面向显示基于MEMS光栅光调制器光学分析和实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
投影显示器件正向多元化方向发展,随着MEMS技术的成熟,使得面向显示基于MEMS的光调制器已成为世界各国研发的热点,其中部分产品已经进入市场,以其优异的性能成为带动下一代显示产业发展的一个重要分支。但国内对这类器件研究较晚,且受到国外专利限制,因此开发一种具有自主知识产权的面向显示基于MEMS技术的光调制器具有重要的科学意义和潜在的应用价值。
     本文在综述国内外面向显示基于MEMS光调制器的基础上,首次提出了基于MEMS的反射镜平动式光栅光调制器(RMGLM)和光栅平动式光调制器(GMLM)。对这两种调制器建立了理论模型,并利用标量衍射理论进行了光学分析和仿真;设计了器件的结构参数;结合协作单位的工艺平台,对关键参数进行了优化;讨论了加工误差对器件性能的影响;对光栅平动式光调制器进行了工艺研究和加工制作;提出了一种测量微小间距的非接触的波长扫描式光谱分析方法;同时进行了GMLM衍射实验和光学处理系统实验研究。具体研究内容如下:
     ①通过分析基于MEMS光调制器及其相关研究的现状,指出了目前基于MEMS光调制器存在的问题,提出了本论文的研究工作要点。
     ②分析了基于MEMS光栅光调制器显示系统,表明光栅光调制器的性能决定着显示系统的关键性能,是显示系统的核心器件。
     ③首次提出了反射镜平动式光栅光调制器的基本结构;利用标量衍射理论,分析了反射镜平动式光栅光调制器的光学原理。
     ④首次提出了光栅平动式光调制器的基本结构,GMLM主要依靠可动光栅和下反射镜之间的间距变化来实现光调制作用;建立光学模型,利用标量衍射理论进行了器件单象素和面阵结构的光学原理分析,理论分析与CoventorWare仿真结果一致;重点讨论了光栅平动式光调制器的几何参数、可动光栅和下反射面间距、加工误差等对对比度的影响。采用不等厚光栅边距、正方形电极、阶梯型电极、减薄悬臂梁,分别将可动光栅的有效光学面积由约50%提高至60%,70%,75%,85%。
     ⑤在4f系统中分析了GMLM单象素、GMLM面阵在物面、频谱面和像面的分布情况。分析表明:要得到高的对比度和图像占空比,结构上需满足可动光栅占空比为0.5和减小边框和悬臂梁的尺寸。
     ⑥确定GMLM的加工几何参数,单象素的面积为52×52μm~2。制作了4×4,2×16,16×16GMLM阵列测试样品。提出了采用非接触的波长扫描式光谱分析方法测量GMLM器件可动光栅上表面和下反射镜之间的微小距离,测试结果与采用
Projection display devices are undergoing a period of muti-development, and with the maturation of MEMS technology, which leads to MEMS-based light modulators for display applications has become one of the research focuses, such as Digital Micromirror Devices, Thin-film Micromirror Array and Grating Light Valve. DMD has entered into the market and as an important branch has promoted the next generation display industry for its merits. But domestic research on these devices is relatively lagged and restricted by international patents, so it is a great importance and potential value to develop a novel MEMS-based light modulator for display applications with independent intellectual property rights.
     In this paper, two MEMS-based grating light modulators (Reflector Moving Grating Light Modulator and Grating Moving Light Modulator) were proposed, after the review of literature about MEMS-based light modulators in domestic and abroad was summarized. Their theoretical models were developed and validated by scalar diffraction theory. Especially, the influence of structural parameters and manufacture error were in details analyzed and simulated. The 4×4, 2×16 and 16×16 Grating Moving Light Modulator(GMLM) arrays have been manufactured. A non-contact wavelength scanning spectrum analysis method was put forward to measure vertical distance. Diffraction and signal processing experiments were carried on. The main works of this paper are follows:
     ①After summarizing the review of literature about MEMS-based light modulator in domestic and abroad, novel MEMS-based light modulators were put forward.
     ②The display system of grating light modulator was analyzed, which indicates that the grating light modulator is the core part of display system.
     ③The structure of Reflector Moving Grating Light Modulator (RMGLM) was first introduced and optical principle using scalar diffraction theory was in details analyzed and simulated by Coventor software.
