偏凸—柱穗山羊草双二倍体SDAU18的细胞分子遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在小麦的近缘植物中,山羊草属(Aegilops L.)与小麦(Triticum L.)的亲缘关系最近,含有丰富的优良基因,在小麦的遗传改良中具有重要的利用价值。SDAU18是本实验室利用偏凸山羊草(Aegilops ventricosa, 2n = 28, DDNN)和柱穗山羊草(Aegilops cylindrica, 2n = 28, DDCC)杂交人工合成的新型双二倍体。本研究综合采用细胞遗传学、A-PAGE、SDS-PAGE、SSR、GISH和抗性接种鉴定等方法对其进行了鉴定;对SDAU18及其双亲与普通小麦的杂交亲和性、杂种F1的育性、SDAU18与普通小麦不同杂种世代的染色体及主要农艺性状的分离特点进行了分析;对从SDAU18与普通小麦杂交后代中选出的部分种质系进行了初步鉴定。获得以下主要研究结果:
     1.细胞学观察的结果表明,SDAU18的根尖细胞染色体数目变异范围为52-56,在多数染色体数目为56的SDAU18减数分裂中期I花粉母细胞(PMC MI)内可观察到28个二价体,在部分细胞中可观察到一定频率的单价体、三价体和四价体,平均染色体构型为2n = 56 = 3.21I + 19.78IIRing + 6.50IIRod + 0.01III + 0.04IVRing + 0.01IVRod;但在部分PMCs中出现了不同程度的染色体丢失现象。种子贮藏蛋白电泳分析发现,在SDAU18种子贮藏蛋白电泳图谱中,亲本偏凸山羊草和柱穗山羊草的多数特异带能够出现,SDAU18高分子量麦谷蛋白亚基图谱中既出现双亲的亚基谱带,也观察到新型亚基谱带。分别利用偏凸山羊草和柱穗山羊草基因组总DNA作探针,另一亲本基因组总DNA作封阻,对SDAU18根尖细胞制片进行染色体原位杂交,在SDAU18的56条染色体中分别有14条出现绿色杂交信号。上述结果证明,SDAU18是偏凸山羊草和柱穗山羊草的双二倍体。
     2. SSR标记分析结果表明,在SDAU18基因组中存在着广泛的遗传变异。利用定位在普通小麦染色体上的89对SDAU18进行扩增分析,在SSR引物扩增图谱中,除了双亲的特异谱带外,还观察到亲本谱带缺失和新型谱带。其中,柱穗山羊草缺失谱带的频率约为偏凸山羊草的2.4倍,这表明在SDAU18中,双亲遗传信息的丢失或基因的沉默可能不是随机的。这可能反映了双亲基因组在新合成的双二倍体SDAU18中存在着复杂的互作。
     3.对SDAU18及其双亲与普通小麦的杂交亲和性、杂种F1的育性调查结果表明,SDAU18与普通小麦的杂交亲和性以及它与普通小麦杂种F1的育性显著高于其双亲偏凸山羊草和柱穗山羊草。因此,SDAU18可以作为转移偏凸山羊草和柱穗山羊草优良遗传物质的桥梁材料,用于小麦遗传改良。
     4.抗病性鉴定结果表明,SDAU18对小麦白粉病和条锈病均表现高抗至免疫。对SDAU18和普通小麦不同自交和回交世代染色体和性状分离特点的研究结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,回交比自交能使后代的染色体数目更快趋近普通小麦的42条,至F5和BC3F1代,染色体数目为42的植株已分别达93.9%和92.0%。与自交世代相比,回交后代减数第一分裂中期花粉母细胞的染色体构型较为简单,回交次数过多不利于外源染色体与普通小麦染色体发生重组,一般应以回交2~3次为宜;随自交和回交世代的增进,杂种的育性提高,至F3和BC2F1代育性基本恢复正常,且较为稳定。在不同杂种世代可分离出具有矮杆、大穗、大粒、对白粉病、条锈病免疫或高抗和外观品质优良的变异类型,其中以F3和BC1F1代的变异类型最丰富。在通过杂交将偏凸山羊草和柱穗山羊草遗传物质导入普通小麦中SDAU18具有重要利用价值。
     5.运用形态学、细胞学和抗性接种鉴定相结合的方法,从烟农15与SDAU18杂交后代中选育出ZH-1、ZH-2、ZH-3、ZH-4等优良种质材料,并对其进行了初步鉴定,明确了它们的主要农艺性状和细胞学特点。在上述种质材料中,ZH-1的突出特点是“矮杆”,株高为35.5cm,染色体数目为2n=40-41,其形态学及细胞学特征尚不稳定。ZH-2的突出特点是“抗白粉病”,分小种鉴定结果表明,它对E09生理小种表现免疫,其细胞学及形态特征基本稳定。ZH-3和ZH-4的突出特点是“大穗多花”,二者在细胞学及形态学上基本稳定。
Among the related species of wheat, Aegilops L. is the closest relative, conferring many valuable genes for wheat, and is of great interest as potential resources of new genetic material to improve wheat. SDAU18, a novel amphiploid of Ae.ventricosa (2n=28, DDNN) with Ae.cylindrica (2n=28, DDCC), was identified by cytological analysis,A-PAGE, SDS-PAGE, SSR, GISH and inoculation assessment, and so on; The crossability and the F1 fertility of SDAU18, Ae.ventricosa and Ae.cylindrica with common wheat were compared, and the segregation of chromosomes and traits of hybrid generations derived from the cross between Triticum aestivum and SDAU18 was studied; Several new germplasms derived from the progenies of common wheat Yannong15 and SDAU18 were preliminarily characterized.The main results were as follows:
     1. The chromosome number of root tip cells ( RTCs ) of SDAU18 plants varied from 52 to 56. 28 bivalents were observed in most PMCs MI of SDAU18 with 56 chromosomes, meanwhile, a few univalents, multivalents also existed in some PMCs MI, and the average chromosome configuration was 2n = 56 = 3.21I + 19.78IIRing + 6.50IIRod + 0.01III + 0.04IVRing + 0.01IVRod. However, an abnormal cytology of chromosome loss occurred in partial PMCs MI of SDAU18 with 56 chromosomes. There were both Ae.ventricosa-specific bands and Ae.cylindrica-specific bands in the seed storage protein electrophoretogram of SDAU18, furthermore, SDAU18 had one novel HMW-GS not found in the parents and two novel ones not found in common wheats. By labeling the total genomic DNA of Ae.ventricosa and Ae.cylindrica as probes respectively, and using that of another parent as block, GISH of RTCs spread of SDAU18 was carried out. The green hybridization signal was observed in 14 chromosomes respectively, within 56 ones in RTCs of SDAU18. The results above suggested that SDAU18 was an amphiploid of Ae.ventricosa with Ae.cylindrica. and had very important significance in wheat breeding and genetic improvement.
