光周期对大豆花序分化的影响及AGAMOUS基因的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
株型是决定作物产量潜力的重要因素,在禾谷类作物特别是水稻株型育种取得重要成果的时候,大豆的株型育种研究已经引起人们的重视。结荚习性是大豆主要株型性状之一,结荚习性还对大豆品种的适应性有重要影响。可见,结荚习性是大豆株型设计的核心问题,对结荚习性进行改良和调节有助于改善株型性状,提高适应能力和作物产量。因此,试验于2006和2007年在中国农业科学院作物科学研究所完成,主要从大豆的品种差异和光周期调控入手,利用解剖学和分子生物学技术,研究不同结荚习性大豆品种的本质差异、大豆在不同光周期处理下茎顶的变化规律,进一步明确长日照对大豆顶端花序的影响,及AGAMOUS基因在不同光周期处理下大豆品种中的表达规律,为大豆株型育种特别是结荚习性的改良及大豆栽培管理提供理论依据。
     利用形态解剖学手段,对不同茎顶类型的大豆品种中黄13、中黄24和凤交66-12进行品种差异性研究,结果显示在有限结荚习性品种(中黄13和凤交66-12)和无限结荚习性品种(中黄24)的茎顶一般都能产生花芽,其区别在于有限结荚习性品种茎顶形成花序原基的起始时间要比无限结荚习性品种早,在有限结荚习性大豆品种的茎顶已经发育的很成熟的时候,无限结荚习性的大豆品种的茎顶才刚刚开始形成,年龄比较轻,顶荚节位上的叶片较小,营养成分供应不足导致了其最终顶端可能不会产生豆荚。在不同结荚习性品种的顶端花序形成过程中,花序分化的起始时间起到了决定性的作用。而对于同是有限结荚习性品种的中黄13和凤交66-12来说,两者的顶端花序长度存在明显的差异,通过解剖学研究产生不同花序长度的原因是由于凤交66-12开始形成的顶端花序的时间相对于中黄13较早,并且分化速度快所导致花序在短时间内长度增加,花序上小花数目增多。花序长度不同的有限结荚习性品种产生的原因主要是花序分化的起始时间和分化的速度共同决定的,花序分化的时间越早,速度越快,形成的顶端花序越长。
     大豆结荚习性形成的原因不仅受品种内在遗传因素决定,还受到外界环境因素的控制。对以上三个不同结荚习性品种进行两种较为极端的全生育期光照处理,短日照处理(12小时)和长日照处理(16小时)均可不同程度地影响不同茎顶类型品种的生育进程、结荚习性、株型和其他农艺性状,并且以此方法可区分出光敏感性相对较强和较弱的品种,对品种的生产和推广有一定的指导意义。研究结果表明,中黄13、中黄24和凤交66-12的出苗到开花期的时间和出苗到始熟期的时间随光照时间的延长而延长,通过形态解剖学观察,三个品种的茎顶在短日照条件下分化出花芽的时间早于长日照下的茎顶,从这点上能说明三个品种对光周期反应还是比较敏感的,但是,在两种光照条件下,三个品种均能够正常开花结实,三个品种对不同的环境条件表现出一定的适应能力。通过短日促进率分析,中黄13的开花期和成熟期与其他品种相比对光周期反应敏感性较弱。成熟时中黄13的株高、节数、分枝数、花序荚数、单株粒数和单株粒重6个农艺性状对光周期反应与另两个品种相比较为钝感,中黄24在花序小花数上表现出较弱的光周期敏感性,在其他性状上较为敏感,稳定性差。凤交66-12在节数上表现出较弱的光周期敏感性。总的来说,中黄13相对于中黄24和凤交66-12在多数的农艺性状上表现出一定的稳定性,对光周期反应相对钝感,进一步证实了中黄13是一种感光性相对弱的钝感型品种,可适应多种生态类型的地区种植。
     为明确光周期特别是长日照对于短日照作物的生长发育及顶端花序发育的特殊重要作用,实验以光周期敏感的有限结荚习性晚熟品种自贡冬豆为材料,经过13天短日照处理(12小时)后,分别经过0、1、2、3、4、5周长日照处理,再在短日照处理下直到成熟,研究长日照对大豆顶端花序、株型及农艺性状的影响。研究结果表明,随着长日照处理天数的增加,植株的发育速度明显延迟,顶端花序分化时间明显延长,花序长度明显增加,而且上述指标与长日照处理天数存在着显著的线性正相关性。在2-5周长日照处理下,大豆的茎顶还会出现逆转花序,且随着长日照处理天数的增加,逆转花序比例有增加趋势,株型也随顶端花序的改变而改变,农艺性状在长日照下表现出递增的趋势。长日照对于大豆顶端花序的发育性状具有的一定的累积作用。在某种程度上,长日照作用有利于短日照植物的生殖生长发育和短日照作物的产量形成。
     为了明确大豆茎顶发育过程中的相关基因的功能作用和调控规律,利用本课题组克隆的大豆AG基因对大豆茎顶的发育过程的基因表达进行了初步研究。利用DNAMAN软件分析,大豆的GmAG属于MADS-box基因家族中AG亚家族中的一员,与STK(AGL11)氨基酸的同源性为78%。通过半定量PCR和RNA原位杂交结果发现,在不同大豆品种中,GmAG基因在茎顶的发育营养生长期就有少量表达,而且在叶片原基也有表达,随着茎顶组织的进一步分化,产生花序分生组织和花分生组织后,GmAG基因表达量增强,说明GmAG对于决定花序分生组织的特征性也起到一定作用。在花原基进一步分化出心皮和雄蕊时均有表达,且在心皮分化出胚珠的部位也有很强的表达,说明该基因具有花器官C类和D类基因的控制雌雄蕊分化和胚珠发育的作用。不同光周期处理对GmAG基因表达也会产生一定的影响,差别不是很明显,但是在短日照促进花芽分化的同时,GmAG基因表达也随之升高,说明GmAG基因对于早花的形成具有一定作用。受长日照影响的茎顶,在发生逆转的顶芽上有少量的GmAG的表达,证明GmAG有决定分生组织向花分生组织转变的特性。可见,GmAG基因对于促进茎顶分化花原基,形成雌雄蕊原基和胚珠的发育具有一定作用,并对光周期信号产生一定程度地反应,详细的解释还需要实验的进一步验证。
Plant type is a key factor that determines potential of crop yield, when gramineous grain crop especially plant type breeding of rice has obtained an important achievement, study on plant type breeding in soybean raised the people to pay attention to it. Podding-habits of soybean is one of main characters of plant type, and there is important effects of types of stem termination on adaptability of soybean varieties. So, the types of stem termination is a core problem of plant type design of soybean. Improving and adjusting podding-habits of soybean is beneficial for improvement of plant type, elevation of adaptability, and increase of crop yield. From differentiation of soybean varieties and photoperiod adjustment, anatomical differentiation essence of different types of stem termination soybean varieties, variation law of stem termination development under different photoperiod treatments, effect of long day on the terminal raceme of soybean, regulation rules of AGAMOUS gene among different soybean varieties and under different photoperiod treatments were studied, which would provide theory base of plant type breeding of soybean especially improvement of podding-habits and cultivation and management of soybean.
