2001,37(7),1473-1478.
    36. Gan, L. H.; Roshan Deen, G.; Loh, X. J.; Gan, Y. Y., New stimuli-responsivecopolymers of N-acryloyl-N′-alkyl piperazine and methyl methacrylate and theirhydrogels. Polymer2001,42(1),65-69.
    37.Uguzdogan, E.; Camli, T.; Kabasakal, O. S.; Patir, S.; Ozturk, E.; Denkbas, E.B.; Tuncel, A., A new temperature-sensitive polymer: Poly(ethoxypropylacrylamide).Eur. Polym. J.2005,41(9),2142-2149.
    38. Cao, Y.; Zhu, X. X.; Luo, J. T.; Liu, H. Y., Effects of substitution groups onthe RAFT polymerization of N-Alkylacrylamides in the preparation ofthermosensitive block copolymers. Macromolecules2007,40(18),6481-6488.
    39. Maeda, T.; Yamamoto, K.; Aoyagi, T., Importance of bound water inhydration-dehydration behavior of hydroxylated poly (N-isopropylacrylamide). J.Colloid Interface Sci.2006,302(2),467-474.
    40. Persson, J.; Johansson, H. O.; Galaev, I.; Mattiasson, B.; Tjerneld, F.,Aqueous polymer two-phase systems formed by new thermoseparating polymers.Bioseparation2000,9(2),105-116.
    41. Yuk, S. H.; Cho, S. H.; Lee, S. H., pH/Temperature-Responsive PolymerComposed of Poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide).Macromolecules1997,30(22),305-600.
    42. Laukkanen, A.; Valtola, L.; Winnik, F. M.; Tenhu, H., Formation ofcolloidally stable phase separated poly(N-vinylcaprolactam) in water: A study bydynamic light scattering, microcalorimetry, and pressure perturbation calorimetry.Macromolecules2004,37(6),2268-2274.
    43. Aseyev, V.; Tenhu, H.; Winnik, F., Temperature Dependence of the ColloidalStability of Neutral Amphiphilic Polymers in Water. Advances in Polymer Science2006,196,1-85.
    44. Schild, H. G.; Muthukumar, M.; Tirrell, D. A., Cononsolvency in mixedaqueous solutions of poly(N-isopropylacrylamide). Macromolecules1991,24(4),948-952.
    45. Amiya, T.; Hirokawa, Y.; Hirose, Y.; Li, Y.; Tanaka, T., Reentrant phasetransition of N-isopropylacrylamide gels in mixed solvents. The Journal of ChemicalPhysics1987,86(4),2375-2379.
    46. Winnik, F. M.; Ringsdorf, H.; Venzmer, J., Methanol-water as aco-nonsolvent system for poly(N-isopropylacrylamide). Macromolecules1990,23(8),2415-2416.
    47. Laria, D.; Skaf, M. S., Solvation response of polar liquid mixtures:Water-dimethylsulfoxide. The Journal of Chemical Physics1999,111(1),300-309.
    48. Murthy, S. S. N., Detailed Study of Ice Clathrate Relaxation: Evidence forthe Existence of Clathrate Structures in Some Water Alcohol Mixtures. The Journal ofPhysical Chemistry A1999,103(40),7927-7937.
    49. Inomata, H.; Goto, S.; Otake, K.; Saito, S., Effect of additives on phasetransition of N-isopropylacrylamide gels. Langmuir1992,8(2),687-690.
    50. Idziak, I.; Avoce, D.; Lessard, D.; Gravel, D.; Zhu, X. X., Thermosensitivityof Aqueous Solutions of Poly(N,N-diethylacrylamide). Macromolecules1999,32(4),1260-1263.
    51. Zhang, Y. J.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S., Specific ion effectson the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am.Chem. Soc.2005,127(41),14505-14510.
    52. Jehudah, E., Aqueous solutions of poly(N-isopropylacrylamide). Journal ofApplied Polymer Science1978,22(3),873-874.
    53. Schild, H. G.; Tirrell, D. A., Interaction of poly(N-isopropylacrylamide) withsodium n-alkyl sulfates in aqueous solution. Langmuir1991,7(4),665-671.
    54. Meewes, M.; Ricka, J.; De Silva, M.; Nyffenegger, R.; Binkert, T.,Coil-globule transition of poly(N-isopropylacrylamide): a study of surfactant effectsby light scattering. Macromolecules1991,24(21),5811-5816.
    55.任芳,陈.,夏宇正,石淑先,聚(甲基丙烯酸-N,N-二甲氨基乙酯)的温度和pH敏感性及其对乳液稳定性的影响. In中国化工学会2006年年会,2006.
    56. Thomas Baltes, F. G.-F., Ruth Freitag,, Investigation of the LCST ofpolyacrylamides as a function of molecular parameters and the solvent composition. J.Polym. Sci., Part A: Polym. Chem.1999,37(15),2977-2989.
    57. Takei, Y. G.; Aoki, T.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y.,Temperature-responsive bioconjugates.2. Molecular design for temperature-modulated bioseparations. Bioconjugate Chem.1993,4(5),341-346.
    58. Hoffman, A. S.; Stayton, P. S.; Bulmus, V.; Chen, G.; Chen, J.; Cheung, C.;Chilkoti, A.; Ding, Z.; Dong, L.; Fong, R.; Lackey, C. A.; Long, C. J.; Miura, M.;Morris, J. E.; Murthy, N.; Nabeshima, Y.; Park, T. G.; Press, O. W.; Shimoboji, T.;Shoemaker, S.; Yang, H. J.; Monji, N.; Nowinski, R. C.; Cole, C. A.; Priest, J. H.;Harris, J. M.; Nakamae, K.; Nishino, T.; Miyata, T., Really smart bioconjugates ofsmart polymers and receptor proteins. J. Biomed. Mater. Res., Part A2000,52(4),577-586.
    59. Liu, H. Y.; Zhu, X. X., Lower critical solution temperatures of N-substitutedacrylamide copolymers in aqueous solutions. Polymer1999,40(25),6985-6990.
    60. Lutz, J.-F.; Hoth, A., Preparation of Ideal PEG Analogues with a TunableThermosensitivity by Controlled Radical Copolymerization of2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules2005,39(2),893-896.
    61. Schmitz, S.; Ritter, H., Access to Poly{N-[3-(dimethylamino)propyl](meth)acrylamide} via Microwave-Assisted Synthesis and Control of LCST-Behaviorin Water. Macromol. Rapid Commun.2007,28(21),2080-2083.
    62. Zhao, Y.; Guo, K.; Wang, C. Y.; Wang, L. Y., Effect of InclusionComplexation with Cyclodextrin on the Cloud Point of Poly(2-(dimethylamino)ethylmethacrylate) Solution. Langmuir2010,26(11),8966-8970.
    63. Yuan, G.; Yin, X.; Sun, L.; Cui, M.; Yuan, Z.; Wang, C.; Yin, M.; Wang, L.,Effect of Host-Guest Interactions on the Cloud Points of Neutral ThermosensitiveHomopolymers: Poly(N-n-propylmethacrylamide) and Polymers with SimilarStructures. ACS applied materials&interfaces2012,4(2),950-4.
    64. Gang Yuan, X. Y., Liang Sun, Mengqi Cui, Zhibo Yuan, Chunyu Wang,Minxi Yin, Liyan Wang*, Effect of Host–Guest Interactions on the Cloud Points ofNeutral Thermosensitive Homopolymers: Poly(N-n-propylmethacrylamide) andPolymers with Similar Structures.2012.
    65. Connors, K. A., Binding Constants: the Measurement of Molecular ComplexStability. Wiley: New York1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700