若干硫系(卤)玻璃的光诱导效应和离子导电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了若干硫系(卤)玻璃的光诱导效应和离子电导率方面的性能。首先系统研究了不同稀土和过渡金属离子掺杂Ge-Ga-S-CsCl系统硫卤玻璃的光致发光性能,其次探讨了以Ge-Se硫系薄膜为主的光致漂白和光致暗化效应,最后对新系统硫卤玻璃Ge-Ga-S-AgI-Ag的物理化学性能以及离子电导率进行了讨论。主要研究成果如下:
     在Ge-Ga-S-CsCl硫卤玻璃基质中,Eu2+离子掺杂只有当CsCl含量达到40mo1.%时才能在395nm激发下获得中心位于433nm的宽峰发射,而Mn2+离子掺杂在447nm激发下,随着Mn2+离子含量的增加,发生由绿光发射向红光发射的转移。Eu2+离子和Mn2+离子共掺则在395nm的激发下发射出很强的属于Mn2+离子的黄光,通过计算测得的Eu2+离子单掺的发光寿命和Eu2+-Mn2+离子共掺的发光寿命,得到Eu2+向Mn2+能量传递的最大效率达到91%,同时讨论了可能的能量传递过程。Eu2+-Mn2+离子共掺之后吸收截面积的显著增大也是Mn2+离子黄光发射得到增强的原因。
     由激发和发射光谱及荧光寿命测试结果证实,Ce3+-Yb3+离子共掺在450nm激发下实现了量子剪裁效应,即吸收一个可见光子发射出两个近红外光子。Ce3+向yb3+能量传递的最大效率可以达到82%,Yb3+离子发光的量子效率达到119%。讨论了可能的能量传递过程机理。同样,由激发和发射光谱及荧光寿命测试结果证实,Eu2+-Yb3+离子共掺在395nm激发下实现了量子剪裁效应。Eu2+向yb3+能量传递的最大效率可以达到85%,能量传递是按照偶极-偶极相互作用实现的,也讨论了可能存在的能量传递过程机理。
     通过吸收和光致发光光谱研究了Bix/Tm3+单掺和共掺的70GeS2-10Ga2S3-20KBr硫系玻璃的光学性能。结果显示在808nm的激发下,Bix/Tm3+共掺样品在1230nm和1470nm处的发射都得到了增强。提出了可能存在的Bix到Tm3+离子的能量传递过程。
     通过实时透射光谱的测试研究了GeSe2阳Ge2Se3薄膜分别在空气和真空中的光致能带变化现象。用与能带能量相当的激光在空气中辐照足够长的时间,两种薄膜都呈现出光致漂白的效应。通过对比空气中和真空中的光致能带变化,发现Ge2Se3薄膜的光致漂白是由于表面的光致氧化造成的,而GeSe2薄膜光致漂白则由内部结构变化占主导地位。探索了非晶硫系薄膜xGe45Se55-(1-x)As45Se55(x=0,0.25,0.5,0.75,1)在660nm激光辐照下的光敏感性。随着Ge45Se55含量从0增大到1,光致能带变化效应从光致暗化向光致漂白转变。光致漂白的程度和薄膜组成中Ge-Ge键浓度相关。光致漂白和光致暗化的动力学可以用伸缩指数幂方程来描述。光致漂白的动力学反应比光致暗化薄膜要快很多。
     通过密度、X射线衍射、拉曼光谱、化学稳定性、可见-近红外-红外透过光谱、以及离子电导率等性能测试,研究了新系统GeS2-Ga2S3-AgI-Ag硫卤玻璃。该系统有较大的玻璃形成区,Ag单质的引入量最高达20mol.%,离子电导率最高达~10-5S/cm。在结构分析基础上,讨论了AgI的引入对玻璃离子电导率的贡献。此外,该系统玻璃在空气中的化学稳定性相比同组成的GeS2-Ga2S3-LiI和GeS2-Ga2S3-CsI系统硫卤玻璃有显著提高。
The thesis emphasizes on photoinduced optical properties and ionic conductivity property of chalcohalide and/or chalcogenide glasses. First, the photoluminescence properties of different rare-earth and transition metal ions doped Ge-Ga-S-CsCl chalcohalide glasses are investigated. Second, photoinduced darkening and bleaching of Ge-Se chalcogenide films are studied. At last, the physical and chemical properties as well as ionic conductivity of new chalcohalide glass system Ge-Ga-S-Agl-Ag are researched. Main achieved results are listed as follow:
     Eu2+single doped chalcohalide glass can emit a broad peak centered at433nm under the excitation of395nm only when the CsCl content of glass is up to40mol.%, while the emission of Mn2+single doped chalcohalide glass transits from green to red as the concentration of Mn2+increases upon447nm excitation. Notably enhanced Mn2+yellow emission is observed in CsCl modified and Eu2+/Mn2+codoped Ge-Ga-S glasses under395nm excitation. The plausible efficiency of energy transfer (ET) from Eu2+to Mn2+is as high as91%, which is obtained by measurement of luminescence decay of Eu2+in samples doped with and without Mn2+. The Eu2+/Mn2+codoping significantly increases the excitation cross-section at the NUV region, which is at heart of the enhanced Mn2+yellow emission. The ET processes responsible for the enhanced luminescence are discussed.
     Excitation, emission and decay spectra are measured to prove the occurrence of near-infrared (NIR) quantum cutting involving the emission of two NIR photons for each visible photon absorbed from Ce3+/Yb3+codoped chalcohalide glasses. The maximum ET efficiency from Ce3+to Yb3+obtained is as high as82%. The directly measured and calculated quantum yield (QY) of Yb3+emission is up to119%. The possible mechanism of ET is discussed. Besides, Excitation, emission and decay spectra are measured to prove the occurrence of near-infrared (NIR) quantum cutting of Eu2+/Yb3+codoped chalcohalide glasses.The maximum ET efficiency obtained is as high as85%. The ET from Eu2+to Yb3+is followed by dipole-dipole interaction. The possible mechanism of ET is also discussed.
     Near infrared luminescence properties of Bix Tm3+-doped and Bix/Tm3+co-doped70GeS2-10Ga2S3-20KBr chalcohalide glass samples are investigated by the absorption and photoluminescence spectra. The enhanced emissions at1230and1470nm have been observed from Bix Tm3+co-doped samples when pumped by an808laser diode. The possible energy transfer mechanisms from Bix to Tm3+ions are proposed.