     2. Extensive genomic changes in SDAU18 with 56 chromosomes were detected by microsatellite analysis using 89 pairs of primers of common wheat. The changes mainly involved loss of parental SSR fragments and gaining of novel ones. The frequency of losing parental fragments was much higher than that of gaining novel fragments. The percentage of sequence losing in Ae. cylindrica was about 2.4 times as high as in the Ae. ventricosa. The data above indicated that the parental SSR losing of SDAU18 was not random, and that complex interaction perhaps existed between parental genomes in SDAU18.
     3. The comparison of crossability and the hybrids F1 fertility of SDAU18, Ae.ventricosa and Ae.cylindrica with common wheat indicated that the crossability and the hybrids F1 fertility of SDAU18 with common wheat were significantly higher than that of its parents, Ae.ventricosa and Ae.cylindrica, with common wheat. Therefore, SDAU18 could be used as a bridge parent to transfer good genes from Ae.ventricosa or Ae.cylindrica or both into common wheat.
     4. Inoculation testing suggested that SDAU18 was highly resistant or immune to powdery mildew and stripe rusts. The analysis on segregation of chromosomes and traits of hybrid generations derived from the cross between Triticum aestivum and SDAU18 indicated that in higher generations of selfing and backcross, the chromosome number gradually decreased and eventually tended to 42, which was the same as common wheat. Backcrossing was able to fasten the process than selfing. In the F5 and BC3F1 generations, plants with 42 chromosomes were accounted for 93.9% and 92.0%, respectively. Chromosome configuration in PMCs MI was simpler in backcross generations than in selfing ones. Compared with the BC1F1 and BC2F1 generations, BC3F1 showed less diversity in chromosome configuration, indicating that excessive backcross resulted in less chromosomes recombination between SDAU18 and common wheat. Two or three rounds of backcross were feasible. With the increasing generation of selfing and backcross, fertility of the hybrid was improved till the stable status in F3 and BC2F1 generations. In various generations, variant plants with excellent traits were found, such as dwarf plant, huge spike, large grain, high resistance or immunity to powdery mildew and stripe rust, and good appearance of grain. In particular, the F3 and BC1F1 generations had the most variation types. SDAU18 was of important significance in transferring genetic materials from Aegilops ventricosa and Aegilops cylindrica to common wheats by using it as bridge parent to cross with common wheats.
     5. Morphological and cytogenetic methods were used to identify new germplasms ZH-1, ZH-2, ZH-3, ZH-4,and so on, which was derived from the progenies of Yannong15 and SDAU18.The main agronomic characters, chromosome number and the genetic stability of these new germplasms were determined.
     ZH-1, with the most distinguishing characteristics of“dwarf plant of 35.5 cm”, was morphologically and cytologically unstable, and the chromosome number of ZH-1 plants varied from 41 to 42.
     ZH-2, with the most prominent characteristics of“excellent resistance to powdery mildew”, was basically staible based on morphological and cytological data. Inoculation testing revealed that it was immune to the strain E09.