     Varieties differentiation of different types of stem termination including Zhonghuang13、Zhonghuang24 and Fengjiao66-12 was studied through morphology and anatomy methods. The results were that determinate (Zhonghuang13 and Fengjiao66-12) and indeterminate (Zhonghuang24 ) soybeans usually produce flower buds, differentiation was that flower buds of determinate soybeans initiated more early than flower buds of indeterminate soybean. When raceme primordium of determinate soybeans had developed, the terminal floral primordium of indeterminate soybean began to produce, leaves of the terminal node was little, and the stem termination could not produce pods in short supply of nutrition. In the process of terminal raceme formation of different types of stem terminaion soybean, initiation time of raceme differetiation played essential fuction. As to determinate soybeans cv. Zhonghuang13 and Fengjiao66-12, there was significant difference in the length of raceme. The results were that long raceme soybean cv. Fengjiao66-12 initiated more early flower buds, and terminal raceme differentiated more rapidly than short raceme soybean cv. Zhonghuang13, which resulted increase of raceme length and flower number in short time. The main cause of different raceme length soybean varieties was determined by initiation time and rate of raceme differentiation.
     The cause of podding-habits soybean formation was affected not only internal genetic factors, but also external environmental factors. The above three soybean varieties were treated with short-day of 12 h and long-day of 16 h in whole growth period, the different photoperiod treatments changed development process, podding-habits, plant morphogeny, and agronomical characters of different types of stem termination. And by this method photoperiod-sensitive and photoperiod-insensitive soybeans were divided, which is an important meaning at the production and popularization of soybean varieties. the results were that duration from emergence to blooming and duration from emergence to earlier maturity of three soybean varieties were delayed with increase of time of exposure to long day. Through anatomy observation, initiation time of flower buds differentiation among three soybean varieties was more earlier under short day condition than under long day condition, at this point three soybean varieties was sensitive to photoperiod, but they could bloom and seeding under two photoperiod treatments, and had adaptability to different environment. By short-day hastening rate results were analyzed that the blooming time and maturity time of Zhonghuang13 was weaker sensitivity to photoperiod than other two varieties, plant height, node no. at stem, branches, pod no. at raceme, seed no. /plant, seed weight /plant of Zhonghuang13 at maturity were insensitive to photoperiod. Flower no. at raceme of Zhonghuang24 was insensitive to photoperiod, other agronomic traits were sensitive, whereas node no. at stem of Fengjiao66-12 was insensitive to photoperiod. In a word, most agronomic traits of Zhonghuang13 had insensitivity and stability to photoperiod, and Zhonghuang13 was extensive photoperiod adaptability soybean which could be planted at the area of multi-ecotype.