     Photo-induced effects of GeSe2and Ge2Se3films illuminated in air and in vacuum are investigated by in-situ transmission spectra measurements. Both compositions exhibit photobleaching (PB) when exposed to bandgap laser for a prolonged time in air. By comparing with the photoinduced effects in vacuum, PB in Ge2Se3film results from surface photo-oxidation, whereas intrinsic structural changes dominate the PB in GeSe2film.
     Photosensitivity of thermally evaporated chalcogenide amorphous films of xGe45Se55-(1-x)As45Se55(x=0,0.25,0.5,0.75,1) composition is investigated when exposed to the laser light of660nm wavelength. The photo-induced effects transition from photodarkening (PD) to photobleaching (PB) as Ge4sSe55x increases from0to1. The degree of PB correlates with the concentration of Ge-Ge homopolar bonds. The kinetics of PD and PB can be well described by a stretched exponential function. The dynamic response of PB is much faster than that of PD films in the present glass system.
     The new chalcohalide glass system Ge-Ga-S-AgI-Ag is investigated by the measurement of density, X-ray diffraction, raman spectra, chemical stability, visible-near infrared-infrared transmission spectra as well as ionic conductivity. The doped Ag metal content in the system is up to20mol.%. The chemical stability of the glass system in air is much better than the same composition of Ge-Ga-S-CsI and Ge-Ga-S-Lil. The contribution of AgI to ionic conductivity is also discussed based on the structure analysis.
引文
1. Z.U. Borisova, Glassy Semicondutors, Plenum, New York,1981.
    2. J. Heo, Rara-earth doped chalcogenide glasses for fiber-optics amplifiers, J. Non-Cryst. Solids,2003,326-327:410-415.
    3. A. Zakery, and S. R. Elliott, Optical properties and application of chalcogenide glasses:a review, J. Non-Cryst. Solids,2003,330:1-12.
    4. M. Popescu, Non-Crystalline Chalcogenides, Published by Kluwer Academic Publishers, 2000.
    5. A.B. Seddon, Chalcogenide glasses:a review of their preparation, properties and applications, J. Non-Cryst. Solids,1995,184:44-50.
    6. J. Lucas, "Chalcohalide glasses" in Insulating and semiconducting glasses edited by P. Boolchand, (World Scientific Publishing Company:1999).
    7. M. Kastner, Bonding bands, lone-pair bands, and impurity states in chalcogenide semiconductors, Phys. Rev. Lett.,1972,28(6):355-357.
    8. I.T. Sorokina, and K.L.Vodopyanov, Topics in Applied Physics,2003,89:221.
    9.陈玮,新型透红外硫系-卤化物玻璃的形成、制备和性质,华东理工大学博士论文,1994.
    10.王德强,新型硫卤系统玻璃与非线性光波导,华东理工大学博士论文,1999.
    11. A. Herrmann, S. Fibikar, and D. Ehrt, Time-resolved fluorescence measurements on Eu3+-and Eu2+-doped glasses, J Non-Cryst Solids,2009,355(43-44):2093-2101.
    12. V. Buissette, M. Moreau, T. Gacoin, et al. Luminescent Core/Shell Nanoparticles with a Rhabdophane LnPO4-xH2O Structure:Stabilization of Ce3+-Doped Compositions. Adv. Funct. Mater.,2006,16(3):351-355
    13. C. Shen, Q. Yan, Y. Xu, et al. Luminescence Behaviors of Ce3+ Ions in Chalcohalide Glasses. J. Am. Ceram. Soc.,2009.3:614-617
    14. P.I. Paulose, G. Jose, V. Thomas, et al. Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J. Phys. Chem. Solids,2003.64(5):841-846
    15. G. Chen, S. Baccaro, M. Nikl, et al. The Red-Shift of Ultraviolet Spectra and the Relation to Optical Basicity of Ce-Doped Alkali Rare-Earth Phosphate Glasses. J. Am. Ceram. Soc., 2004.87(7):1378-1380
    16. J. Bei, G Qian, X. Liang, et al. Optical properties of Ce3+-doped oxide glasses and correlations with optical basicity. Mater. Res. Bull.,2007.42(7):1195-1200
    17. S. Baccaro, R. Dall'Igna, P. Fabeni, et al. Ce3+ or Tb3+-doped phosphate and silicate scintillating glasses. J. Lumin.,2000.87-89:673-675
    18. X. Yu, F. Song, W. Wang, et al. Effects of Ce3+ on the spectroscopic properties of transparent phosphate glass ceramics co-doped with Er3+/Yb3+. Opt. Commun.,2009. 282(10):2045-2048
    19. H. Takahashi, S. Yonezawa, M. Kawai, et al. Preparation and optical properties of CeF3-containing oxide fluoride glasses. J. Fluorine Chem.,2008.129(11):1114-1118
    20. R. Sankar, Efficient blue luminescence in Ce3+-activated borates, A6MM'(BO3)6. Solid State Sciences,2008.10(12):1864-1874
    21.X. Zhang, H. He, Z. Li, et al. Photoluminescence studies on Eu2+ and Ce3+ -doped Li2SrSiO4. J. Lumin.,2008.128(12):1876-1879
    22. P. Li, Z. Wang, Z. Yang, et al. Emission features of LiBaBO3:Sm3+ red phosphor for white LED. Mater. Lett.,2009.63(9-10):751-753
    23. S. Chawla, N. Kumar, and H. Chander, Broad yellow orange emission from SrAl2O4:Pr3+ phosphor with blue excitation for application to white LEDs. J. Lumin.,2009. 129(2):114-118
    24. C. Shen, Q. Yan, Y. Xu, et al. Luminescence Behaviors of Ce3+ Ions in Chalcohalide Glasses. J. Am. Ceram. Soc.,2009.93(3):614-617
    25. Y. Xu, D. Chen, Q. Zhang, et al., Bright Red Upconversion Luminescence of Thulium Ion-Doped GeS2-In2S3-CsI Glasses. The Journal of Physical Chemistry C,2009. Doi: 10.1021/jp9010857