     The most outstanding trait of ZH-3 and ZH-4 was both“huge spike and multi-florets”.Morphologically and cytologically, they were both basically stable.
引文
[1] Murai K, Tsuqewaki K.具有山羊草属细胞质小麦的光周期敏感细胞质雄性不育性[J]。湖南农学院学报, 1995, 21(2): 208-212。
    [2]陈佩度。染色体分带和非整倍体技术在小麦细胞遗传学中的综合应用[D]。南京农业大学博士学位论文,1988,55-64。
    [3]陈佩度,周波,齐莉莉,刘大均。用分子原位杂交(GISH)鉴定小麦一簇毛麦双倍体、附加系、代换系和易位系[J].遗传学报,1995,22(5): 380-386。
    [4]陈孝,辛志勇,肖世和,林志珊,徐惠君,杜丽璞,钱幼婷。抗BYDV小麦—中间偃麦草易位系α—淀粉酶2同工酶的研究[J].作物学报,1998,24(1):16-20。
    [5]陈孝,张文翔,杜振华。抗旱丰产的核质杂种小麦NC的选育与利用[J].作物杂志,1992, (1): 11。
    [6]董树亭,周治国,王庆祥,张吉旺,段红平,黄义德。作物栽培学概论[M]。北京:中国农业出版社,2007,183。
    [7]董玉琛,郑殿升中国小麦遗传资源[M]。北京:中国农业出版社, 2000。
    [8]杜伟莉,张改生,刘宏伟,王军卫,王小利。粘类小麦雄性不育系研究进展[J]。陕西农业科学,2002, (4):16-20。
    [9]封德顺。体细胞杂种小麦与供体高冰草的高分子量麦谷蛋白亚基及其基因分析[D]。山东大学博士学位论文,2004,23-26。
    [10]付金锋,王凤宝,董立峰,赵英春。粗厚山羊草细胞质对普通小麦重要农艺性状的影响[J]。华北农学报,2003:18( 4 ):9-12。
    [11]傅大雄,阮仁武。KM型核质互作光、温敏雄性不育的发现与两系法杂交小麦的拓建。西南农业学报,1993,6(1): 117-118。
    [12]何蓓如,刘曙东,王竹林,严惠芳。半显性矮秆K型小麦雄性不育系的选育[J]。西北农业学报,1992,1(2): 15-18。
    [13]侯宁,刘春光,刘根齐,吴郁文,张翠兰,张炎。异源细胞质小麦的赤霉病抗性研究[J]。麦类作物学报,2003,23(1): 7~11。
    [14]侯宁,刘春光,刘根齐,吴郁文,张翠兰,张炎。粗厚山羊草细胞质对普通小麦耐盐性的遗传效应[J]。麦类作物学报,2004,24(2): 5~10。
    [15]侯宁,刘立科,刘建成,刘春光。异源细胞质小麦的抗旱性研究[J]。麦类作物学报, 2006,26(3): 140~145。
    [16]侯宁,吴郁文,刘春光,张翠兰,张炎。异源细胞质小麦耐盐性的研究[J]。遗传学报,2000,27(4):325-330。
    [17]蒋华仁,孔宪需。四倍体小麦人工新种—圆柱小麦[J]。中国农业科学,1988,21(3): 91-95。
    [18]蒋华仁,孔宪儒。小黑麦属一新种[J]。四川农业大学学报,1991,9(3):334—337。
    [19]焦健,高庆荣,张爱民,郝媛媛,王大伟,王霖,邱新民。不同小麦雄性不育类型光合、生理参数日变化的研究[J]。作物学报,2007, 33 (8): 1267– 1271。
    [20]金善宝。中国小麦学[M]。北京:中国农业出版社,1996。
    [21]李韬,张增艳,林志珊,陈孝,高珊,辛志勇。小麦抗白粉病新基因的AFLP和SSR标记及其染色体定位[J]。作物学报,2005,31(9): 1105-1109。
    [22]李传友,谢纬武,孙兰珍,王斌。普通小麦三种细胞质雄性不育系线粒体DNA的比较研究[J]。遗传学报,1995,22(4): 272一279。
    [23]李红霞,张改生,牛娜。粘类小麦雄性不育恢复基遗传分析及RAPD标记[J]。西北植物学报,2005,25(9): 1747—1750。
    [24]李立会,李秀全。小麦种质资源描述规程和数据标准[M]。北京:中国农业出版社,2006, 59–60。
    [25]李锁平,胡玉欣,刘孝峰,杜汪蕾。节节麦×大麦杂种胚再生植株的细胞遗传学研究[J]。遗传HEREDITAS (Beijing),1997,19(1): 19~22。
    [26]李振岐,麦类病害[M]。北京:中国农业出版社,1997,57-58。
    [27]刘保申,孙其信,高庆荣,孙兰珍,解超杰,李传友,倪中福,窦秉德,魏艳玲。K型小麦细胞质雄性不育系育性恢复基因的SSR分子标记分析[J]。中国农业科学,2002b,35(4): 354– 358。
    [28]刘春光,吴郁文,张翠兰,任树新,张炎。粗厚山羊草细胞质对普通小麦遗传效应的初步研究[J]。遗传学报,1997,24(3): 241-247。
    [29]刘曙东,宋喜悦,奚亚军,杨存义,何蓓如。D2型异源细胞质对普通小麦籽粒品质的影响[J]。西北农业大学学报,1998,26(2): 7-11。
    [30]刘文轩,陈佩度,刘大钧。利用荧光原位杂交技术检测导入普通小麦的大赖草染色质[J].遗传学报,1999,26(5):546-551。
    [31]陆文辉,林小虎,李兴锋,王黎明,陈寅初,王洪刚。抗条锈病小滨麦易位系的鉴定[J]。作物学报,2005,31(1):88-91。
    [32]牟秋焕,李鹏,石运庆,刘保申,高庆荣,孙兰珍。V型小麦细胞质雄性不育“三系”及杂交种线粒体DNA的比较研究[J]。中国农学通报,2006,22(5): 38-42。
    [33]亓增军。冬小麦种质“矮孟牛”的分子细胞遗传学研究[D]。南京农业大学博士学位论文,2000,52-55。
    [34]亓增军,刘大均,陈佩度,王苏玲,李斯深,李晴祺。冬小麦种质“矮孟牛”中新型小麦-黑麦复杂易位的遗传传递分析[J]。作物学报,2001,27(5): 582-590。
    [35]乔利仙,张改生,刘宏伟,王军卫,王小利。几类异质易恢复小麦雄性不育系杂种籽粒品质研究初报[J]。西北植物学报,1999,19(6): 59—62。
    [36]乔利仙,张改生,刘宏伟,王军卫,王小利。粘、易、偏和二角型小麦雄性不育系杂种籽粒品质的研究[J]。中国农业科学,2001,34(6): 587-591。
    [37]石永春,裴冬丽,李锁平。节节麦与黑麦间杂种F1胚再生植株及其双二倍体细胞遗传学分析[J]。河南大学学报(自然科学版),2005,35(1):58—61.
    [38]宋喜悦,胡银岗,奚亚军,马翎健,何蓓如。瓦维洛夫山羊草( Ae. variloviichem )细胞质对普通小麦的遗传效应[J]。宁夏农学院学报,2002b,23(1): 5-6, 23。
    [39]宋喜悦,刘曙东,朱列层,胡银岗,奚亚军,马翎健,徐洁,李宏斌,何蓓如。单芒山羊草与粘果山羊草胞质雄性不育系细胞质效应比较[J]。西北农业学报1999,8(3): 48~52。
    [40]宋喜悦,马翎健,胡银刚,奚亚军,刘曙东,何蓓如。D2型山羊草细胞质对普通小麦性状影响的研究[J]。西北农林科技大学学报(自然科学版),2001,29(6): 27-29。
    [41]宋喜悦,马翎健,胡银刚,奚亚军,刘曙东,何蓓如。五种山羊草细胞质对普通小麦几个主要性状的遗传效应[J]。麦类作物学报,2002a,22(2): 18~21。
    [42]宋迎辉,吴少方,王林海,田志强,詹克慧,姚燕。河南省小麦主要推广品种间的亲缘关系研究[J]。中国农学通报,2007,23(3): 181-184。
    [43]宿振起,张改生,牛娜。山羊草属不同细胞质对小麦籽粒蛋白含量及组分的影响研究[J]。西北植物学报,2005,25(6): 1132—1136。