     To make photoperiod especially importance of long-day for growth and development of short-day crops clear, In the current study, a photoperiod-sensitive and late maturity determinate soybean cv. Zigongdongdou (Maturity Group IX), was used to investigate photoperiod effects on the development of terminal inflorescence (raceme) of soybean, plant type and agronomic traits, with emphasis on the role of long-day in the formation of raceme. The plants were treated with short-day (SD) of 12h for 13 days to induce the initiation of terminal inflorescence, and then moved to 16h long-day treatment (LDT) for 0, 1, 2, 3, 4 and 5 weeks, respectively. After LDT, plants were returned to SD condition. Along with the increment of weeks of LDT, the blooming dates of soybean plants were progressively delayed, and the duration of terminal inflorescence differentiation were distinctly prolonged through anatomical observation, and the length of raceme increased. A positive linear correlation was found between weeks of LDT and the duration from emergence to beginning bloom, and the duration of the terminal inflorescence differentiation, and the length of raceme. In 2-5 wks LDT, inflorescence reversion and floral reversion happened and the rate of reversion increased, with the increment of weeks of LDT, reversion proportion of terminal raceme presented the gradual increment trend, and plant type varied with change of terminal raceme, and agronomic traits tended to increase under long-day condition. The results of the present study indicated that effects of long day on inflorescence development of soybean was acculmulative. In a way, long-day is beneficial for development and yield formation of short-day crop.
     Function and regulation rule of related genes in the process of stem termination of soybean was unclear at present, by making use of AG cloned by our lab we researched AG expression during the developmental period of soybean stem termination primarily. GmAG is one of AG subfamilies among MADS-box gene family, whose identity is 78% to amino acid sequence of STK (AGL11) by analyzing DNAMAN software. Space-time change of GmAG expression at the stem termination was studied by RT-PCR and RNA in situ hybridization. The results were that GmAG was observed a little at the stem termination and trifoliate leaves primordium in the early growth period, and intensity of GmAG expression increased at the inflorescence meristem and floral primordium, it showed that GmAG played a role in determining traits of inflorescence meristem. With differentiation of floral primordium, GmAG was observed in the carpel and stamen, and GmAG expression was strong in the ovule. It indicated that GmAG is an important function for carple and stamen formation and ovule development as flower organ genes C and D. Different photoperiod treatments effected GmAG expression in some extent, but differentiation was not significant. That intensity of GmAG expression increased for photoperiod-sensitive stem termination under SD condition suggested GmAG accelerated flowering of some soybean. And GmAG was observed a little at reversed shoot tips, which indicated GmAG had a characteristic of transition from shoot apical termination to floral meristems. So, GmAG played a important role in improving floral primordium differentiation, carple and stamen formation and ovule development, and photoperiod signals caused GmAG change in some extent, but detail explanation about the reason of phenomemon need to study further.