     ④The structure of Grating Moving Light Modulator was first put forward. Optical principle of single GMLM pixel and GMLM array, the relationship between important parameters and contrast ratio were analyzed and simulated. The manufacture error was discussed. The geometrical parameters of GMLM were achieved. The methods of using different thickness of grating margin, foursquare electrode, laddering
引文
[1] D. Senturia. Microsystem Design. Third Edition. London. Kluwer Academic Puberlishers. 2001.pp.530~558
    [2] 徐泰然著. 王晓浩等译. 第 1 版. 北京. 机械工业出版社. 2004. pp.1~29
    [3] 刘晓明, 朱钟淦著. 微机电系统设计与制造. 北京. 国防工业出版社. 2005. pp.1~11
    [4] W.Men, J.Mohr, O.Paul 著. 王春海,于杰译. 微系统技术. 北京. 化学工业出版社. 2003. pp.1~30
    [5] Gad~el~Hak, Mohamed. The MEMS handbook. London. CRC. 2002. pp.1~35
    [6] M. E. Motamedi. Micro~opto~electro~mechanical systems. Optical Engineering. 1994. Vol.33 (11). pp.3503~3517
    [7] 泽田廉士,羽根一博,日暮荣治著. 李元燮译. 微光机电系统,北京. 科学出版社. 2005. pp.1~17
    [8] 板生清,保坂宽,片桐祥雅著. 崔东印译. 光微机械电子学. 北京. 科学出版社.2002. pp.3~6
    [9] M. E. Motamedi, Ming C. Wu. Kristofer S. J. Pister. Micro~opto~electro~mechanical devices and on~chip optical processing. Optical Engineering. 1997. Vol.36 (5). pp.1282~1297
    [10] 西田信夫.大屏幕显示. 科学出版社. 2003 年 3 月. pp.1~15
    [11] 大石 严 田村 彻. 显示技术基础. 2003 年 4 月. pp.1~27
    [12] J.B. Sampsell. An overview of the digital micromirror device (DMD) and its application to projection displays. SID International Symposium Digest of Technical Papers. 1993. Vol. 24. pp.1012
    [13] M.R. Douglass and D. M. Kozuch, DMD Reliability Assessment for Large-Area Displays. Society for Information Display International Symposium Digest of Technical Papers, May 1995. Vol. 26. pp. 49-52
    [14] M.R. Douglass and C. Malemes. Reliability of Displays Using Digital Light Processing. SID ’96, San Diego, CA. May 1996
    [15] 赵学峰. 数字微镜装置的光机电控制系统研究. 硕士学位论文. 西安电子科技大学. 2000年
    [16] G. Hewlett,W. Werner. Analysis of Electronic Cinema Projection With the Texas Instruments Digital Micromirror Device? Display System. 137th SMPTE Technical Conference. Los Angeles. CA. September 6~9, 1995
    [17] G. Sextro, T. Ballew, and J. Iwai. High-Definition Projection System Using DMD Display Technology. SID 95 Digest. 1995. pp. 70~73
    [18] Sang-Gook Kim,Kyu-Ho Hwang, Jin Hwang,,Myung-kwon Koo and Geun-Woo Lee. Thin-film Micromirror Array(TMA)-A New Chip-based Display Device for the Large Screen Display. ASIA DISPLAY. 1998
    [19] Sang-Gook Kim,Kyu-Ho Hwang. Thin-film Micromirro Array(TMA) for information Display system. Euro Display’99 in Berlin. 1999
    [20] S. G. Kim,M. K. Koo. Design of a microactuator array against the coupled nature of microelectromechanical systems (MEMS) processes. Annals of CIRP. vol.49/1. 2000
    [21] Kyu-Ho Hwang, Myung-Kwon Koo, Sang-Gook Kim. High-brightness Projection Display Systems Based on the Thin-Film Actuated Mirror Array (TFAMA). Proc. of SPIE. Santa Clara. 1998. Vol. 3513. pp.171~180.
    [22] R. Apte, F. Sandejas, W. Banyai and D. Bloom,“Grating Light Valves for High Resolution Displays,” Solid State Sensors and Actuators Workshop. June 1994
    [23] David T. Amm,Robert W. Corrigan. Optical Performance of the Grating Light Valve Technology. Photonics West-Electronic Imaging ’99. Projection Displays V.