    [44]孙兰珍,姚方印,李传友,李利斌,刘保申,高庆荣。小麦T、K、V型胞质不育系和杂种mtDNA的RAPD分析及育性相关片段的克隆[J]。作物学报,2001,27(2): 144-148。
    [45]唐顺学,李义文,梁辉,曲乐庆,白建荣,贾双娥,魏晓丽,李振声,贾旭,FriebeB。抗大麦黄矮病毒—中间偃麦草二体异代换系的选育和细胞、生化、分子生物学鉴定[J].植物学报,2000,42(9):952-956。
    [46]王江春,胡延吉,余松烈,王振林,刘爱峰,王洪刚。建国以来山东省小麦品种及其亲本的亲缘系数分析[J]。中国农业科学,2006,39(4): 664-672。
    [47]王黎明,林小虎,张平杰,张志雯,王玉海,赵逢涛,高居荣,李文才,李兴峰,王洪刚。小麦-中间偃麦草二体异代换系山农0095的选育及其鉴定[J]。中国农业科学,2005,38(10): 1958-1964。
    [48]王小利,张改生,刘宏伟,王军卫。1B/1R易位型小麦雄性不育系孤雌生殖性的细胞遗传学研究[J]。西北农业学报,2001,10(2): 56~59。
    [49]王小利,张改生,赵继新,李秀芳。二角型非1B/1R小麦CMS不育恢复体系的建立[J]。西北植物学报,2006,26(5): 893—899。
    [50]王玉海,鲍印广,郝元峰,袁园园,赵春华,王庆专,王洪刚。偏凸-柱穗山羊草双二倍体SDAU18的细胞分子遗传学鉴定[J]。分子细胞生物学报,2009,42(1): 11-19。
    [51]魏正平,刘树人,翟玉洁,王岩,刁雁翎,于天峰。K, Ven型小麦新型不育系在黑龙江的开发利用研究[J]。西北农业大学学报,1992,20(4): 95-97。
    [52]吴郁文,任树新,刘春光,侯宁,张翠兰,张炎。异源细胞质对小麦赤霉病抗性的效应[J]。科学通报,1998a,43(5): 510-514。
    [53]吴郁文,张翠兰,刘春光,任树新,张炎。异源细胞质小麦育种技术[J]。中国科学(C辑),1998b,28(1): 57-64。
    [54]肖建富,丁守仁。偏凸山羊草与硬粘小麦双二倍体杂种的形成及其遗传稳定性[J]。浙江农业大学学报,1998,24(2):179—184。
    [55]徐乃瑜,易自力,何瑞锋。小麦异源细胞质对主要病害抗性影响的初步研究[J]。作物学报,1991,17(5): 326-339。
    [56]徐乃瑜,易自力。核质杂种在小麦育种中利用的前景[J]。江苏农业科学(增刊)[J]。1989,1:101-103。
    [57]徐乃瑜。小麦属和山羊草属细胞质基因组的遗传分化[J]。遗传HEREDITAS,1987,9(6): 28- 32。
    [58]徐祖元,陈中义。无芒山羊草细胞质对小麦性状影响的研究。湖北农学院学报,1999,19(3): 205-208。
    [59]薛秀庄。染色体工程与小麦育种[M]。1993,石家庄:河北科技出版社。
    [60]颜济,杨俊良。小麦簇生物系统学:小麦—山羊草复合群[M]。北京:中国农业出版社,1999。
    [61]颜启传、黄亚军、徐湲夜视玫男÷蠛痛舐笾肿哟既艿鞍拙郾0纺旱缬?鉴定品种的标准程序[J]。种子,1989,6: 55-57。
    [62]杨宝军,窦全文,刘文轩,周波,陈佩度。普通小麦-大赖草易位系NAU601和NAU618的选育及双端二体测交分析[J]。遗传学报,2002,29(4): 350-54。
    [63]杨凯,朱志华,昌小平。粗山羊草的细胞质对小麦抗旱性的影响[J]。作物学报,1997, 23(1): 50-55。
    [64]杨天章,刘庆法,柴守诚,张改生。认型小麦雄性不育系应用问题研究I.细胞质效应和诱导单倍体问题[J]。陕西农业科学, 1990,(2): 1-3。
    [65]姚方印,孙兰珍,李传友,刘宝申,高庆荣。3种小麦细胞质雄性不育系及其杂种线粒体DNA的RFLP分析[J]。西北植物学报,2000,20(5): 707—714。
    [66]易自力,徐乃瑜。小麦异源细胞质遗传效应的比较研究[J]。应用与环境生物学报,2000a,6(4): 307~312。
    [67]易自力,徐乃瑜。不同山羊草细胞质效应的比较研究[J]。草业学报,2000b,9(1): 73-78。
    [68]易自力,徐乃瑜。小麦异源细胞质遗传特点的研究[J]。长沙水电师院学报,1990,5(2):225-231。
    [69]易自力,徐乃瑜。核质杂种小麦应用价值的初步研究[J]。长沙水电师院学报,1991a,6(1): 109-113。
    [70]易自力,徐乃瑜,杜启艳。异源细胞质对普通小麦花粉育性的影响[J]。长沙水电师院学报,1991b,6(2): 216-221。
    [71]于卓,云锦凤,马有志,辛志勇。加拿大披碱草×野大麦三倍体杂种染色体的分子原位杂交鉴定[J]。遗传学报,2004,31(7): 735~739。
    [72]余玲,董普辉,陈小燕,马翎健,宋喜悦,何蓓如。三种山羊草细胞质对普通小麦F1代穗部性状的效应[J]。麦类作物学报,2003,23(4): 40-42。
    [73]张超,徐如宏,思彬彬,任明见,张庆勤。用AFLP标记来自偏凸山羊草的抗条锈病新基因YrG775[J]。中国农业科学,2006,39(4): 673-678。
    [74]张改生,赵惠燕,吴兆苏,俞世蓉。偏、粘和易型非1B/1R小麦雄性不育系研究初报[J]。西北农业学报,1994,3(4): 7- 12。
    [75]张改生。单型小麦雄性不育系的育成及其育性恢复性能的初步研究[J]。科学通报,1992,(7): 641-645。
    [76]张连全。小麦异源六倍化过程及其在遗传育种中的应用[D]。四川农业大学博士论文,2007,87。
    [77]张玲丽,卢碧霞,马守才,张永杰。粗山羊草细胞质对普通小麦细胞核的遗传效应[J]。湖北农学院学报,2001,21(2):108-111。
    [78]张玲丽,宋喜悦。粗厚山羊草细胞质对普通小麦的效应研究[J]。西北农业学报,2003, 12(3): 45-46。
    [79]张玲丽,赵凤霞,许爱兰。牡山羊草(Ae. jevenalis)细胞质对普通小麦的效应研究[J]。西北农业学报,2002,11(4): 19-21。
    [80]张庆利,刘艳华,李涛,高居荣,王洪刚。小麦抗白粉病基因Pm23的RAPD标记[J]。西北植物学报,2003,23(11):1882-1888。
    [81]赵昌平,张立平,李云伏,马荣才,单福华,张风廷,叶志杰,秦娜。小麦光温敏雄性不育相关基因的DDRT- PCR分析及功能预测[J]。中国生物化学与分子生物学报,2007,23 (1): 56~62。
    [82]赵春华,崔法,鲍印广,宗浩,王玉海,王庆专,王洪刚。冬小麦种质矮孟牛及其衍生后代1BL/1RS的分子和生化鉴定[J]。分子植物育种,2009,7(2): 307-311。
    [83]钟冠昌,穆素梅,张正斌。麦类远缘杂交[M]。北京:科学出版社,2002,6; 8-9。
    [84]周荣华,贾继增。用基因组原位杂交技术检测小麦一新麦草杂交后代[J]。中国科学(C辑),1997,27(6): 543-549。
    [85]朱列层,马翎建,宋喜悦,奚亚军,胡银岗,刘曙东,杨存义,何蓓如。单芒与粘果山羊草细胞质小麦雄性不育系比较,II.农艺性状效应[J]。西北农业大学学报,1999,27(1): 6-9。
    [86] Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Aingh H, Friebe B, Gill BS, Dhaliwal HS. PhI-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae.geniculata to bread wheat[J]. Euphytica, 2002, 127: 377-382.