引文
蔡可,唐锡华. 1965.植物由生殖生长逆转到营养生长的研究.植物生理学报,2 (4):375~384
    曹大铭. 1982.大豆结荚习性的研究——不同结荚习性大豆的主要区别与识别.作物学报,8: 81~96
    常汝镇. 1990.中国大豆遗传资源的分析研究Ⅲ.大豆生育习性和结荚习性分布特点. 中国种业,(2):1~2
    陈怡,翁秀英. 1986.大豆不同结荚习性品种间杂交后代结荚习性的分离规律及产量性状的遗传力分析.大豆科学,5(2):139~146
    董钻. 1997.关于大豆株型和株型育种的几个问题.大豆通报,(2):1~2
    董钻. 2000.大豆产量生理.北京:中国农业出版社
    杜维广,张桂茹,满为群,栾晓燕,陈怡,谷秀芝,赵政文.1994.光周期对春夏大豆品种生育阶段的影响.大豆科学,13(2): 133~138
    傅永福,孟繁静. 1997.植物成花转变过程的基因调控.植物生理学通讯,33(5):393~400
    盖钧镒. 1984.有限与无限习性夏大豆开花结荚特性的研究.南京农学院学报,4:6~18
    盖钧镒. 1990.大豆高产理想型群体生理基础探讨.南京:江苏科学技术出版社,3~12
    郭世昌. 1959.大豆结荚习性的生态型及其在品种工作上的重要性.农业学报, 10:197~203
    韩天富,盖钧镒,王金陵,周东兴. 1998.大豆开花逆转现象的发现.作物学报,24: 168~171
    韩天富,王金陵,范彬彬,姚文秋,杨庆凯. 1996.开花后光照长度对大豆农艺性状的影响.应用生态学报,7(2): 169~173
    韩天富,王金陵,邹继军,杨庆凯,陈霞. 1995.大豆开花后阶段对开花前不同光照处理的反应.大豆科学,14(4): 284~289
    韩天富,王金陵. 1995.大豆开花后光周期反应的研究.植物学报,37(11):863~869
    姜德峰,张伟,徐锐亭,梁凤美,孙贤明. 2004.不同株型高产大豆的生长特性研究.莱阳农学院学报,21 (4):288~292
    蒋青,李扬汉. 1990.有限性和无限性大豆的解剖初探.大豆科学,9: 213~219
    李晓梅,吴存祥,马启彬,张胜,李春林,张新英,韩天富.2005.大豆品种自贡冬豆花芽分化及开花逆转过程的形态解剖学研究.作物学报,31(11):1437~1442
    栾晓燕,满为群,杜维广,陈怡,刘鑫磊. 2004.大豆光钝感种质创新与光周期育种途径的研究.大豆科学, 23(3): 196~199
    麻浩,田森林,李乐农,李大恒. 1996.大豆高产理想株型的构成.湖南农业大学学报, 22(3):309~314
    宋立平,赵九洲. 1994.浅谈大豆理想株型育种.大豆科学, 13(4):15~16
    宋书宏,董钻. 2002.不同大豆品种开花结荚习性比较.中国农业科学, 35 (11):1420~1423
    田朝霞. 2002.豆科中TCP domain基因功能的研究以及百脉根kw突变体的遗传分析.中国科学院研究生院(上海生命科学研究院)
    田佩占. 1975.大豆育种的结荚习性问题.遗传学报,(2):337~343
    王金陵. 1966.大豆.北京:科学普及出版社
    王金陵. 1991.大豆生态类型.北京:农业出版社,55~60
    王金陵. 1996.东北地区大豆株型的演变.大豆通报,(1):5~71
    吴存祥,韩天富. 2002.植物开花逆转研究进展.植物学通报, 19 (5):523~529
    吴存祥,刘金,李兴宗,苗以农,杨华,韩天富.2004.扁茎大豆的花序形态受光周期调控.中国油料作物学报,26(1):36~41
    吴存祥. 2000.大豆开花逆转现象的研究.东北农业大学硕士学位论文
    吴宗璞,高凤兰,康宗宝. 1988.大豆超早熟育种问题的研究.东北农学院学报,19(2): 127-134
    张剑,徐桂霞,薛皓月,胡瑾.2007.植物进化发育生物学的形成与研究进展.植物学通报,24(1):1~30
    张振桢,许煜泉,黄海.2006.拟南芥——一把打开植物生命奥秘大门的钥匙.生命科学,18(5):443~446
    周勋波,吴海燕,姜德锋,王海英,谢甫绨. 2004.不同结荚习性大豆株型特征与产量表现.中国油料作物学报,26(2):61~64
    周勋波,吴海燕. 2002.关于大豆理想株型的探讨.大豆通报,(5):4~5
    朱之垠. 1983.大豆器官的形态建成.大豆科学,1(2):31~37
    祝其昌. 1984.大豆结荚习性的研究.大豆科学,3 (4) : 318~326
    Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S J, Burgeff C, Ditta G S, Vergara-Silva F, Yanofsky M F. 2000. MADSbox gene evolution beyond flowers: expression in pollen, endosperm, guard cell, and trichomes. Plant J, 24, 1~11
    Angenent G C, Colombo L. 1996. Molecular control of ovule development. Trends Plant Sci, (1): 228~232
    Angenent G C, Franken J, Busscher M, van Dijken A, van Went J L, Dons H J M, van Tunen A J. 1995. A novel class of MADS-box genes is involved in ovule development in Petunia. Plant Cell, (7): 1569~1582
    Bao X, Franks R G, Levin J Z, Liu Z. 2004. Repression of AGAMOUS by BELLRINGER in Floral and Inflorescence Meristems. The Plant Cell, 16: 1478~1489
    Barton M K, Poethig R S. 1993. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development, 119: 823~831
    Battaglia R, Brambilla V, Colombo L, Stuitje A R, Kater M M. 2006. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alcgene-expression system. Mech. Dev, 123(4): 267~276
    Battey N H, Lyndon R F. 1990. Reversion of flowering. Botanical Review, 56: 162~189
    Battey N H, Tooke F. 2002. Molecular control and variation in the floral transition. Current
    Opinion in Plant Biology, 5: 62~68 Baurle I, Laux T. 2005. Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. The Plant Cell, 17: 2271~2280
    Becker A, Theissen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol, 29: 464~489
    Benedito V A, Visser P B, van Tuyl J M, Angenent G C, de Vries S C, Krens F A. 2004. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. J. Exp. Bot, 55: 1391~1399
    Bernard R L. 1972. Two genes affecting stem term ination in soybean. Crop Sci, 12: 235~239 Bernier G. 1988. The control of floral evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol, 39: 175~219
    Bertrand C, Bergounioux C, Domenichini S, Delarue M, Zhou D X. 2003. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/ AGAMOUS pathway. Journal of Biological Chemistry, 278: 8246~28251
    Blazquez M A, Green R, Nilsson O, Sussman M R, Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell, 10: 791~800
    Blazquez M, Soowal L, Lee I, Weigel D. 1997. LEAFY expression and flower initiation in Arabidopsis. Development, 124(19): 3835~3844
    Borthwick H A, Parker M W. 1938. Effectiveness of photoperiodic treatments of plants of different age. Bot Gaz, 100: 245~249