    26. X. Liang, Y. Yang, C. Zhu, et al. Luminescence properties of Tb3+-Sm3+ codoped glasses for white light emitting diodes. Applied Physics Letters,2007.91(9):091104
    27. H. Yang, and Y.-S. Kim, Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors. Journal of Luminescence,2008. 128(10):1570-1576
    28. M. Fasoli, F. Moretti, A. Lauria, et al. Radio-luminescence efficiency and rare-earth dispersion in Tb-doped silica glasses. Radiation Measurements.42(4-5):784-787
    29. R.L. Toquin and A.K. Cheetham, Red-emitting cerium-based phosphor materials for solid-state lighting applications. Chemical Physics Letters,2006.423(4-6):352-356
    30. N. A. Gorbacheva, A. I. Kabakova. Luminescence of Manganese-Activated Phosphate Glasses. Zhurnal Prikladnoi Spektroskopii,1967.6:478-484
    31. B. Tang, S. Zhang, X. Zhou, Y. Yuan, Temperature-capacitance characteristics of CBS glass and Mn2+ co-doped BaTiO3 ceramics, Chinese Journal of Materials Research,2007. 21(5):551
    32. M. Wang, L. Ma, X. Fan, Study of Mn2+ Luminescence in Phosphate Glass Series, Journal of the Chinese Ceramic Society,1995.23(1):61
    33. S. Yuan, Y. Yang, X. Zhang, G. Chen, Eu2+ and Mn2+ codoped Ba2Mg(BO3)2-new red phosphor for white LEDs, Opt. Lett.,33(23),2865(2008)
    34. X. Liang, Z. Xing, Y. Yang, S. Wang, G. Chen, Luminescence Properties of Eu2+/Mn2+ Codoped Borophosphate Glasses, J. Am. Ceram. Soc.,94(3),849(2011)
    35. P. Pascuta, G. Borodi, N. Jumate, I. Simiti, D. Viorel, E. Culea, The structural role of manganese ions in some zinc phosphate glasses and glass ceramics, J. Alloys Compd., 504(2),479(2010)
    36. N. Da, M. Peng, S. Krolikowski, L. Wondraczek, Intense red photoluminescence from Mn2+ -doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters, Opt. Express,18(3),2549(2010)
    37. K. Kim, H. Jung, H. Park, and D. Kim, High luminance of new green emitting phosphor, Mg2Sn04:Mn, Journal of Luminescence,2002,99:169-173.
    38.李可,沈常宇.白光LED用BaMgAl10O17:Eu2+ Mn2+蓝绿荧光粉,中国计量学院学报,(2011)64-67.
    39.李郎楷,陈永杰.白光LED用全色荧光粉BaMgSiO4:Eu2+, Mn2+的光谱性质,材料导报,(2010)55-57.
    40. S.R.Elliot, Medium-range structural order in covalent amorphous solids, Nature,1991, 354(6353):445-452.
    41.A.Ozols, O.Salminen, M.Reinfelde, Relaxational self-enhancement of holographic gratings in amorphous As2S3 films, J. Appl. Phys.,1994,75 (7):3326-3334.
    42.干福熹,现代玻璃科学技术(上册)(第一版),上海科学技术出版社,1988,pp1-23.
    43. GRosenblum, B.G.Sfez, Z.Kotler, V.Lyubin, M.Klebanov, Nonlinear optical efects in Chalcogenide photoresists, Appl. Phys. Lett.,1999,75 (21):3249-3251.
    44. S.R. Ovshinsky, Phys. Rev. Lett.,21(20)(1968)1450.
    45. H. Hisakuni, K. Tanaka, Appl. Phys. Lett.,65 (1994) 2925.
    46. S.R.Elliott, A unified model for reversible photostructural efects in chalcogenide glasses, J. Non-Cryst. Solids,1986,81:71-98.
    47. K.Tanaka, N.Kawakami, A.Odajima, Ph otoinducedel asticch angesin amorphous As2S3 films, Jpn. J.Appl.Phys.,1981,20:L874-876.
    48. K.Tanaka, Photo-induced dynamical changes in amorphous As2S3 films, Rev. Solid State Comun.,1980,34:201-204.
    49. K.Tanaka, A.Odajima, Configuration-coordinate model for photodarkening in amorphous As2S3, J.Non-Cryst.Solids,1981,46:259-268.
    50. K.Tanaka, Rev. Solid State.Sci.,1990,2&3:641.
    51. Y. Utsugi, Y.Mizushima, Lattice-dynamical aspects in photoexcited chalcogenide glasses, Jpn.J.Appl. Phys.,1992,31:3922-3933.
    52. V.K.Malinovsky, V.GZhdanov, Local heating and photostructure transformations in chalcogenide vitreous semiconductors, J.Non-Cryst.Solids,1982,51:31-44.
    53. H.Fritzsche, Philos. Mag.,1993, B 68:561.
    54. K.Shimakava, A.Kolobov, S.R.Elliot, Photoinduce defects and metastability in amorphous semiconductors and insulators, Adv. Phys.,1995,44:475-588.
    55. A.V.Kolobov, GJ.Adrianssens, Philos. Mag.,1994, B 69:21.
    56.刘启明,干福熹,顾冬红,激光作用下GeSe2非晶半导体薄膜的性能及结构变化, 无机材料学报,2002,17(4):805-810.
    57. A.Ganjoo, GChen, H. Jain, Photoinduced changes in the local structure of a-GeSe2 by in situ EXAFS, Phys.Chem.Glasses:Eur.J.Glass Sci. Technol. B,2007,47:177-181.
    58. L. Tichy, A. Triska, H. Ticha, and N. Frumar, On the nature of bleaching of amorphous Ge3oS7o films, Philos. Mag. B,1986,54(3):219-230.
    59. L. Tichy, H. Ticha, and K. Handlir, Photoinduced changes of optical properties of amorphous chalcogenide films at ambient air pressure, J. Non-Cryst. Solids,1987, 97-98(2):1227-1230.
    60. J. Ren, T. Wagner, J. Orava, M. Frumar, B. Frumarova, Reversible photoinduced change of refractive index in ion-conducting chalcohalide glass, Appl. Phys. Letts.,2008,92: 011114.
    61. K. Shiramine, H. Hisakuni, K. Tanaka, Photoinduced Bragg reflector in As2S3 glass, Appl. Phys. Lett.,1994,64(14):1771-1774.
    62. A.L. Greer, N. Mathur, Materials science:Changing face of the chameleon, Nature,2005, 437:1246-1247.
    63. S. J. Madde. D. Y. Choi, M. R. E. Lamont et al., Chalcogenide Glass Photonic Chips, OPN, 2008,19(2):18-23.
    64. A. Saitoh, K. Tanaka, Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers, Appl. Phys. Lett.,2003,83(5):1725-1727.