    [87] Alberto C, Renato D’O, Antonio TO, Carla C, Marna P, Enrico P. Genetic analysis of the Aegilops Longissima 3S chromosome carrying the Pm13 resistance gene[J]. Euphytica, 2003, 130: 177-183.
    [88] Allaby RG, Banerjee M, and Brown TA. Evolution of the high molecular weight gluteninloci of the A, B, D and G genomes of wheat [J]. Genome, 1999, 42: 296-307.
    [89] Anikster Y, Manisterski J, Long DL, Leonard KJ. Resistance to leaf rust, stripe rust, and stem rust in Aegilops spp. In Israel[J]. Plant Disease, 2005, 89(3): 303-308.
    [90] Assefa S, Fehrmann H. Evaluation of Aegilops tauschii Coss. for resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat[J]. Genetic Resources and Crop Evolution, 2004, 51: 663-669.
    [91] Atienza SG, Martín A, Pecchioni N, Platani C, Cattivelli L. The nuclear-cytoplasmic interaction controls carotenoid content in wheat[J]. Euphytica, 2008, 159:325-331.
    [92] Badaeva ED, Amosova AV, Muravenko OV, Samatadze TE, Chikida NN, Zelenin AV, Friebe B, Gill BS. Genome differentiation in Aegilops, 3. Evolution of the D-genome cluster[J]. Plant Syst. Evol., 2002, 231: 163-190.
    [93] Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Shostak NG, Chikida NN, Zelenin AV, Raupp WJ, Friebe B, Gill BS. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster[J]. Plant Syst. Evol., 2004, 246: 45-76.
    [94] Badaeva ED, Friebe B, Gill BS. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species[J]. Genome, 1996, 39: 293-306.
    [95] Badaeva ED, Friebe B, Zoshchuk SA, Zelenin AV, Gill BS. Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa [J]. Chromosome Research, 1998, 6: 629-637.
    [96] Barloy D, Lemoine J, Abelard P, Tanguy AM, Rivoal R, Jahier J. Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat[J]. Mol Breeding, 2007, 20: 31-40.
    [97] Barloy D, Lemoine J, Dredryver F, Jahier J. Molecular markers linked to the Aegilops variabilis-derivde root-knot nematode resistance gene Rkn-mn1 in wheat[J]. Plant Breeding, 2000, 118: 169-172.
    [98] Belyayev A, Raskina O, Nevo E. Detection of alien chromosomes from S-genome species in the addition/substitution lines of bread wheat and visualization of A-, B-, and D-genomes by GISH [J]. Hereditas, 2001, 135: 119-122.
    [99] Biagetti M, Vitellozzi F, Ceoloni C. Physical mapping of wheat-Aegilops Longissimabreakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes[J]. Genome, 1999, 42: 1013-1019.
    [100] Bouhssini ME, Benlbabib O, Nachit MM, Houari A, Bentika A, Nsarellah N, Lhaloui S. Identification in Aegilops species of resistant sources to Hessian fly (Diptera:Cecidomyiidae) in Morocco[J]. Genetic Resources and Crop Evolution, 1998, 45: 343-345.
    [101] Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH, Gill BS. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function[J]. Plant Molecular Biology, 2002, 48: 767-790.
    [102] Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ, Ziegle JN, Singh S, Hassawi DS, Fritz AK, Namuth D, Lapitan NLV, Gill BS. A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat[J]. Theor Appl Genet, 1999, 99: 16-26.
    [103] Bustos A, Pérez R, Jouve N. Characterization of the gene Mre11 and evidence of silencing after polyploidization in Triticum[J]. Theor Appl Genet, 2007, 114: 985-999.
    [104] Cakmak I, Cakmak O, Eker S, Ozdemir A, Watanabe N, Braun HJ. Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats[J]. Plant and Soil, 1999, 215: 203-209.
    [105] Carluccio AV, Cenci A, Simeone R, Blanco A. Pm32: A novel powdery mildew resistance gene in wheat originating from Triticum turgidum var. dicoccoides[J]. Proceedings of the XLVIII Italian Society of Agricultural Genetics– SIFV-SIGA Joint Meeting Lecce, Italy– 15/18 September, ISBN 88-900622-5-8, 2004.
    [106] Carvalho A, Guedes-Pinto H, Mártín A, Heslop-Harrison P. Genome discrimination and chromosome pairing in the Hordeum chilense×Aegilops tauschii amphiploid[J]. Euphytica, 2005, 144:85-89.
    [107] Cenci A, Ovidio RD, Tanzarella OA, Ceoloni C, Porceddu E. Identification of molecular markers linked to Pm13, an aegilops longissima gene conferring resistance to powdery mildew in wheat[J]. Theor Appl Genet, 1999, 98: 448-454.
    [108] Chen LZ, Lou QF, Zhuang Y, Chen JF, Zhang XQ, Wolukau JN. Cytologicaldiploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis×hytivus[J]. Planta, 2007, 225: 603–614.