    Borthwick H A, Parker M W. 1938. Influence of photoperiods upon the differentiation of meristem and the blossoming of Biloxi soybeans. Bot. Gaz., 99: 825~839
    Borthwick H A, Parker M W. 1939. Photoperiodic response of several varieties of soybeans. Bot Gaz, 101: 341~365
    Bowman J L, Drews G N, Meyerowitz E M. 1991. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell, 3, 749~758
    Bowman J L, Eshed Y Y. 2000. Formation and maintenance of the shoot apical meristem. Trends in Plants Science, 5 (3): 110~115
    Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E. 1996. Control of inflorescence architecture in Antirrhinum. Nature, 379: 791~797
    Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. 1997. Inflorescence commitment and architecture in Arabidopsis. Science, 275:80~83
    Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289: 617~619Byth D E. 1968. Comparative photoperiodic responses for several soya bean varieties of tropical and temperate origin. Aust J Agric Res, 19: 879~890
    Cacharrón J, Saedler H, Thei?en G. 1999. Expression of MADS box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and the lower floret of each spikelet. Development Genes and Evolution, 209, 411~420
    Carlson J B, Lersten N R, 1987. Reproductive Morphology. In: Wilcox, J.R. (ed.), Soybean: Improvement, Production and Uses (2nd edition). American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc. Publishers. Madison, Wisconsin, USA, 95~134
    Carr D J. 1955. On the nature of photoperiod induction. III. The summation of the effects of inductive photoperiodic cycles. Physiol. Plant. 8, 512~526
    Chiurugwi T, Pouteau S, Nicholls D, Tooke F, Ordidge M, Battey N. 2007. Floral meristem indeterminacy depends on flower position and is facilitated by acarpellate gynoecium development in Impatiens balsamina. New Phytologist, 173: 79~90
    Coen E S, Meyerowitz E M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature, 353: 31~37
    Coen E S, Nugent J M. 1994. Evolution of flowers and inflorescences. Development, (Suppl),107~116
    Coen E S, Romero J M, Doyle S, Elliott R., Murphy G, Carpenter R. 1990. Floricaula: A homeotic gene required for flower development in Antirrhinum majus. Cell, 63: 1311~1322
    Colombo L, Franken J, Koetje E, van Went J, Dons H J M, Angenent G C, van Tunen A J. 1995. The petunia MADSbox gene FBP11 determines ovule identity. Plant Cell, 7: 1859~1868
    Criswell J G and Hume D J. 1972. Variation in sensitivity to photoperiod among early maturing soybean strains. Crop Sci, 12: 657~660
    Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z. 1999. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J, 18: 4023~4034
    de Bodt S, Raes J, Florquin K, Rombauts S, Rouze P, Thei?en G, van de Peer Y. 2003. Genome-wide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol, 56: 573~586
    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol, 14: 1935~1940
    Durfee T, Roe J L, Allen Sessions R., Inouye C, Serikawa K, Feldmann K A, Weige D, Zambryski P C. 2003. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. PNAS, 100 (14): 8571~8576
    Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T. 1996. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristemsand acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 10: 967~979
    Fehr W R, Caviness C E. 1977. Stages of Soybean Development. Agric. and Home Economics Exp. Stn. Spec. Rep. 80, Iowa State Univ., Ames, IA, USA
    Ferrario S, Shchennikova A V, Franken J, Immink R G H, Angenent G C. 2006. Control of floral meristem determinacy in Petunia by MADS-box transcription factors. Plant Physiology, 140: 890~898
    Fiers M, Golemiec E, van der Schors R, van der Geest L, Li K W, Stiekema W J, Liu C M. 2006. The CLV3/ESR motif of CLV3 is functionally independent from the nonconserved flanking sequences. Plant Physiol, 141,1284~1292
    Finnegan E J, Genger R K, Kovac K, Peacock W J, Dennis E S. 1998. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA, 95: 5824~5829
    Finnegan E J, Peacock W J, Dennis E S. 1996. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA, 93: 8449~8454
    Flanagan C A, Ma H. 1994. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol, 26: 581~595
    Foucher F, J Morin, Courtiade J, Cadioux S, Ellis N, Banfield M J, Rameau C. 2003. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell, 15: 2742~2754
