相衬成像一阶相移信息提取方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X射线相衬成像(X-ray phase-contrast imaging)技术是X射线成像领域的最新研究方向之一,不同于传统的X射线成像技术,相衬成像利用X射线的相移信息来反映观测物内部的电子密度变化,从而揭示物体的内部结构。自90年至今,相衬成像技术已经发展了多种成像技术,其中,衍射增强成像(DEI)方法和光栅相衬成像方法现已成为目前相衬成像方法中的研究焦点之一。这两种方法分别通过完整晶体或光栅来测量X射线穿过物体后的一阶相移信息(也称为折射角信息),而如何精确地测量X射线的一阶相移信息则是这两种相衬成像方法的关键核心问题。本论文分别对这两种相衬成像方法的一阶相移信息提取方法进行深入的研究:
     在衍射增强成像的一阶相移信息提取方法的研究方面,首先,在北京同步辐射装置上衍射增强成像系统的基础上,应用Maksimenko提出的利用两幅DEI图像进行相移信息提取的非线性相位提取思路,研究了利用高斯函数表征摇摆曲线下的非线性提取(GEDEI)方法,提出了对DEI图像进行近似预处理的方法,并推导了相关的一阶相移信息近似提取公式。模拟和真实实验数据验证了GEDEI算法的有效性,并证明了GEDEI方法比几何光学近似方法能得到更好的一阶相移信息。其次,在利用多幅DEI图像进行相移信息提取方法方面,提出了多项式拟合(PCF)相移信息提取方法。PCF方法很好地避免了高斯曲线拟合(GCF)方法高计算复杂度,在计算速度上比GCF方法提高了10倍。
     在光栅相衬成像的一阶相移信息提取方法的研究方面,首先,介绍了本实验室所搭建的基于莫尔偏折法的光栅相衬成像系统的基本原理与系统构成,以及相应的相位步进测量方法。在此基础上,研究了正弦函数拟合(SCF)方法与多项式拟合(PCF)方法这两种算法,并实验验证了它们的有效性。其次,探讨了条纹扫描(FS)方法应用于基于摩尔偏折法的光栅相衬成像系统的可行性,获得了初步的结果,通过与SCF方法、PCF方法的性能比较,证实了这一方法的有效性。
Hard X-ray phase-contrast imaging is a newborn non-destructive testing and diagnostic technology in medicine, biology and materials science. In order to reveal the internal structure of objects, this technology is adopted to capture the X-ray phase-shift information to observe the electron density of objects. Theoretically, the transmitted beam will change along its direction of propagation slightly because of the refractive index’s gradients of the sample.
     In Diffraction Enhanced Imaging and Grating phase-contrast imaging technology .The key problem of these technologies is how to extract phase information which is expressed by refraction angle images from a series of original images measured in different position of the rocking curve (RC) or displacement curve.
     Study on the DEI technology and the modality of rocking curve, based on the extension method which is presented by Maksimenko, we provide the analytic formula of GEDEI in case of the rocking curve which can be fitted by Gaussian function approximately. Furthermore, in order to make the GEDEI formula can be solved in a nutshell, we present a predigest process on the DEI images. In the end, the extraction results on simulation data and columnar model proved that the GEDEI algorithm with a pretreatment approximation is accredited. And the extraction results of GEDEI are better than the GOA method.
     GCF method in DEI provides the most approximate refraction-angle values in exist methods, but it has a high computational complexity due to the nonlinear multiplex iterative process. So the enormous calculation time obviously limits the practical applications of GCF method. In order to speed up the computation time, this paper presented a theoretical and experimental study on polynomial curve fitting (PCF) method for refraction-angle extraction in DEI. In conclusion, PCF method can obtain most approximate refraction-angle values and its computational speed is 10 times faster than GCF method.