    [109] Chhuneja P, Dhaliwal HS, Bains NS, Singh K. Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain Iron and Zinc[J]. Plant Breeding, 2006, 125: 529-531.
    [110] Daud HM, Gustafson JP. Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat (Triticum aestivum) [J]. Genome, 1996, 39: 543-548.
    [111] Delibes A, Del Moral J, Martín-Sanchez JA, Mejias A, Gallego M, Casado D, Sin E, López-Bra?a I. Hessian fly-resistance gene transferred from chromosome 4Mv of Aegilops ventricosa to Triticum aestivum[J]. Theor Appl Genet, 1997, 94: 858-864.
    [112] Devos KM. The use of random amplified polymorphic DNA markers in wheat[J].Theor. Appl. Genet. [J], 1992, 84: 567-572.
    [113] Dhaliwal HS, Singh H, William M. Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives[J]. Euphytica, 2002, 126: 153-159.
    [114] Dhaliwal HS, singh H, William M. Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica, 2002, 126: 153-159.
    [115] Dobrovolskaya O, Pshenichnichnikova TA, Arbuzova VS, Lohwasser U, R?der MS, B?rner A. Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae[J]. Euphytica, 2007, 155: 285-293.
    [116] Dudnikov AJ, Kawahara T. Aegilops tauschii: genetic variation in Iran[J]. Genetic Resources and Crop Evolution, 2006, 53: 579-586.
    [117] Dvorak J, Knott DR. Location of a Triticum speltoids chromosome segment conferring resistance to leaf rust in Triticum aestivum[J]. Genome, 1990, 33: 892-897.
    [118] Ekiz H, Kiral AS, Ak?in A, Simsek L. Cytoplasmic effects on quality traits of bread wheat (Triticum aestivum L.) [J]. Euphytica, 1998, 100: 189-196.
    [119] Elameen A, Fjellheim S, Larsen A, Rognli OA, Sundheim L, Msolla S, Masumba E, Mtunda K, Klemsdal SS. Analysis of genetic diversity in a sweet potato (Ipomoea batatas L.) germplasm collection from Tanzania as revealed by AFLP[J]. Genet Resour Crop Evol, 2008, 55: 397–408.
    [120] Endo TR. The gametocidal chromosome as a tool for chromosome manipulation in wheat[J]. Chromosome Research, 2007, 15: 67-75.
    [121] Eser V. Characterisation of powdery mildew resistant lines derived from crosses between Triticum aestivum and Aegilops speltoides and Ae. mutica[J]. Euphytica, 1998, 100: 269-272.
    [122] Farooq S, Azam F. A new allopolyploid wheat for stressed lands and poverty alleviation[J]. Field Crops Research, 2007, 100: 369-373.
    [123] Farooq S, Farooq-E-Azam. Production of low input and stress tolerant wheat germplasm through the use of biodiversity residing in the wild relatives[J]. Hereditas, 2001, 135: 211-215.
    [124] Fedak G. Molecular aids for integration of alien chromatin through wide crosses[J]. Genome, 1999, 42: 584-591.
    [125] Feldman M, Liu B, Sehgal G, Abbo S, Levy AA, Vega JM. Rapid elimination of low copy DNA sequence in polyploidy wheat: a possible mechanism for differentiation of homoeologous chromosomes[J]. Genetics, 1997, 147: 1381–1387.
    [126] Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status[J]. Euphytica, 1996, 91: 59-87.
    [127] Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines[J]. Theor Appl Genet, 2000, 101: 51-58.
    [128] Friebe BR, Tuleen NA, Gill BS. Development and identification of a complete set of Triticum aestivum– Aegilops geniculata chromosome addition lines[J]. Genome, 1999, 42: 374-380.
    [129] Gandhi HT, Vales MI, Watson CJW, Mallory-Smith CA, Mori N, Rehman M, Zemetra RS, Riera-Lizarazu O. Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica[J]. Theor Appl Genet, 2005, 111: 561-572.
    [130] Giles RJ, Brown TA. GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats[J]. Theor Appl Genet, 2006, 112: 1563-1572.
    [131] Gill BS, Friebe B, Endo TR. Karyotype and nomenclature system for description of chromosome bands and abbreviation in wheat[J]. Genome, 1991, 34: 830-839.
    [132] Golovnina KA, Glushkov SA, Blinov AG, Mayorov VI, Adkison LR, Goncharov NP. Molecular phylogeny of the genus Triticum L. [J]. Pl Syst Evol, 2007, 264: 195-216.
    [133] Gupta SK, Charpe A, Koul S, Prabhu KV, Haq QMR. Development and validation of molecular markers linked to an Aegilops umbelulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat[J]. Genome, 2005, 48: 823-830.
    [134] Han FP, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T, Characterization of six wheat-thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH[J]. Genome, 2003, 46: 490-495.
    [135] Han FP, Liu B, Fedak G, Liu ZH. Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis[J]. Theor Appl Genet, 2004, 109: 1070–1076.
    [136] Hsam SLK, Lapochkina IF, Zeller FJ. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line[J]. Euphytica, 2003, 133: 367–370.
    [137] Huang XQ, R?der MS. Molecular mapping of powdery mildew resistance genes in wheat: A review[J]. Euphytica, 2004, 137: 203-223.
    [138] Huguet-Robert V, Dedryver F, Roder MS, Korzun V, Abelard P, Tanguy AM, Jaudeau B., Jahier J. Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to eyespot[J]. Genome, 2001, 44: 345-349.
    [139] Ikeguchi S, Hasegawa A, Murai T, Tsunewaki K. Basic studies on hybrid wheat breeding using the 1BL-1RS translocation chromosome / Aegilops kotschyi cytoplasm system. Development of male sterile and maintainer lines with discovery of a new fertility-restorer[J]. Euphytica, 1999, 109: 33-42.
    [140] Iqbal N, Asghar M, Arshad R, Hameed A. Mapping of esterase loci in Aegilops uniaristata and homoeologous group 3 chromosome of wheat[J]. Biologia Plantarum, 2005, 49(3): 419-422.
    [141] Iqbal N, Reader SM, Caligari PDS, Miller TE. Characterization of Aegilops uniaristata chromosome by comparative DNA marker analysis and repetitive DNA sequence in situhybridization[J]. Theor Appl Genet, 2000a, 101: 1173-1179.