    65. J. S. Sanghera, I. D. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications:a review, J. Non-Cryst. Solids,1999,256-257:6-16.
    66. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J.S. Sanghera, and I. D. Aggarwal, Large Kerr effect in bulk Se-based chalcogenide glasses, Opt. Lett.,2000,25(4):254-256.
    67.1.V. Kityk, K. Ozga, J. Ren, T. Wagner, M. Frumar, Optical and DC-electric poling on AgX (X=Cl, I)-Doped chalcohalide glasses, laser physics,2008,18(6):780-782.
    68. A. F. Abouraddy, M. Bayindir, G. Benoit et al., Towards multimaterial multifunctional fibres that see, hear, sense and communicate, Nature Materials,2007,6(5):336-347.
    69. J.N. Bradley, M. Green, Potassium iodide+silver iodide phase diagram:High ionic conductivity of KAg4I5, Trans. Faraday Soc.,1966,62:2069-2075.
    70. B.B. Owens, A.J. Salkind, Key events in the evolution of implantable pacemaker batteries, in:B.B. Owens (Ed.), Batteries for Implantable Biomedical Devices, Plenum, NY,1986, Chapter 2.
    71. T. Takahashi, O. Yamamoto, S. Yamada, S. Hayashi, Solid-state ionics:High copper ion conductivity of the system CyCl-CuI-RbCl, in:Extended Abstracts of the Second International Meeting on Solid Electrolytes, St. Andrews, Scotland,1978, Abs.6.2.1.
    72. Boone B. Owens, Solid state electrolytes:overview of materials and applications during the last third of the Twentieth Century, Journal of Power Sources,2000,90:2-8.
    73. R. Komiya, A. Hayashi, H. Morimoto, et al., Solid state lithium secondary baaefies using an amorphous solid electrolyte in the system(100-x)(0.6Li2S-0.4SiS2)-xLi4SiO4 obtained by me-chanochemical synthesis. Solid State Ionics,2001,140:83-87.
    74. K. H. Joo, P. Vinatier, B. Pecquenard, et al., Thin film lithium ion conducting LiBSO4 solid electrolyte, Solid State Ionics,2003,160:51-59.
    75. M. Ganguli, K. J. Rao, Studies on the effect of Li2SO4 on the structure of lithium borate glasses, J. Phys. Chem. B,1999,103:920-930.
    76. C. H. Lee, K. H. Joo, J. H. Kim, et al., Characterizations of a new lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte, Solid State Ionics,2002,149:59-65.
    77. C. H. Lee, H. J. Sohn, M.G Kim, XAS study on lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte, Solid State Ionics,2005,176:1237-1241.
    78. A. V. Deshpande, V. K. Deshpande, Influence of LiCl addition on the electrical conductivity of Li2O/B2O3/SiO2 glass system, Solid State Ionics,2002,154-155:433-436.
    79.X. Xu, Z. Wen, Z. Gu, et al., High lithium conductivity in Li1.3Cro.3Ge1.7(P04)3 glass-ceramics, Mater. Lett.,2004,58:3428-3431.
    80. B. V. R. Chbwarj, R. G. V. Subba, G. Y. H. Lee, XPS and ionic conductivity studies on Li2O-Al2O3(TiO2 or GeO2)-P2O5 glass-ceramics, Solid State Ionics,2000,136-137: 1067-1075.
    81. J. Fu, Superionic conductivity of glass-ceramics in the system Li2O-Al203-TiO2-P2O5, Solid State Ionics,1997,96:195-200.
    82. A. Hayashi, R. Komiya, M. Tatsumisago, et al., Characterization of Li2S-SiS2-Li3MO3 (M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries, Solid State Ionics,2002,152-153:285-290.
    83. K. Takada, T. Inada, A. Kajiyama, Solid state lithium battery with graphiteanode, Solid State Ionics,2003,158:269-274.
    84. F. Mizuno, A. Hayashi, K. Tadanaga, et al., All-solid-state lithium secondary batteries using Li2S-SiS2-Li4SiO4 glasses andLi2S-P2S5 glass ceramics as solid electrolytes, Solid State Ionics,2004,175:699-702.
    85. Y. Seino, K. Takada, B.C. Xim, et al., Synthesis of phosphorous sulfide solid electrolyte and solid-state lithium batteries with graphite electrode, Solid State Ionics,2005,176: 2389-2393.
    1. C. Shen, Q. Yan, Y. Xu, G Yang, S. Wang, Z. Xing, and G Chen. Luminescence behaviors of the Ce3+ ions in chalcohalide glasses, J. Am. Ceram. Soc.,2010,93(3): 614-617.
    2. Q. Yan, C. Shen, W. Wang, and G Chen. Effect of halides on luminescence behaviors of Ce3+ions in chalcohalide glasses, J. Alloys Compd.,2010,508(2):L24-L27.
    3. R. Le Toquin, and A.K. Cheetham, Red-emitting cerium-based phosphor materials for solid-state lighting applications, Chem. Phys. Lett.2006,423(4-6):352-356.
    4. Y. Tan, and C. Shi, Ce3+-Eu2+ Energy Transfer in BaLiF3 Phosphor, J. Phys. Chem. Solids, 1999,60 (11):1805-1810.
    5. J.J. Ju, T.Y. Kwon, S.I. Kim, J.H. Kim, M. Cha, and S.I. Yun, Spectroscopic properties of Ce3+ ions in a barium-sodium borate glass, Mater. Lett.,1996,28(1-3):149-153.
    6. P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, and M.K.R. Warrier, Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass, J. Phys. Chem. Solids,2003,64(5): 841-846.
    7. Q. Zeng, H. Liang, G. Zhang, M. D. Birowosuto, Z. Tian, H. Lin, Y. Fu, P. Dorenbos, and Q. Su, Luminescence of Ce3+ activated fluoro-apatites M5(PO4)3F (M= Ca, Sr, Ba) under VUV-UV and x-ray excitation, J. Phys.:Condens. Matter,2006,18:9549-9560.
    8. V. Bachmann, C. Ronda, and A. Meijerink, Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce, Chem. Mater.2009,21:2077-2084.
    9. C. Huang, and T. Chen, A Novel Single-Composition Trichromatic White-Light Ca3Y(GaO)3(BO3)4:Ce3+, Mn2+, Tb3+ Phosphor for UV-Light Emitting Diodes, J. Phys. Chem. C,2011,115:2349-2355.