     Study on the traditional grating phase-contrast imaging technology based on the Talbot self-imaging principle in the third part of this paper, we introduce a new grating phase-contrast imaging system based on the Moirés deflection principle. Based on this system, we presented a theoretical and experimental study on the sine curve fitting (SCF) method and polynomial curve fitting (PCF) method for refraction-angle extraction in the experimental system. Then we tried to apply the fringe scan method to extract the refraction-angle in this new experimental system. In conclusion, the comparisons of PCF SCF and FS methods proved that the FS method is the fastest and the best exaction method for this moirés deflection-based grating phase-contrast imaging system.
引文
[1] Momose A. Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nuclear Instruments and Methods in Physics Research 1995, A352:622-628
    [2] Bravin A. Exploiting the X-ray refraction contrast with an analyser: the state of the art. J. Phys. D: Appl. Phys. 2003, 36:A24-A29
    [3] Karssemeijer N, Frieling J T and Hendriks J H. Spatial Resolution in Digital Mammography. Invest. Radiol. 1993, 28: 413-19
    [4] Pisano E, Johnston R, Chapman D, Geradts J, Iacocca M, Livasy C, Washburn D, et al. Human breast cancer specimens: diffraction- enhanced imaging with histologic correlationimproved conspicuity of lesion detail compared with digital radiography, Radiology 2000, 214:895-901
    [5] Chapman D, Pisano E, et al. Medical Applications of Diffraction Enhanced Imaging, Breast Disease. 1998, 10(3,4):197-207
    [6] Pisano E D, Johnston R E, Chapman D, et al. Human breast cancer speciments: Diffraction-enhanced imaging with histologic correlation-improved conspicuity of lesion detail compared with digital radiography. Radiology 2000, 214(3):895-901
    [7] Hasnah M, Oltulu O, Zhong Z, Chapman D. Application of absorption and refraction matching techniques for diffraction enhanced imaging. Review of scientific instruments 2002, 73(3):1657-1660
    [8] Hasnah M O, Zhong Z, Oltulu O, et al. Diffraction enhanced imaging contrast mechanisms in breast cancer specimens. Med. Phys. 2002, 29(10):2216-2221
    [9] Arfelli F, Rigon L, Menk R, Besch H. On the Possibility of Utilizing Scattering-based Contrast Agents in Combination with Diffraction Enhanced Imaging. Proceedings of SPIE 2003,5030:274-283
    [10] Pfeiffer F, Weitkamp T, Bunk O and David C. Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources. Nature physics, 2:258-261
    [11] Z.Huang, K.Kang et al, "Differential phase-contrast imaging experimental system based on moire deflectometry with incoherent X-rays," SORMA West 2008, Berkeley, California, USA, 2008
    [12] Bragg W L. X-rays and Crystals. Nature 1912, 90(2248):360-361
    [13] Jens Als-Nielsen, Des McMorrow, Elements of Modern X-ray Physics, Addison-Wesley publishing company INC , ISBN: 978-0-471-49858-2. Paperback. 336 pages. March 2001
    [14] Cullity B D. Elements of X-ray diffraction. Addison-Wesley publishing company INC. 1978,13
    [15]阿特伍德著.软X射线与极紫外辐射德原理和应用.北京:科学出版社. 2003
    [16]黄胜涛.固体X射线学(一).北京:高等教育出版社.1991
    [17] Authier A. theory of X-ray diffraction. Oxford university press. 2004
    [18] Momose A, et al. Phase-Contrast X-Ray Imaging Using an X-Ray Interferometer for Biological Imaging. ANALYTICAL SCIENCES 2001, 17:527-530
    [19] Michette A G and Buckley C J. X-ray science and technology. Institute of Physics publishing 1993, 10-12
    [20] Authier A. theory of X-ray diffraction. Oxford university press. 2004
    [21] Bonse U and Hart M. An X-ray interferometer. Appl. Phys. Lett. 1965, 6:155.