    Gallois J L, Nora F R, Mizukami Y, Sablowski R. 2004. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes and Development, 18: 375~380
    Gallois J L, Woodward C, Reddy G V, Sablowski R. 2002. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 129: 3207~3217
    Garner W W, Allard H A. 1923. Further studies in photoperiodism, the response of the plant to relative length of day and night . J Agric Res, 23 : 871~920
    Gómez-Mena C, de Folter S, Costa M M R, Angenent G C, Sablowski R. 2005. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 132: 429~438
    Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E M, Coupland G. 1997. A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 386: 44~51
    Guard A T. 1931. Development of floral organs of the soybean. Bot Gaz , 91: 97~102
    Guo H, Yang H, Mockder T C, Lin C. 1998. Regulation of flowering time by Arabidopsis photoreceptors. Science, 279:1360~1363
    Han T, Wu C, Tong Z, Mentreddy R S, Tan K, Gai J. 2006. Postflowering photoperiod regulates vegetative growth and reproductive development of soybean. Environ. Exp. Bot. 55, 120-129
    Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N. 1997. UNIFOLIATA regulates leaf and flower orphogenesis in pea. Current Biology, 7: 581~587
    Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O. 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science, 309: 1694~1696
    Huijser P, Klein J, Lonnig W E, Meijer H, Saedler H, Sommer H. 1992. Bractomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene SQUAMOSA in Antirrhinum majus. EMBO J, 11: 1239~1249
    Irish V F. 2003. The evolution of floral homeotic gene function. Bioessays, 25: 637~646
    Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann J L, Meyerowitz E M. 2004. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 430 (15) :356~360
    Jack T, Brockman L L, Meyerowitz E M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADSbox and is expressed in petals and stamens. Cell, 68: 683~697
    Jack T. 2004. Molecular and genetic mechanisms of floral control. The Plant Cell, 16: 1~17
    Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu L, Phillips A, Hedden P, Tsiantis M. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology, 15: 1560~1565
    Jofuku K D, den Boer B G, Montagu M V, Okamuro J K. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 6: 1211~1225
    Johnson H W, Borthwick H A, Leffel R C. 1960. Effect of photoperiod and time of planting on rates of development of the soybean in various stages of the life cycle. Bot. Gaz, 122: 77~95
    Kang H G, Noh Y S, Chung Y Y, Costa M A, An K, An G. 1995. Phenotypic alteration of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Molecular Biology, 29:1~10
    Kantolic A G, Slafer G A. 2001. Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars. Field Crops Res, 72: 109~118
    Kantolic A G, Slafer G A. 2007. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann. Bot., 99: 925~933
    Kaufmann K, Melzer R, Theissen G. 2005. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Genes, 347: 183~198
    Kelly A J, Bommlamder M B, Meeks-Wagner D R. 1995. NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristem. Plant Cell, 7: 225~234
    Kempin S A, Savidge B, Yanofsky M F. 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522~525
    Kerstetter R A, Hake S. 1997. Shoot meristem formation in vegetative development. The PlantCell, 9: 1001~1010
    Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, Laux T, Davies B. 2006. Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. The Plant Cell, 18: 560~573
    Kotoda N, Wada M. 2005. MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Science, 168: 95~104
    Kramer E M, Jaramillo M A, di Stilio V S. 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms. Genetics, 166: 1011~1023
    Krizek B A, Fletcher J C. 2005. Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics, 6: 688~698
    Kwon C S, Chen C, Wagner D. 2005. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes and Development, 19: 992~1003
    Kyozuka J A. 1999. In : Shimamo to K. Molecular Biology of Rice[M]. Tokyo: Spring-verlag, 101~117
    Kyozuka J, Konishi S, Nemoto K, Izawa T. 1998. Shimamoto K. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation PNAS, 95(5): 1979 ~1982