    10. C. Zhang, S. Huang, D. Yang, X. Kang, M. Shang, C. Peng, and J. Lin, Tunable luminescence in Ce3+, Mn2+ -codoped calcium fluorapatite through combining emissions and modulation of excitation:a novel strategy to white light emission, J. Mater. Chem., 2010,20:6674-6680.
    11. GK. DasMohapatra, A spectroscopic study of cerium in lithium-alumino-borate glass. Materials Letters,1998,35(1-2):120-125.
    12. J. Bei, G Qian, X. Liang, S. Yuan, Y. Yang, and G Chen. Optical properties of Ce3+-doped oxide glasses and correlations with optical basicity. Materials Research Bulletin,2007,42(7):1195-1200.
    13. J.A. Duffy and M.D. Ingram, Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. Journal of the American Chemical Society, 1971,93(24):6448-6454.
    14. L.C. Allen, Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society,1989, 111(25):9003-9014.
    15. A. Khan, K. Balakrishnan, and T. Katona, "Ultraviolet Light-Emitting Diodes Based on Group Three Nitrides," Nat. Photonics,2008,2:77-84.
    16. C. Wickleder, Photoluminescence of Ba(SCN)2:Eu2+, Journal of Alloys and Compounds, 2004,374(1-2):10-13.
    17. J.W.H. van Krevel, J.W.T. van Rutten, H. Mandal, H.T. Hintzen, and R. Metselaar, Luminescence Properties of Terbium-, Cerium-, or Europium-Doped α-Sialon Materials, Journal of Solid State Chemistry,2002,165(1):19-24.
    18. C. Chartier, C. Barthou, P. Benalloul, and J.M. Frigerio, Photoluminescence of Eu2+in SrGa2S4, J. Lumin.,2005,111:147-158.
    19. C. Wickleder, Photoluminescence of Ba(SCN)2:Eu2+, J. Alloys Compd.,2004,374:10-13.
    20. Y. Lia, P. Niu, C. Tang, and L. Hu, Blue-excited luminescence of Eu-doped strontium boroaluminate glasses, J. Lumin.,2008,128:273-276.
    21. Y. Kishimoto, X. Zhang, T. Hayakawa, and M. Nogami, Blue light emission from Eu2+ ions in sol-gel-derived Al2O3-SiO2 glasses, J. Lumin.,2009,129 (9):1055-1059.
    22. J.W.M. Verwey, G. Blasse, The luminescence of divalent and trivalent rare earth ions in SYAM-fluoride glass, Journal of Physics and Chemistry of Solids,1992,53(9): 1157-1162.
    23. X. Zhang, H. He, Z. Li, T. Yu, and Z.Zou. Photoluminescence studies on Eu2+ and Ce3+-doped Li2SrSi04. Journal of Luminescence,2008,128(12):1876-1879.
    24. L. Jiang, C. Chang, D. Mao, and C. Feng, Concentration quenching of EU2+ in Ca2MgSi207:Eu2+ phosphor, Materials Science and Engineering B,2003,103(3): 271-275.
    25. W.J. Chung, J. Heo, and A. Jha, Effect of alkali halides on the persistent spectral hole burning in Ge-Ga-S glasses doped with Eu3+, Journal of Non-Crystalline Solids,2003, 326-327(1):292-295.
    26. K.-S. Sohn, E. S. Park, C. H. Kim, and H. D. Park, Photoluminescence Behavior of BaAl12O19:Mn Phosphor Prepared by Pseudocombinatorial Chemistry Method, J. Electrochem. Soc.,2000,147(11):4368-4373.
    27. M. Kawano, H. Takebe, and M. Kuwabara, Compositional Dependence of the Luminescence Properties of Mn2+-Doped Metaphosphate Glasses, Opt. Mater.,2009,32 (2):277-280.
    28. K. Annapurna, R. N. Dwivedi, P. Kundu, and S. Buddhudu, Emission Properties of Mn21: ZnO-B2O3-SiO2 Glass, J. Mater. Sci. Lett.,2003,22(12):873-875.
    29. P. E. Menassa, D. J. Simkin, and P. Taylor, Spectroscopic Investigations of Mn2+ in Sodium Borosilicate Glasses, J. Lumin.,1986,35(4):223-233.
    30. C. Li, Y. Yu, S. Wang, and Q. Su, Photo-Stimulated Long-Lasting Phosphorescence in Mn21-Doped Zinc Borosilicate Glasses, J. Non-Cryst, Solids,2003,321(3):191-196.
    31. B. Lei, Y. Liu, Z. Ye, and C. Shi, Luminescence Properties of CdSiO3:Mn2+ Phosphor, J. Lumin.,2004,109(3-4):215-219.
    32. K.-S. Sohn, B. Cho, and H. D. Park, Excitation Energy-Dependent Photoluminescence Behavior in Zn2SiO4:Mn Phosphors, Mater. Lett.,1999,41(6):303-308.
    33. N. K. Mohan, M. R. Reddy, C. K. Jayasankar, and N. Veeraiah, Spectroscopic and Dielectric Studies on MnO Doped PbO-Nb2O5-P2O5 Glass System, J. Alloys Compd., 2008,458(1-2):66-76.
    34. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, "Intense Red Photoluminescence from Mn2+-Doped (Na+; Zn2+) Sulfophosphate Glasses and Glass Ceramics as LED Converters," Opt. Express,2010,18(3):2549-57.
    35. A. Thulasiramudu and S. Buddhudu, Optical Characterization of Mn2+, Ni2+ and Co2+ Ions Doped Zinc Lead Borate Glasses, J. Quant. Spectrosc. Radiat. Transfer,2006, 102(2):212-227.
    36. B. Vaidhyanathan, C. P. Kumar, J. L. Rao, and K. J. Rao, Spectroscopic investigations of Manganese Ions in Microwave-Prepared NaPO3-PbO Glasses, J. Phys. Chem. Solids, 1998,59(1):121-128.
    37. C. R. Ronda and T. Amrein, Evidence for Exchange-Induced Luminescence in Zn2Si04Mn, J. Lumin.,1996,69(5-6):245-248.
    38. S. Prakash Singh, R. P. S. Chakradhar, J. L. Rao, and B. Karmakar, EPR,Optical Absorption and Photoluminescence Properties of MnO2 Doped 23B2O3-5ZnO-72Bi2O3 Glasses, Physica B:Condens. Matter,2010,405(9):2157-2161.