    [142] Iqbal N, Reader SM, Caligari PDS, Miller TE. The production and characterization of recombination between chromosome 3N of Aegilops uniaristata and chromosome 3A of wheat[J]. Heredity, 2000b, 84: 487-492.
    [143] Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS. The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar‘VPM1’carries the cereal cyst nematode resistance gene Cre5[J]. Plant Breeding, 2001, 120: 125-128.
    [144] Jarve K, Peusha HO, Tsymbolova J, Tamm S, Devos KM, Enno TM. Chromosomal locaton of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat[J]. Genome, 2000, 43(2): 377-381.
    [145] Jauhar PP, Chibbar RN. Chromosome-mediated and direct gene transfers in wheat[J]. Genome, 1999, 42: 570-583.
    [146] Jia J,Devos KM,Chao S,Miller TE, Reader SM, Gale MD. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat[J]. Theor.Appl.Genet., 1996, 92: 559-569.
    [147] Jiang JM, Gill BS. Nonisotopic in situ hybridization and plant genome mapping: the first 10 years[J]. Genome, 1994, 37: 717-725.
    [148] Kalinowski A, Winiarczyk K, Wojciechowska B. Pollen proteins after two-dimensional gel electrophoresis and pollen morphology of the amphiploids Aegilops kotschyi and Ae. variabilis with Secale cereale[J]. Sex Plant Reprod, 2001, 14: 153-161.
    [149] Kalinowski A, Wojciechowska B. Pollen and leaf proteins after 2-D electrophoresis of the Aegilops geniculata×Secale ceteale hybrids, amphiploids and patrental forms[J]. Euphytica, 2003, 133: 201-207.
    [150] Kerber ER, Dyck PL. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides×Triticum monococcum[J]. Genome, 1990, 33: 530-537.
    [151] Kihara H. Substitution of nucleus and its effects on genome manifestations[J]. Cytologia , 1951 , 16 : 177.
    [152] Kishii M, Tsujimoto H. Genus-specific localization of the Tail family oftandem-repetitive sequences in either the centromeric or subtelomeric regions in Triticeae species (Poaceae) and its evolution in wheat[J]. Genome, 2002, 45: 946-955.
    [153] Knott DR. Transferring alien genes to wheat in: GE. Heyneeds Wheat Improvement(second editon ) [M], 1987, 462-471.
    [154] Kuraparthy V, Chhuneja P, Dhalial HS, Kaur S, Bowden RL, Gill BS. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 an Yr40 in wheat[J]. Theor Appl Genet, 2007, 114:1379-1389.
    [155] Lage J, Warburton M L, Crossa J, Skovmand B, Andersen S B. Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits[J]. Euphytica, 2003, 134: 305-317.
    [156] Landjeva S, Merakchijska-Nikolova M, Ganeva G. Copper toxicity tolerance in Aegilops and Haynaldia seedings[J]. Biologia Plantarum, 2003, 46(3): 479-480.
    [157] Lelley T, Stachel M, Grausgruber H, Vollmann J. Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites[J]. Genome, 2000, 43: 661-668.
    [158] Li Z, Heneen W K. Production and cytogenetics of intergeneric hybrids between the three cultivated Brassica diploids and Orychophragmus violaceus[J]. Theor Appl Genet , 1999, 99: 694–704.
    [159] Li Z, Wu JG, Liu Y, Liu HL, Heneen WK. Production and cytogenetics of the intergeneric hybrids Brassica juncea×Orychophragmus violaceus and B. carinata×O. violaceus[J]. Theor Appl Genet, 1998, 96 : 251-265.
    [160] Linc G, Friebe BR, Kynast RG, Molnar-Lang M, K?szegi B, Sutka J, Gill BS. Molecular cytogenetic analysis of Aegilops cylindrica Host[J]. Genome, 1999, 42: 497-503.
    [161] Liu B, Segal G, Rong JK, Feldman M. A chromosome-specific sequence common to the B genome of polyploid wheat and Aegilops searsii[J]. Plant Syst. Evol., 2003, 241: 55-66.
    [162] Liu BS, Sun QX , Sun LZ, Gao QR, Xie CJ, Dou BD, Ni ZF, Wei YL, Zhang YC. RAPD and ISSR Markers of Fertility Restoring Gene for Aegilops kotschyi Cytoplasmic Male Sterility in Wheat[J]. Acta Botanica Sinica, 2002a, 44(4) : 446– 450.
    [163] Liu CG, Wu YW, Hou H, Zhang C and Zhang Y. Value and utilization of alloplasmic common wheats with Aegilops crassa cytoplasm[J]. Plant Breeding, 2002, 121: 407—410.
    [164] Liu DC, Lan XJ, Wang ZR, Zheng YL, Zhou YH, Yang JL, Yen C. Evaluation of Aegilops tauschii Cosson for preharvest sprouting tolerance[J]. Genetic Resources and Crop Evolution, 1998, 45: 495-498.
    [165] Liu ZY, Sun QX, Ni ZF, Nevo E & Yang TM. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J]. Euphytica, 2002, 123: 21-29.
    [166] Maestra B, Naranjo T. Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat[J]. Ther Appl Genet, 1998, 97: 181-186.
    [167] Marais GF, Mc Callum B, Snyman JE, Snyman JE, Pretorius ZA, Marais AS. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi[J]. Plant Breeding, 2005, 124: 538-541.
    [168] Marais GF, McCallum B, Marais AS. Leaf rust and stripe rust resistance genes derived from Aegilops sharonedsis[J]. Euphytica, 2006, 149: 373-380.
    [169] Marais GF, Pretorius ZA. Gametocidal effects and resistance to wheat leaf rust and stem rust in derivatives of a triticum turgidurm ssp. Durum/Aegilops speltoides hybrid[J]. Euphytica, 1996, 88: 117-124.
    [170] Martín A, Cabreía A, Esteban E, Hernández P, Ramírez MC, Rubiales D. A fertile amphiploid between diploid wheat (Triticun tauschii) and crested wheatgrass (Agropyron cristatum) [J]. Genome, 1999, 42: 519-524.
    [171] Martín-Sánchez JA, Gómez-Colmenarejo M, Del Moral J, Sin E, Montes MJ, González-Belinchón C, López-Bra?a I, Delibes A. A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat[J]. Theor Appl Genet, 2003, 106: 1248-1255.