    Lamb R S, Irish V F. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci USA100: 6558~6563
    Laux T, Mayer K F, Berger J, Jurgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122: 87~96
    Leibfried A, To J P C, Busch W, Stehling S, Kehle A, Demar M, Kieber J J, Lohmann J U. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438: 1172~1175
    Lenhard M, Bohnert A, Jurgens G, Laux T. 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell, 105: 805~814
    Lenhard M, Jurgens G, Laux T. 2002. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development, 129: 3195~3206 Liljegren S J, Gustafson-Brown C, Pinyopich A, Ditta G S, Yanofsky M F. 1999. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 11: 1007~1018
    Long J A, Barton M K, Long J A, Barton M K. 1998. The development of apical embryonic pattern in Arabidopsis. Development, 125: 3027~3035
    Lu Z X, Wu M, Loh C S, Yeong C Y, Goh C J. 1993. Nucleotide sequence of a flower-specific MADS-box cDNA clone from orchid. Plant Mol Biol, 3: 901~904
    Ma H, Yanofsky M F, Meyerowitz E M. 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev, 5: 484~495
    Malcomber S T, Kellogg E A.2005. SEPALLATA gene diversification: brave new whorls. Trends Plant Sci, 10, 427~435
    Mandel M A, Bowman J L, Kempin S A, Ma H, Meyerowitz E M, Yanofsky M F. 1992. Manipulation of flower structure in transgenic tobacco. Cell, 71: 133~143
    Mandel M A, Yanofsky M F. 1998. The Arabidopsis AGL9 MADSbox gene is expressed in young flower primordial. Sex Plant Reprod, 11: 22~28
    Mayer K F, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95: 805-815
    Mena M, Ambrose B A, Meeley R B, Briggs S P, Yanofsky M F, Schmidt R J. 1996. Diversification of C-function activity in maize flower development. Science, 274: 1537~1540
    Messenguy F, Dubois E. 2003. Role of MADS-box proteins and their cofactors in combinatorial control of gene expression and cell development. Genes, 316: 1~21
    Mizukami Y, Ma H. 1995. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Plant Molecular Biology, 28: 767~784
    Mizukami Y, Ma H. 1997. Determination of Arabidopsis floral meristem identity by AGAMOUS. The Plant Cell, 9: 393~408
    Nam J, Kim J, Lee S, An G, Ma H, Nei M. 2004. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci USA 101: 1910~1915
    Norman C, Runswick M, Pollock R, Treisman R. 1988. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 55: 989~1003
    Ordidge M, Chiurugwi T, Tooke F, Battey N H. 2005. LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. The Plant Journal, 44: 985~1000
    Parcy F, Bomblies K, Weigel D. 2002. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development, 129: 2519~2527
    Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. 2000. B and C foral organ identity functions require SEPALLATA MADS-box genes. Nature, 405: 200~203
    Pinyopich A, Ditta G S, Savidge B, Liljegren S J, Baumann E, Wisman E, Yanofsky M F. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424: 85~88
    Pnueli L, Hareven D, Rounsley S D, et al. 1994. Isolation of the tomato Agamous gene TAG1 and analysis of its homeotic role in transgenic plant. The Plant Cell, 6: 163 ~173
    Pouteau S, Nicholls D, Tooke F, Coen E, Battey N. 1997. The induction. and. maintenance offlowering in Impatiens. Development, 24:3343~3351
    Ratcliffe O J, Nadzan G C, Reuber T L, Riechmann J L. 2001. Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol, 126: 122~132
    Riechmann J L, Meyerowitz E M. 1998. The AP2/EREBP family of plant transcription factors. Biol Chem, 379: 633~646
    Rounsley S D, Ditta G S, Yanofsky M F. 1995. Diverse roles for MADS-box genes in Arabidopsis development. Plant Cell, 7: 1259~1269
    Ruiz-Garcia L, Madueno F, Wilkinson M, Haughn G, Salinas J, Martinez-Zapater JM. 1997. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. The Plant Cell, 9: 1921~1934
    Samach A,Kohalmi S E, Motte P, Datla R, Haughn G. 1997. Divergence of function and regulation of class B floral organ identity genes.Plant Cell, 9(4):559~570
    Schmidt R J, Ambrose B A. 1998. The blooming of grass flower development. Curr Opin Plant Biol, 1: 60~67
    Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G,Laux T. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100, 635~644