    39. J. M. C. Flores, G. U. Caldino, A. J. Herna'ndez, G. E. Camarillo, B. E. Cabrera, H. del Castillo, A. Speghini, M. Bettinelli, and S. H. Murrieta, Study of Mn2+ Luminescence in Zn Glasses, Phys. Status Solidi (c),2007,4(3):922-925.
    40. R. Pang, C. Li, L. Shi, and Q. Su, A Novel Blue-Emitting Long-Lasting Proyphosphate Phosphor Sr2P2O7:Eu2+,Y3+, J. Phys. Chem. Solids,2009,70(2):303-306.
    41. T. Sanada, K. Yamamoto, N. Wada, and K. Kojima, Green Luminescence from Mn ions in ZnO-GeO2 Glasses Prepared by Sol-Gel Method and Their Glass Ceramics, Thin Solid Films,2006,496(1):169-173.
    42. J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, Emission Properties and Local Structure of Tm3+ in Ge-Ga-S-Br Glass, J. Non-Cryst. Solids,2007, 353(16-17):1676-1680.
    43. J. H. Song, Y. G. Choi, and J. Heo, Ge and Ga K-Edge EXAFS Analyses on the Structure of Ge-Ga-S-CsBr Glasses, J. Non-Cryst. Solids,2006,352(5):423-428.
    44. T. H. Lee, Y. K. Kwon, and J. Heo, Local Structure and its Effect on the Oscillator Strengths and Emission Properties of Ho31 in Chalcohalide glasses, J. Non-Cryst. Solids, 2008,354(27):3107-3112.
    45. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals. Academic, New York,1970, pp.106-12.
    46. W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, Luminescence and Energy Transfer of Eu-and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED, Chem. Mater.,2005,17(15):3883-3888.
    47. H. Tao, X. Zhao, C. Jing, H. Yang, and S. Mao, Raman scattering studies of the GeS2-Ga2S3-CsCl glassy system, Solid State Communications,2005,133:327-332.
    48. C.R.Ronda, and H.Nikol, Rare earth phosphors:fundamentals and applications. Journal of Alloys and Compounds,1998,275-277:669-676
    49.蒋大鹏,赵成久,侯凤勤.白光发光二极管的制备技术及主要特性.发光学报.2003,24(4):385-389.
    50. J. K. Park, C. H. Kim, and S. H. Park. Application of strontium silicate yellow phosphor for white light-emitting diodes, Applied Physics Letters,2004,84(10):1647-1649.
    1. B. van der Zwaan and A. Rabl, Prospects for PV:a learning curve analysis, Sol. Energy, 2003,74(1):19-31.
    2. B. S. Richards, Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers, Sol. Energy Mater. Sol. Cells,2006,90(15): 2329-2337.
    3. M. Y. Peng and L. Wondraczek, Bismuth-doped oxide glasses as potential solar spectral converters and concentrators, J. Mater. Chem.,2009,19:627-630.
    4. Y. Teng, J. Zhou, X. Liu, S. Ye and J. Qiu, Efficient broadband near-infrared quantum cutting for solar cells, Opt. Express,2010,18(9):9671-9676.
    5. B. M. van der Ende, L. Aarts, and A. Meijerink, Near-Infrared Quantum Cutting for Photovoltaics, Adv.Mater.,2009,21(30):3073-3077.
    6. Q. Zhang, G. Yang, and Z. Jiang, Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE=Pr, Tb, and Tm), Appl. Phys. Lett.2007,91(5):051903.
    7. J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses, Appl. Phys. Lett.,2009,95(14):141101.
    8. Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, Efficient Near-Infrared Down-Conversion in Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals, J. Phys. Chem. C,2011,115:13056-13062.
    9. J. Ueda and S. Tanabe, Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics, J. Appl. Phys.,2009,106:043101.
    10. X. Liang, Z. Xing, Y. Yang, S. Wang, and G. Chen, Luminescence Properties of Eu2+/Mn2+Codoped Borophosphate Glasses, J. Am. Ceram. Soc.,2011,94 [3] 849-853.
    11. W. Xu, Q. Yan, J. Ren, and G. Chen, Photoluminescence properties and energy transfer of Eu2+/Pr3+ codoped GeS2-Ga2S3-CsCl chalcohalide glasses," J. Lumin.,2013,134: 75-78.
    12. W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, Luminescence and Energy Transfer of Eu-and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED, Chem. Mater.,2005,17(15):3883-3888.
    13. Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses, Opt. Lett.,2008, 33(20) 2293-2295.
    14. W. Wang, Y. Xu, C. Shen, Q. Yan, H. Zeng, and G. Chen, Infrared luminescence of Tm3+-doped chalcohalide glasses in GeS2-In2S3-CsBr system, J. Alloys Compd.,2010, 490(1-2):L37-39.
    15. Q. Yan, C. Shen, W. Wang, S. Wang, and G. Chen, Near Infrared Emission and Energy Transfer of Bismuth-Thulium Co-doped Chalcohalide Glasses, J. Am. Ceram. Soc.,2010, 93(11):3539-3541.
    16. Y.G Choi, B.J. Park, K.H. Kim, and J. Heo, Pr3+ -and Pr3+/Er3+-Doped Selenide Glasses for Potential 1.6 μm Optical Amplifier Materials, ETRI Journal,2001,23(3):97-105.
    17. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka, Bi-doped SiO2 as a new laser material for an intense laser, Fusion Eng. Des.,1999,44:437-439.
    18. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3, Opt. Express,2005,13(18):6892-6898.
    19. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, Bismuth and aluminum codoped germanium oxide glasses for super-broadband optical amplification, Opt. Lett.,2004,29(17):1998-2000.
    20. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, Super-broadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses, Opt. Lett.,2005,30(18): 2433-2435.
    21. J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, Near Infrared Broadband Emission from Bismuth-Dysprosium Codoped Chalcohalide Glasses, Chin. Phys. Lett., 2007,24(7):1958-1960.
    22. G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, Effects of Thermal Treatment on Broadband Near-Infrared Emission from Bi-Doped Chalcohalide Glasses, J. Eur. Ceram. Soc,2008,28(16):3189-3191.
    23. G Yang, D. Chen, J. Ren, Y. Xu, H. Zeng, Y. Yang, and G. Chen, Effects of Melting Temperature on the Broadband Infrared Luminescence of Bi-Doped and Bi/Dy Co-Doped Chalcohalide Glasses, J. Am. Ceram. Soc.,2007,90(11):3670-3672.