    [24] R. W. Corrigan,D.T. Amm,C.S. Gudeman. Grating Light Valve Technology for Projection Displays. International Display Workshop. Kobe,Japan. December 1998. pp.3~6
    [25] D. Bloom. The Grating Light Valve: Revolutionizing Display Technology. Projection Displays III Symposium. SPIE Proceedings Volume 3013. San Jose CA. February 1997
    [26] Robert Corrigan,Randy Cook,Olivier Favotte. Silicon Light MachinesTM – Grating Light ValveTM Technology Brief. MEMS Component Technology for Optical Networks. June 2001
    [27] Eiichi Tamakia,,Yoshimi Hashimoto. Computer-to-plate printing using the Grating Light ValveTM device. SPIE USE. Vol. 6 5348-8
    [28] Alexander Payne,Wilhelmus DeGroot,Robert Monteverde,David Amm. Enabling high data-rate imaging applications with Grating Light ValveTM technology. Photonics West 2004 - Micromachining and Microfabrication Symposium. January 2004
    [29] Trisnadi,Clinton B. Carlisle,Robert Monteverde. Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging. Photonics West 2004 - Micromachining and Microfabrication Symposium. January 2004
    [30] Peter F. Van Kessel, Larry J. Hornbeck and Michael R. Douglass. A MEMS-based Projection Display. Proc. of IEEE. 1998. pp. 1687~1704
    [31] Bloom, et al.. Method and apparatus for modulating a light beam. United States Patent: 5,311,360. May 10, 1994
    [32] Bloom, et al.. Deformable grating apparatus for modulating a light beam and including means for obviating stiction between grating elements and underlying substrate. United States Patent: 5,459,610. October 17, 1995
    [33] Bloom, et al.. Method of making a deformable grating apparatus for modulating a light beam and including means for obviating stiction between grating elements and underlying substrate. United States Patent: 5,677,783. October 14, 1997
    [34] Bloom, et al.. Flat diffraction grating light valve. United States Patent: 5,841,579. November 24, 1998
    [35] Bloom, et al.. Display device incorporating one-dimensional grating light-valve array. United States Patent: 5,982,553. November 9, 1999
    [36] Bloom. Electron gun activated grating light valve. United States Patent: 6,130,770 . October 10, 2000
    [37] Bloom, et al.. Method and apparatus for modulating an incident light beam for forming a two dimensional Image. United States Patent: 6,215,579. April 10, 2001
    [38] Alioshin, et al.. Optical device arrays with optimized image resolution. United States Patent: 6,728,023. April 27, 2004
    [39] Kowarz. Spatial light modulator with conformal grating device. United States Patent: 6,307,663. October 23, 2001
    [40] Kowarz , et al. High-contrast display system with scanned conformal grating device. United States Patent: 6,678,085. January 13, 2004
    [41] R. Noel Thomas, J.G., H. C. Nathanson and P. R. Malmberg. The Mirror-Matrix Tube: A Novel Light Valve for Projection Displays. Transactions on Electron Devices, Proc. of IEEE. 1975. Vol. ED-22 (9). pp.765~775
    [42] Petersen. K. E. Micromechanical Light Deflector Array. IBM Technical Disclosure Bulletin. 1977. Vol. 20 (1). pp. 355~356
    [43] KE Peterson. Silicon Torsional Scanning Mirror. IBM J. Res. Develop. 1980. Vol.24 (5). pp. 631~637.
    [44] K.E Peterson. Silicon as a Mechanical Material. Proc. of IEEE. 1982. Vol. 70 (5) .pp.420~457
    [45] LARRY J. HORNBECK. 128×128 Deformable Mirror Devices. IEEE TRANSACTIONS OF ELECTRON DEVICE. VOL. ED-30, NO.5. MAY 1983. pp.539~545
    [46] L.J. Hornbeck. 128 x 128 Deformable Mirror Devices. IEEE Trans. Electron Devices. 1983. No. ED-30. pp. 539~545,
    [47] D.R. Pape and L.J. Hornbeck. Characterization of the Deformable Mirror Device for optical information processing. Opt. Eng...1983. Vol. 22, No. 6, pp. 675~681
    [48] Hornbeck. Deformable mirror light modulator. United States Patent: 4,441,791. April 10, 1984
    [49] L.J. Hornbeck. Current Status of the Digital Micromirror Device (DMD) for Projection Display Applications. International Electron Devices Technical Digest. 1993. pp. 381~384
    [50] L.J. Hornbeck, Digital Light Processing: A new MEMS-based display technology. Technical Digest of the IEEJ 14th Sensor Symposium. 1996. pp. 297~304,
    [51] L.J. Hornbeck. Digital Light Processing and MEMS: Reflecting the digital display needs of the networked society. SPIE Europol Proceedings. 1996. Vol. 2783. pp.2~13
    [52] R.L. Knipe. Challenges of a Digital Micromirror Device: Modelling and Design. SPIE Europol Proceedings. 1996. Vol. 2783. pp. 135~145
    [53] L.J. Hornbeck, T.R. Howell, R.L. Knipe, and M.A. Mignardi. Digital Micromirror DeviceTM – Commercialization of a massively parallel MEMS technology. Microelectronic Systems 1997, DSC-Vol. 62, pp.3~8, ASME International Mechanical Engineering Congress and Exposition, 1997.