    [22] Bonse U and Hart M. An X-ray interferometer with Bragg case beam splitting and beam recombination. Z. Physik 1966, 194:1-17
    [23] Mayo S C, Miller P R, Wilkins S W, et al. Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging. Journal of Microscopy 2002,207:79-96
    [24] Mayo S C, Davis T J, Gureyev T E, et al. X-ray phase-contrast microscopy and microtomography. OPTICS EXPRESS 2003, 11(19):2289-2302
    [25] Hwu Y, et al. Coherence based contrast enhancement in x-ray radiography with a photoelectron microscope. Appl. Phys. Lett. 1999, 75(16):2377
    [26] Hwu Y et al. Collimation-enhanced micro-radiography in real-time. Nuclear Instruments and Methods in Physics Research, 2001, 467~468:1294-1300
    [27] Hwu Y et al. Using photoelectron emission microscopy with hard x-rays surface. Science 2001, 480:188~195
    [28] Hwu Y. Coherence-enhanced synchrotron radiology: simple theory and practical applications. J. Phys. D: Appl. Phys. 2002, 35:R105-R120
    [29] Hwu Y. Synchrotron microangiography with no contrast agent. Phys. Med. Biol. 2004, 49:501–508
    [30] Tsai W L, Hsu P C, Hwu Y, et al. Edge-enhanced radiology with broadband synchrotron X-rays. Nuclear Instruments and Methods in Physics Research B 2003, 199:436-440
    [31] Tsai W L, Hsu P C, Hwu Y, et al. Real-time observation of Zn electro-deposition with high-resolution microradiology. Nuclear Instruments and Methods in Physics Research B 2003, 199:451-456
    [32]黄万霞,田玉莲等.北京同步辐射装置上的位相衬度成像.物理学报. 2002,51(5):1040-1044
    [33]田玉莲,肖体乔,朱佩平,等.同步辐射X射线位相衬度成像-X射线位相衬度照相术.核技术.2004,27(6):417-421
    [34]姜庆军,肖湘生,刘士远,等.相干X线相衬成像的初步研究:离体大白鼠肝脏、肺脏成像实验.中国医学影像技术.2003,19(9):1116-1117
    [35]孙伟,李子荣,张念非,等.兔股骨头软骨缺损同步辐射X线相衬成像研究. 2004,20(3):368-370
    [36] Davis T J, Gao D, Gureyev T E, et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 1995, 373:595-597
    [37] Chen J Y, Bottjer D J, Davidson E H et al. Phosphatized polar lobe-forming embryos from the precambrian of southwest China. Science 2006, 312:1644-1646
    [38] Dilmanian F A, Zhong Z, et al. Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method. Phys. Med. Biol. 2000, 45:933-946
    [39] Zhu P P, Wang J Y, Yuan Q X, et al. Computed tomography algorithm based on diffraction-enhanced imaging setup. Applied physics letters 2005, 87: 264101
    [40] Huang Z F, Kang K J et al, Direct computed tomographic reconstruction for directional- derivative projections of computed tomography of diffraction enhanced imaging, Applied physics letters,2006,89,041124
    [41] Huang Z F, Kang J, Zhu PP et al. Strategy of extraction methods and reconstruction algorithms in computed tomography of diffraction enhanced imaging,Physics in medicine and biology ,2007 52:1-12
    [42] Huang Z F, Kang K J et al. Refraction-angle resolution of diffraction enhanced imaging, Physics in medicine and biology ,2006, 51:3031–3039
    [43] Huang Z F, Kang K J et al, Projection correction for the pixel-by-pixel basis in diffraction enhanced imaging. Journal of physics:D-Applied physics,2006,39:2925-2931
    [44]尹红霞,刘波,罗述谦,等.基于同步辐射光源的DEI技术在豚鼠耳蜗成像中的应用.自然科学进展,2006, 16(10): 1230-1237
    [45] David C, Nohamme B, Solak H H and Ziegler E. Differential x-ray phase contrast imaging using a shearing interferometer. Applied physics letters 2002, 81:3287
    [46] H.F. Talbot; Phil. Mag. 1836,9,401
    [47] Chapman D, Thomlinson W, Johnston R E, et al. Diffraction enhanced x-ray imaging. Phys. Med. Biol. 1997, 42:2015-2025.