    24. J.A. Savage and S. Nielson, Preparation of Glasses Transmitting in the Infrared Between 8 and 15 mm, Chem. Phys. Lett.,1964,5(3):82-86.
    25. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, Ultrabroadband Near-Infrared Emission from a Colorless Bismuth-Doped Glass, Appl. Phys. Lett.,2007, 90:261110.
    26. J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, Ultrabroad Infrared Luminescence from Bi-Doped Aluminogermante Glasses, Solid State Commun.,2007,141:559-562.
    27. J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, Effect of Various Alkaline-Earth Metal Oxides on the Broadband Infrared Luminescence from Bismuth-Doped Silicate Glasses, Solid State Commun.,2006,140(1):38-41.
    28. D. Cubicciotti, Mass Spectrometric Study of the Vapors over Bismuth-Sulfur Melts, J. Phys. Chem.,1964,14(3):1385.
    29. D. Cubicciotti, Thermodynamics of Liquid Solutions of Bismuth and Sulfur, J. Phys. Chem.,1963,67(1):118-123.
    30. E. H. Fink, K. D. Setzer, D. A. Ramsay, and M. Vervloet, A New Band Spectrum of BiO in the Near-Infrared Region, Chem. Phys. Lett.,1991,179(1-2):103-108.
    31. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, Generation of Emission Centers for Broadband NIR Luminescence in Bismuthate Glass by Femtosecond Laser Irradiation, J. Am. Ceram. Soc.,2009,92(2):542-544.
    32. M. Beutel, K. D. Setzer, O. Shestakov, and E. H. Fink, Thea1△(a2) States of BiCl, BiBr, and BiI, J. Mol. Spectrosc.,1996,175(1):48-53
    33. O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, Electronic States and Spectra of BiO, J. Mol. Spectrosc.,1998,190(1):28-77.
    1. Q. Liu, and F. Gan, Photobleaching in amorphous GeS2 thin films, Mater. Lett.,2002, 53(6):411-414.
    2. T. Kawaguchi, S. Maruno, and K. Masui, Photobleaching and thermal-bleaching effects in amorphous Ge-S films, J. Non-Cryst. Solids,1987,97-98(2):1219-1222.
    3. P. Knotek, L. Tichy, D. Arsova, Z. G. Ivanova, and H. Ticha, Irreversible photobleaching, photorefraction and photoexpansion in GeS2 amorphous film, Mater. Chem. Phys.,2009, 119(1-2):315-318.
    4. Y. Sakaguchi, D. A. Tenne, and M. Mitkova, Oxygen-assisted photoinduced structural transformation in amorphous Ge-S films, Phys. Status Solidi B,2009,246(8):1813-1819.
    5. M. Jin, P. Chen, and P. Boolchand, Origin of giant photocontraction in obliquely deposited amorphous GexSe1-x thin films and the intermediate phase, Phys. Rev. B,2008, 78(21):214201-214261.
    6. L. Tichy, H. Ticha, P. Nagels, and E. Sleeckx, A review of the specific role of oxygen in irreversible photo- and thermally induced changes of the optical properties of thin film amorphous chalcogenides, Opt. Mater.,1995,4(6):771-779.
    7. T. Kawaguchi, and S. Maruno, Photoinduced and Thermally-Induced Bleachings of Amorphous Ge-S Film, Jpn. J. Appl. Phys.,1988,27(12):2199-2204.
    8. T. Kawaguchi, S. Maruno,and K. Tanaka, Composition dependence of photoinduced and thermally induced bleachings of amorphous Ge-S and Ge-S-Ag films, J. Appl. Phys., 1993,73(9):4560-4566.
    9. L. Calvez, H. Ma, J. Lucas, and X. Zhang, Selenium-Based Glasses and Glass Ceramics Transmitting Light from the Visible to the Far-IR, Adv. Mater.,2007,38(12):129-132.
    10. X. Zhang, Y. Guimond, and Y. Bellec, Production of complex chalcogenide glass optics by molding for thermal imaging, J. Non-Cryst. Solids,2003,519(23):326-327.
    11. J. Troles, F. Smektala, G Boudebs, A. Monteil, B. Bureau, and J. Lucas, Optical limiting behavior of infrared chalcogenide glasses, J. Optoelectron. Adv. Mater.,2002,4(3): 729-735.
    12. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission, Nature,2002,420:650-653.
    13. A. Ganjoo, and R. Golovchak, Computer program PARAV for calculating optical constants of thin films and bulk materials:Case study of amorphous semiconductors, J. Optoelectron. Adv. Mater.,2008,10(6):1328-1332.
    14. H. Hisakuni, and K. Tanaka, Giant photoexpansion in As2S3 glass, Appl. Phys. Lett.,1994, 65(23):2925-2927.
    15. L. Calvez, Z. Yang, and P. Lucas, Reversible giant photocontraction in chalcogenide glass, Opt. Express,2009,17(21):18581-18589.
    16. C. A. Spence, and S. R. Elliott, Light-induced oxidation and band-edge shifts in thermally evaporated films of germanium chalcogenide glasses, Phys. Rev. B,1989,39(8): 5452-5462.
    17. K. Shimakawa, Dynamics of Photo-Induced Metastability in Amorphous Chalcogenides, Wiley:Germany,2003.
    18. A. Ganjoo, and K. Shimakawa, Dynamics of photodarkening in amorphous chalcogenides, J. Optoelectron. Adv. Mater.,2002,4(3):595-604.
    19. T. T. Nang, M. Okuda, and T. Matsushita, Photo-induced absorption change in some Se-based glass alloy systems, Phys. Rev. B,1979,19(2):947-955.
    20. A. Ganjoo, G Chen, and H. Jain, Photoinduced changes in the local structure of a-GeSe2 by in situ EXAFS, Phys. Chem. Glasses:Eur. J. Glass Sci. Technol. B 2006,47(2): 177-181.
    21. L. Tichy, A. Triska, H. Ticha, and N. Frumar, On the nature of bleaching of amorphous Ge30S70 films, Philos. Mag. B,1986,54(3):219-230.
    22. L. Tichy, H. Ticha, and K. Handlir, Photoinduced changes of optical properties of amorphous chalcogenide films at ambient air pressure, J. Non-Cryst. Solids,1987, 97-98(2):1227-1230.
    23. M. Mitkova, A. Kovalskiy, H. Jain, and Y. Sakaguchi, Effect of photo-oxidation on the photodiffusion of silver in germanium chalcogenide glasses, J. Optoelectron. Adv. Mater., 2009,11(12):1899-1906.