    [54] L.J. Hornbeck. Digital Light ProcessingTM for high brightness, high-resolution applications. Proc. SPIE, Vol. 3013. Projection Displays III. pp. 27~40 (1997 Contains a comprehensive set of DMD and DLP references)
    [55] Digital Light Processing World Wide Web site: http://www.ti.com/dlp.
    [56] S. G. Kim, K. H. Hwang, Y. J. Choi, Y. K. Min, and J. M. Bae. Micromachined Thin-Film Mirror Array for Reflective Light Modulation. Annals of the CIRP. 1997.Vol. 46,No. 1. pp.455~458
    [57] Kyu-Ho Hwang, Myung-Kwon Koo, and Sang-Gook Kim. High-brightness Projection Display Systems Based on the Thin-Film Actuated Mirror Array (TFAMA). Proc. Of SPIE. 1998. Vol.3513. pp.171~180
    [58] Sang-Gook Kim, Kyu-Ho Hwang, Jin Hwang, Myung-Kwon Koo, and Keun-Woo Lee. Actuated Mirror Array - A New Chip-based Display Device for the Large Screen Display. SID Asia Display '98. Seoul. 1998. pp.329~334,
    [59] O. Solgaard, F. S. A. Sandejas, and D. M. Bloom. A Deformable Grating Optical Modulator. Optics Letters. 1992. vol.17, No.9. pp:688
    [60] O. Solgaard. Integrated Semiconductor Light Modulators for Fiber-Optic and Display Application. Ph. D. Dissertation. Stanford University. 1992
    [61] D. T. Amm, R. W. Corrigan. Grating Light Valve? Technology: Update and Novel Applications. Society for Information Display Symposium.19 May, 1998 Anaheim, CA
    [62] R. W. Corrigan, D.T. Amm, and C.S. Gudeman, Grating Light Valve_ Technology for Projection Displays. the International Display Workshop. Kobe Japan. 9 Dec 1998
    [63] Larry J. Hornbeck .From Cathode Rays to Digital Micromirrors: A history of Electronic Projection Display. TI TECHNICAL JOURNAL. technology JULY–SEPTEMBER 1998
    [64] M. W .Kowarz, J. C. Brazas, J. G. Phalen. Conformal grating electromechanical system (GEMS) for high-speed digital light modulation. Micro~Electro~Mechanical~Systems. The Fifteenth IEEE International Conference. 2002. pp568~573
    [65] http://www.lightconnect.com/
    [66] http://www.qualcomm.com/qmt/technology/index.html
    [67] http://www.ims.fhg.de/
    [68] R. W. Corrigan, B. R. Lang, D.A. Lehoty, etc .An Alternative Architecture for High Performance Display. 141st SMPTE Technical Conference and Exhibition. 1999 New York, NY
    [69] 张洁,黄尚廉,付红桥,等.光栅光阀的光学特性分析和仿真.光学学报. 2005.25(11). pp.1452~1456
    [70] Kazuhiro Ohara,Adam Kunzman. VIDEO PROCESSING TECHNIQUE FOR MULTIMEDIA HDTV WITH DIGITAL MICRO-MIRROR ARRAY. IEEE Transactions on Consumer Elcctronics, Vol. 45, No. 3, AUGUST 1994
    [71] G.Sextro, T.Ballcw, J.Iwai. High Definition Projcction System using DMD Display Technology. Society for Information Display. SID9.5. May 199.5.