    [48] Momose A, Kawamoto S, Koyama I et al. Demonstration of x-ray talbot interferometry. Jpn. J. Appl. Phys. 2003, 42:L866-868
    [49] Weikamp T, Diaz A, David C et al. X-ray phase imaging with a grating interferometer. Optics express 2005, 13:6296-6304
    [50] F.Pfeiffer, C.Kottle ,and O,Bunk, C.David ,Hard X-Ray phase tomography with low-brilliance sources,The American Physical Society,2007.4
    [51] C.Kottle , C.David ,F.Pfeiffer and O,Bunk,A two-directional approach for grating based differential phase contrast imaging using hard x-rays.Optics express 2007,Vol.15,No.3
    [52] Yoshihiro Takeda, Wataru Yashiro, Yoshio SUZUKI,Sadao AOKI,Tadashi HATTORI,and Atsushi MOMOSE, X-ray phase imaging with single phase grating, Japanese Journal of Applied Physics,2007,pp.L89-91
    [53]姜晓明,黎刚,陈志华,唐劲天.X射线衍射增强成像中的折射衬度.高能物理与核物理.2004,28(12):1282-1290
    [54]袁清习,田玉莲,朱佩平,等.用于大尺寸样品的同步辐射硬X射线衍射增强成像方法研究.核技术.2004,27(10):725-728
    [55] Dilmanian F A, Zhong Z, et al. Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method. Phys. Med. Biol. 2000, 45:933-946
    [56] Zachariasen W H. Theory of X-Ray Diffraction in Crystals. New York: Wiley 1945, ch 4
    [57] Zachariasen W H. The secondary extinction correction. Acta Crystllogr. 1963, 16:1139-44
    [58]黄志峰,衍射增强成像的香味信息提取方法和CT重建算法研究[博士论文],2006
    [59] Wernick M N, Wirjadi O, Chapman D, et al. Preliminary investigation of a multiple-image radiography method. Proc. Intl. Symp. Biomed. Imaging 2002:129-132
    [60] Wernick M N, Wirjadi O, Chapman D, et al. Multiple-image radiography, Physics in Medicine and Biology 2003, 48(23):3875-3895
    [61] Oltulu O, Zhong Z, Hasnah M, et al. Extraction of extinction, refraction and absorption properties in diffraction enhanced imaging. J. Phys. D: Appl. Phys. 2003, 36:2152-2156
    [62] Oltulu O. A unified approach to x-ray absorption-refraction-extinction contrast with diffraction-enhanced imaging [PHD dissertation], Illinois Institute of Technology, 2003
    [63] Pagot E, Cloetens P, Fiedler S, et al. A method to extract quantitative information in analyzer-based x-ray phase contrast imaging. APPLIED PHYSICS LETTERS 2003, 82(20):3421-342
    [64] Anton Maksimenko, Nonlinear extension of the x-ray diffraction enhanced imaging, J. Phys. D: Appl. Phys 90,154106(2007)
    [65]陈博,X射线相位衬度成像相关光学问题的研究[博士学位论文],2007
    [66] L. Liren. Talbot and lau effects on incident beams of arbitrary wavefront, and their use. J. Opt. Soc. Am. A, 28(21):4668{4678, 1989.
    [67] H.C. Rosu, J.P. Trevino, H. Cabrera, and J.S. Murguia. Talbot effect for dispersion in linear opticalˉbers. Arxiv preprint physics/0510067, 2005.
    [68]朱佩平,吴自玉,X射线相位衬度成像,物理,36卷第6期(2007)
    [69]范希智.利用杨氏双缝干涉讨论Talbot效应[J].光子学报, 2005, 34(4): 621-623.