    24. E. Vatera, Giant photo-and thermo-induced effects in chalcogenides, J. Optoelectron. Adv. Mater.,2007,9(10):3108-3114.
    25. S.R. Elliott, The physics and chemistry of solids; John Wiley & Sons:Chichester,1998.
    26. A. Ganjoo, N. Yoshida, and K. Shimakawa, in Recent Research Development in Applied Physics, edited by M. Kawasaki, N. Ashgritz, and R. Anthony (Research Signpost, Trivandrum,1999), Vol.2, p.129.
    27. K. Tanaka, Reversible photostructural change:Mechanisms, properties and applications, J. Non-Cryst. Solids,1980,35-36(2):1023-1024.
    28. A. C. van Popta, R. G. DeCorby, C. J. Haugen, T. Robinson, J. N. McMullin, D. TonChev, and S. O. Kasap, Photoinduced Refractive Index Change in As2Se3 by 633nm Illumination, Opt. Express,2002,10(15):639-644.
    29. A. Zakery and M. Hatami, Nonlinear optical properties of pulsed-laser-deposited GeAsSe films and simulation of a nonlinear directional coupler switch, J. Opt. Soc. Am. B,2005, 22(3):591-597.
    30. J. Ren, T. Wagner, J. Orava, B. Frumarova, and M. Frumar, Reversible photoinduced change of refractive index in ion-conducting chalcohalide glass, Appl. Phys. Lett.,2008, 92(1):011114.
    31. P. Nemec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X. H. Zhang, Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films, Opt. Express,2010,18(22):22944-22957.
    32. G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, A photo-stable chalcogenide glass, Opt.Express,2008,16(14):10565-10571.
    33. A. Ganjoo, and H. Jain, Millisecond kinetics of photoinduced changes in the optical parameters of a-As2S3 films, Phys. Rev. B,2006,74(2):024201-1-024201-6.
    34. D. C. Sati, R. Kumar, R. M. Mehra, H. Jain, and A. Ganjoo, Kinetics of photodarkening in a-As2Se3 thin films, J. Appl. Phys.,2009,105(12):123105-1-123105-6.
    35. J. Ren, T. Wagner, J. Orava, T. Kohoutek, B. Frumarova, M. Frumar, G. Yang, G. Chen, D. Zhao, A. Ganjoo, and H. Jain, In-situ measurement of reversible photodarkening in ion-conducting chalcohalide glass, Opt. Express,2008,16(3):1466-1474.
    36. K. Tanaka, Structural phase transitions in chalcogenide glasses, Phys. Rev. B,1989, 39(2):1270-1279.
    37. L. Ding, J. Ren, H. Jain, D. Zhao, G. Yang, and G. Chen, Self-Reversible Photodarkening of the Mixed GeS2-SbSI Glasses, J. Am. Ceram. Soc.,2011,94(6),1657-1660.
    38. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se6o thin films, Opt. Express,2012,20(11):12416-12421.
    39. D. Arsova and E. Vateva, Dual action of light in photodarkened Ge-As-S films, Phys. Status Solidi B,2012,249(1):153-157.
    40. S. A. Solin and G. V. Papatheodorou, Irreversible thermostructural transformations in amorphous As2S3 films:A light-scattering study, Phys. Rev. B,1977,15(4):2084-2090.
    41. G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, Observation of light polarization-dependent structural changes in chalcogenide glasses, Appl. Phys. Lett.,2003,82(5):706-708.
    42. K. Shimakawa, N. Nakagawa, and T. Itoh, The origin of stretched exponential function in dynamic response of photodarkening in amorphous chalcogenides, Appl. Phys. Lett., 2009,95(5):051908-1-051908-3.
    1. M. Tatsumisago, Y. Shinkuma, and T. Minami, Stabilization of superionic a-Agl at room temperature in a glass matrix, Nature,1991,354:217-218.
    2. P. Boolchand, and W. J. Bresser, Mobile silver ions and glass formation in solid electrolytes, Nature,2001,410:1070-1073.
    3. Y. Kim, J. Saienga, and S. W. Martin, Anomalous Ionic Conductivity Increase in Li2S-GeS2-Ge02 Glasses, J. Phys. Chem. B,2006,110:16318-16325.
    4. T. Kawaguchi, Photoinduced surface deposition of Ag on Ag-rich Ag-Ge-S films: Optimal Ag content and film thickness for applications in optical recording devices, Appl. Phys. Lett.1998,72(2):161-163.
    5. A. Royon, K. Bourhis, M. Bellec, G Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, Silver Clusters Embedded in Glass as a Perennial High Capacity Optical Recording Medium, Adv. Mater.,2010,22:5282-5286.
    6. J. Ren, T. Wagner, J. Orava, T. Kohoutek, B. Frumarova, M. Frumar, G Yang, G Chen, D. Zhao, A. Ganjoo, and H. Jain, In-situ measurement of reversible photodarkening in ion-conducting chalcohalide glass, Opt. Express,2008,16(3):1466-1474.
    7. C. Julien, S. Barnier, M. Massot, N. Chbani, X. Cai, A. M. Loireau-Lozac'h, and M. Guittard, Raman and infrared spectroscopic studies of Ge-Ga-Ag sulphide glasses, Mater. Sci. Eng. B,1994,22(2-3):191-200.
    8. M. Mitkova, Y. Wang, and P. Boolchand, Dual Chemical Role of Ag as an Additive in Chalcogenide Glasses, Phys. Rev. Lett.,1999,83(19):3848-3851.
    9. P. Knotek, L. Tichy, D. Arsova, Z. G. Ivanova, and H. Ticha, Irreversible photobleaching, photorefraction and photoexpansion in GeS2 amorphous film, Mater. Chem. Phys.,2009, 119(1-2):315-318.
    10. M. Frumar, and T. Wagner, Ag doped chalcogenide glasses and their applications, Current Opinion in Solid State and Materials Science,2003,7(2):117-126.
    11. J.R. Macdonald, Impedance Spectroscopy, Wiley,1987.
    12. M. A. Urena, A. A. Piarristeguy, M. Fontana, and B. Arcondo, Ionic conductivity (Ag4) in AgGeSe glasses, Solid State Ionics,2005,176(5-6):505-512.
    13. D. L. Sidebottom, B. Roling, K. Funke, Ionic conduction in solids:Comparing conductivity and modulus representations with regard to scaling properties, Phys. Rev. B, 2000,63(2):024301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700