    [72] 伍艺. 基于 MEMS 光栅光调制器的机电特性及控制系统研究. 重庆大学硕士论文. 2006.pp.47~55
    [73] 黄尚廉,伍艺,张洁,张智海,付红桥,闫许.反射镜平动式光栅光调制器及阵列.200510020185.3,2005 年 1 月 13 日
    [74] 张洁,黄尚廉,闫许,伍艺,张志海.反射镜平动式光栅光调制器的光学特性分析.光子学报.2006,35(6).pp.824~827
    [75] Zhangjie, Huang Shanglian, Yan Xu, Han Lei, Wu Yi, Zhang Zhihai. The Influence of Support Structure Patten to the Flatness of Reflector Moving Grating Light Modulator. 1st IEEE~NEMS. January 18~21,2006
    [76] Stephen D. Mellin and Gregory P. Nordin. Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design. OPTICS EXPRESS 18. June 2001,Vol. 8, No. 13.pp.705~722
    [77] 吕乃光. 傅立叶光学. 机械工业出版社. 1988 年 6 月.pp.82~96
    [78] 黄尚廉,张智海,闫许,付红桥,张洁,伍艺. 光栅平动式光调制器及阵列. 200510020186.8, 2005
    [79] 闫许,黄尚廉,张洁,付红桥. 基于 MOMES 光栅平动式光调制器. 第十一届光电技术与系统会议. 2005. pp.795~799
    [80] Zhang zhihai, Huang shanglian, Huang shanglian, Wu yi, Yan xu, Fu Hong Qiao. Fabrication Improvement of Grating Light Modulator. Proc of IEEE, NEMS 2006
    [81] 张洁,黄尚廉,张智海,孙吉勇. 波长扫描方法测试光栅平动式光调制器的微间距. 传感技术学报.2006,19(5):1764~1767
    [82] Zhang, Jie,Fu, Hongqiao; Huang, Shanglian; Wu, Yi .Optical and electrodynamics analysis of a novel spatial light modulator. Progress in Biomedical Optics and Imaging ~ Proceedings of SPIE, v 5717, MOEMS/MOEMS Components and Their Applications II, 2005. pp.204~210
    [83] Jie Zhang,HongqiaoFu,Yong Zhu,Weimin Chen,Shanglian Huang. Theoretical Analysis of grating light valve. The Photonics Asia Conference on MOEMS/moems Technologies and Applications. SPIE vol5641.Beijing China, 2004. pp.283~288
    [84] Jie zhang, Hongqiao Fu, Shanglian Huang. A method of gaining higher diffractive efficiency of diffractive spatial light modulator. The 4th International Symposium on Microfactories. Shanghai China, 2004
    [85] 张洁 黄尚廉 闫许 等.光栅平动式光调制器结构参数的优化分析.光学学报. 2006,26(8). pp.1121~1126
    [86] 张洁,黄尚廉,闫许,张志海,伍艺.光栅平动式光调制器的光学特性分析和仿真.中国机械工程(增刊).2005 年.pp.218~220
    [87] 闫许 . 基于 MEMS 光栅平动式光调制器结构优化与实验 . 重庆大学硕士论文 . 2006.pp.50~55
    [88] K.E. Petersen. Dynamic micromechanics on silicon: Techniques and devices. IEEE Trans. Electron Devices, ED~25. 1978. pp.1241~1250
    [89] M. A. Michalicek, D. E. Sene and V. M. Bright. Advanced modeling of Micromirror. Proc. Inter. Conf. Integr. Micro/Nanotech. 1995. pp.214~229
    [90] Stephen D. Senturia 著. 刘泽文,王晓红,黄庆安等译. 北京:微系统设计. 电子工业出版社. 2004.11. pp.1~9
    [91] Adirak Kanchanaharuthai, Adisorn Tuantranont, “Feedback controller design with D stability silicon micromachined piston micromirrors,” IEEE ICIT’02., Bangkok, Thailand, 2002. pp.936~940
    [92] Yanxu, S. L. Huang, ZhangJie, Z. H. Zhang, H. Q. Fu. Electromechanical characteristics analysis and simulation of grating light modulator. Proc of SPIE, 20th International Commission for Optics. 2005. 0900-46
    [93] Peter M. Osterberg and Stephen D. senturia. M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromechanical Systems.1997. Vol.6(2). pp. 107~118
    [94] J. W. Shin, S. W. Chuang, et al. Design and fabrication of micromirror array supported by vertical springs. Sens. Actuators. A66. 1998. pp.144~149
    [95] Gary Keith Fedder. Simulation of Microelectromechanical Systems [Dissertation]. University of California, Berkeley. 1994. pp.76~109
    [96] Shigeo Ray Kubota. The Grating Light Valve Projector . Optics & Photonics News. September 2002. pp.50~53
    [97] Lars Yoder. The Digital Display Technology of the Future. INFOCOMM ’97 5-7 June 1997, Los Angeles, California USA.. pp.1~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700