    [70] Y. Takeda, W. Yashiro, Y. Suzuki, S. Aoki, T. Hattori, and A. Momose, X-ray phase imaging with single phase grating,Jpn. J. Appl. Phys. 46 (2007) L89-L91.
    [71] A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori,Phase tomography by X-ray Talbot interferometry for biological imaging, Jpn. J. Appl. Phys. 45 (2006) 5254
    [72] A. Momose, S. Kawamoto, I. Koyama, and Y. Suzuki,Phase Tomography Using an X-ray Talbot Interferometer,SPIE Proc. Vol. 5535 (2004) 352
    [73] P. Cloetens, J. P. Guigay, C. De Martino, J. Baruchel, and M. Schlenker, Fractional Talbot imaging of phase gratings with hard x rays, Optics Letters, Vol. 22, Issue 14, pp. 1059-1061
    [74] K. A. Stetson and W. R. Brohinsky, "Electrooptic holography and its application to hologram interferometry," Appl. Opt. 24, 3631- (1985)
    [75] O.Kafri and I.Glatt. The physics of moire metrology (Wiley, New York, 1990).
    [76] O.Kafri, Optics letters, 5, 555-557 (1980)
    [77] Ingal V N, Beliaevskaya E A, Brianskaya A P and Merkurieva R A Phase mammography-a new technique for breast investigation. Phys. Med. Biol. 1998, 43:2555-2567.
    [78] Bravin A, Fiedler S, Thomlinson W C. Very low dose mammography: new perspectives in Diffraction Enhanced Imaging (DEI) mammography. Proceedings of SPIE 2002, 4682:167-173
    [79] Snigirev A, Snigireva I, Kohn V, Kuznetsov S and Schelokov I. Rev. Sci. Instrum. 1995, 66:5486-5492
    [80] Snigirev A, Snigireva I, Kohn V, Kuznetsov S and Schelokov I. Rev. Sci. Instrum. 1995, 66:5486-5492
    [81] Cloetens P, et al. Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J. Appl. Phys. 1997, 81(9):1
    [82] Cloetens P, Ludwig W, Baruchel J, et al. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. App.Phys.Lett. 1999,75(19):2912-2914
    [83] Cloetens P. Quantitative phase contrast tomography using coherent synchrotron radiation. Proceedings of SPIE 2002,4503:82-91
    [84] Lagomarsino S, Cedola A, Cloetens P, et al. Phase contrast hard x-ray microscopy with submicron resolution. Appl. Phys. Lett. 1997, 71 (18):2557-2559
    [85] Mancini L, Reinier E, Cloetens P, et al. Investigation of structural defects and inhomogeneities in Al±Pd±Mn icosahedral quasicrystals by combined synchrotron X-ray topography and phase radiography. Philosophical Magazine. 1998, 78(5):1175-1194
    [86] Coindreau O, Vignoles G, Cloetens P. Direct 3D microscale imaging of carbon–carbon composites with computed holotomography. Nuc. Instrum. Meth. Phys. Res B. 2003, 200:308-314
    [87] Cloetens P, Barrett R, Baruchel J, et al. Phase objects in synchrotron radiation hard x-ray imaging. J. Phys. D: Appl. Phys. 1996, 29:133-146
    [88] Cloetens P, Ludwig W, Baruchel J, et al. Hard x-ray phase imaging using simple propagation of a coherent synchrotron radiation beam. J. Phys. D: Appl. Phys. 1999, 32:A145-A151
    [89] Wilkins S W, Gureyev T E, Gao D, et al. Phase-contrast imaging using polychromatic hard x-rays. Nature 1996, 384(28):335.
    [90] Pogany A, Gao D, and Wilkins S W. Contrast and resolution in imaging with a microfocus x-ray source. Rev. Sci. Instrum. 1997, 68:2774.