    Schultz E A, Haughn G W. 1991. Leafy, a homeotic gene that regulates inflorescence development in Arabidopsis. The Plant Cell, 3: 771~781
    Schwarz-Sommer Z, Hue I, Huijser P, Flor P J, Hansen R, Tetens F, L?nnig W E, Saedler H,
    Sommer H. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J, 11(1): 251~263
    Shore P, Sharrocks A D. 1995. The MADS-box family of transcription factors. Eur J Biochem, 229: 1~13
    Sieburth L E, Running M P, Meyerowitz E M. 1995. Genetic separation of third and fourth whorl functions of AGAMOUS. The Plant Cell, 7: 1249~1258
    Sommer H, Beltrán J P, Huijser P, Pape H, L?nnig W E, SaedlerH, Schwarz-Sommer Z 1990. Deficiens, a homeotic geneinvolved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J, 9: 605~613
    Souer E, van der Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R. 1998. Genetic Control of branching pattern and floral identiy during Petunia inflorescence development. Development, 125, 733~742
    Stellari G M, Jaramillo M A, Kramer E M. 2004. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol Biol Evol, 21, 506~519
    Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Munster T, Winter K U, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology, 42:115~149
    Theissen G, Ma H. 2006. Conservation and divergence in the AGAMOUS subfamily of MADS-Box genes: evidence of independent sub- and neofunctionalization events. Evol Dev, 8: 30~45
    Theissen G, Strater T, Fischer A, Saedler H. 1995. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene, 56: 155~166
    Theissen G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 4: 75~85
    Thomas B, Vince-Prue D. 1997. Photoperiodism in Plants. Academic Press, San Diego. pp. 63-84
    Thseng F S, Hosokawa K. 1972. Significance of growth habit in soybean breeding: Indeterminate varietal differences in characteristic of growth habit. Japanese Journal of Breeding, 22: 261~263
    Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE. 1999. The Arabidopsis CLV1 receptor-like kinase requires CLV3 for its assembly into a signaling complex that includes KAPP and Rho GTPase. Plant Cell, 11, 393-405
    Tsuchimoto S, van der Krol A R, Chua N H. 1993. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell, 5(8): 843~853
    Van Schaik P H, Probst A H. 1958. The inheritance of inflorescence type, peduncle length, flowers per node and percent flower shedding in soybeans. Agron. J., 59: 98~102
    Volbrecht E, Veit B, Sinha, N, Hake S. 1991. The developmental gene Knotted-1 is a member of a maize home obox gene family. Nature, 350: 241~243
    Wagner D, Sablowski R W, Meyerowitz E M. 1999. Transcriptional activation of APETALA1 by LEAFY. Science, 285: 582~584
    Wang Y Z. 2001. Reversion of floral development under adverse ecological conditions in Whytockia bijieensis (Gesneriaceae). Australian Journal of Botany, 49: 253~258
    Washburn C F, Thomas J F. 2000. Reversion of flowering in Glycine max (Fabaceae). American Journal of Botany, 87: 1425~1438
    Weigel D, Alvarez J, Smyth D R, Yanofsky M F, Meyerowitz E M. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell, 69: 843~859
    Weigel D, Meyerowitz E M. 1993. Activation of floral homeotic genes in Arabidopsis.Science, 261:17231~726
    Weigel D, Nilsson O. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature, 377:495~500
    Wellmer F, Riechmann J L, Alves-Ferreira M, Meyerowitz E M. 2004. Genome-Wide Analysis of Spatial Gene Expression in Arabidopsis Flowers. The Plant Cell, 16, 1314~1326
    Woodworth, C W. 1932. Genetics and breeding in improvement of soybean. University of Illinois Agric. Exp. Station Bull, 384: 297~404
    Wu C, Ma Q, Yam K M, Cheung M Y, Xu Y, Han T, Lam H M, Chong K. 2006. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta. 223, 725~735
    Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. 2005. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology, 15: 1566~1571
    Yang Y, Fanning L, Jack T. 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J, 33: 47~59
    Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldman K A, Meyerowitz E M. 1990. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature, 346: 35~39
    Zahn L M, Leebens-Mack J H, Arrington J M, Hu Y, Landherr L L, Depamphilis C W, Becker A, Theissen G, Ma H. 2006. Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol Dev, 8, 30~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700