    [91] Paganin D, Myao S C, Gureyev T E, et al. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Journal of Microscopy 2001, 206:33-40
    [92] Gureyev T E, Mayo S, Wilkins S W, et al. Quantitative In-Line Phase-Contrast Imaging with Multienergy X Rays. Phys.Rev.Lett 2001, 86(25):5827-30
    [93] Gureyev T E, Wilkins S W. On X-ray phase retrieval from polychromatic images. Optics Communications 1998, 147:229-232
    [94] Gureyev T E. Composite techniques for phase retrieval in the Fresnel region. Optics Communications 2003, 220:4958
    [95] Jing C, Shensheng H. On X-ray phase imaging with a finite size source PROCEEDINGS OF SPIE 1999, 3863:119-123
    [96]程静,韩申生,邵雯雯,徐至展.部分相干X射线相位成像研究.光学学报.1999, 19(5):596-603
    [97] Zhu Hua-Feng, et al. Near-field X-ray phase contrast imaging and phase retrieval algorithm. Chinese Physics 2005, 14(04): 796-801
    [98] Hong Y, Pin-Pin Z, Shen-Sheng H, et al. In-Line Phase-Contrast Imaging Using Partially Coherent Hard X-Ray. Chin.Phys.Lett. 2003, 20(2):220-222
    [99]喻虹,朱频频,韩申生.部分相干X射线衍射相位成像与相位复原的模拟研究.光学学报.2003,23(4):390-397
    [100] Khelashvili G, Brankov J G, Chapman D, et al. A physical model of multiple-image radiography. Phys. Med. Biol. 2006,51:221–236
    [101] Muehleman C, Li J, Zhong Z, et al. Multiple-image radiography for human soft tissue. J. Anat. 2006,208:115-124
    [102] Wernick M N, Brankov J G, Chapman D, et al. A preliminary study of multiple-image computed tomography. Proc. of PROCEEDINGS OF SPIE 2004, 5535:369-379
    [103] Brankov J G, Wernick M N, Yang Y, et al. A computed tomography implementation of multiple-image radiography. Med. Phys. 2006,33(2):278-289
    [104] Rigon L, Besch H, Arfelli F, et al. A new DEI algorithm capable of investigating sub-pixel structures. J. Phys. D: Appl. Phys. 2003, 36:A107-A112
    [105] Nesterets Y I, Gureyev T E, Paganin D, Pavlov K M and Wilkins S W. Quantitative diffraction-enhanced x-ray imaging of weak objects. J. Phys. D: Appl. Phys. 2004, 37:1262-1274
    [106] Hasnah M O, Parham C and Pisano E D, et al. Mass density images from the diffraction enhanced imaging technique. Med. Phys. 2005, 32(2):549-552
    [107]朱佩平,王寯越,等.两块晶体衍射增强成像方法研究.物理学报.2005,54(1):58-66
    [108]高鸿奕,陈建文,谢红兰,等.X射线衍射增强相衬成像的实验结果.光学学报.2004,27(8):1151-1152
    [109]舒航,朱佩平,王寯越,等.衍射增强成像方法在计算机断层成像中的应用.物理学报.2006,55(3):1099-1105
    [110]潘琳,陈志华,黎刚,等.同步辐射相衬成像对组织形态结构及相关抗原表达的影响.核技术.2005,28(11):815-820
    [111]朱佩平,袁清习,黄万霞,等.衍射增强成像原理.物理学报.2006,55(3):1089-1097
    [112] David C. Interferometer for quantitative phase contrast imaging and tomography with an Incoherent polychromatic x-ray source. European Patent 1731099A1, 2006.12
    [113] Atsushi Momose, Shinya Kawamoto, Ichiro Koyama, Yoshio Suzuki. Phase Tomography Using an X-ray Talbot Interferometer. Proc. of SPIE Vol. 5535
    [114] Born, M. & Wolf, E. Principles of Optics 2nd edn. Pergamon, Oxford,1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700