    [172] Miller TE, Iqbal N, Reader SM, Mahmood A, Cant KA, King IP. A cytogenetic approach to the improvement of aluminium tolerance in wheat[J]. New Phytol, 1997, 137: 93-98.
    [173] Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressedinto common wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2007, 114: 1451–1456.
    [174] Miranda LM, Murphy JP, Marshall D, Leath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2006, 113: 1497-1504.
    [175] Miranda LM, Murphy JP, Marshall D, Leath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2006, 113: 1497–1504.
    [176] Montes MJ, López-Bra?a I, Romero MD, Sin E, Andrés MF, Martín-Sánchez JA, Delibes A. Biochemical and genetic studies of two Heteodera avenae resistance genes transferred from Aegilops ventricosa to wheat[J]. Theor Appl Genet, 2003, 107: 611-618.
    [177] Mukai Y, Gill BS. Detection of barley chromosome added to wheat by genomic in situ hybridization [J].Genome, 1991, 34: 148-452.
    [178] Murai K, Takumi S, Koga H,and Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat[J]. The Plant Journal, 2002, 29(2), 169-181.
    [179] Murai K, Tsutui I, Kawanishi Y, Ikeguchi S, Yanaka M, Ishikawa N. Development of photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines showing high male sterility under long-day conditions and high seed fertility under short-day conditions[J]. Euphytica, 2008, 159: 315-323.
    [180] Murai K. Comparison of two fertility restoration systems against photoperiod-sensitive cytoplasmic male sterility in wheat[J]. Plant Breeding , 2002, 121: 363—365.
    [181] Naghavi MR, Mardi M, Pirseyedi SM, Kazemi M, Potki P, Ghaffari MR (2007) Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers[J]. Genet Resour Crop Evol 54:237–240
    [182] Noori SAS. Assessment for salinity tolerance through intergeneric hybridisation: Triticum durum×Aegilops speltoides[J]. Euphytica, 2005, 146: 149-155.
    [183] Ogbonnaya FC, Seah S, Delibes A, Jahier J, López-Bra?a I, Eastwood RF, Lagudah ES. Molecular-genetic characterization of a new nematode resistance gene in wheat[J]. Theor Appl Genet, 2001, 102: 623-629.
    [184] Okuno K, Ebana K, Noov B, Yoshida H. Genetic diversity of Central Asian and northCaucasian Aegilops species as revealed by RAPD markers[J]. Genetic Resources and Crop Evolution, 1998, 45: 389-394.
    [185] Perugini LD, Murphy JP, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii[J]. Theor Appl Genet, 2008, 116: 417-425.
    [186] Petersen G, Seberg O, Yde M, Berthelsen K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum) [J]. Molecular Phylogenetics and Evolution, 2006, 39: 70-82.
    [187] Poland JA. Mapping of Aegilops tauschii derived leaf rust resistance genes in common wheat[J]. Journal of Natural Resources and Life Sciences Education, 2003, 32: 8-11.
    [188] Provan J, Wolters P, Caldwell KH, Powell W. High-resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat[J]. Theor Appl Genet, 2004, 108: 1182–1190.
    [189] Rodríguez S, Maestra B, Perera E, Díez M, Naranjo T. Pairing affinities of the B-and G-genome chromosomes of polyploid wheats with those of Aegilops speltoides[J]. Genome, 2000, 43: 814-819.
    [190] Romero MD, Montes MJ, Sin E, Lopez-Bra?a I, Duce A, Martín-Sanchez JA, Andrés MF, Delibes A A. cereal cyst nematode (Heterodere avenae Woll.) resistance ?ene transferred from Ae?ilops triuncialis to hexaploid wheat[J]. Theor Appl Genet, 1998, 96: 1135-1140.
    [191] Rong JK, Millert E, Manisterski J, et al.. A new powdery mildew resistance gene introgression from wild emmer into common wheat and RFLP-based mapping[J]. Euphytica, 2000, 115(2): 121-126.
    [192] Saeidi H Tabatabaei BES, Rahimmalek M, Talebi-Badaf M, Rahiminejad MR. Genetic diversity and gene-pool subdivisions of diploid D-genome Aegilops tauschii Coss. (Poaceae) in Iran as revealed by AFLP[J]. Genet Resour Crop Evol, 2008, 55: 1231-1238.
    [193] Sallares R, Brown TA. Phylogenetic analysis of complete 5’external transcribed spacers of the 18S ribosomal RNA genes of diploid Aegilops and related species (Triticeae, Poaceae) [J]. Genetic Resources and Crop Evolution, 2004, 51: 701-712.
    [194] Schneider A, Linc G, Molnár I, Molnár-Láng M. Molecular cytogenetic characterizationof Aegilops biumcialis and its use for the identification of 5 derived wheat- Aegilops biuncialis disomic addition lines[J]. Genome, 2005, 48: 1070-1082.
    [195] Schneider A, Molnár I, Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat[J]. Euphytica, 2008, 163(1): 1-19.
    [196] Seah S, Bariana H, Jahier J, Sivasithamparam K. The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence[J]. Theor Appl Genet, 2001, 102: 600-605.
    [197] Sharp PJ, Chao S, Desai S. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm[J]. Theor. Appl. Genet, 1989, 78: 342-348.
    [198] Shi AN, Leath S, Murphy JP. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn[J]. Phytopathology, 1998, 88: 144-147.
    [199] Shi F, Endo TR. Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat[J]. Chromosoma, 2000, 109: 358-363.
    [200] Simón MR, Ayala FM, Cordo CA, R?der MS, B?rner A. The use of wheat/goatgrass introgression lines for the detection of gene(s) determining resistance to septoria tritici blotch (Mycosphaerella graminicola) [J]. Euphytica, 2007, 154: 249-254.
    [201] Simonenko VK, Motsny II, Sechnyak AL, Kulbida MP. The use of wheat-alien and Aegilops-rye amphiploids for introgression of genetic material to wheat[J]. Euphytica, 1998, 100: 313-321.
    [202] Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A. Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS[J]. Theor Appl Genet, 2004, 108: 586-591.
    [203] Smith CM, HavlíckováH, Starkey S, Gill BS, Holubec V. Identification of Aegilops germplasm with multiple aphid resistance[J]. Euphytica, 2004, 135: 265-273.
    [204] Song W, Xie H, Liu Q, Xie CJ, Ni ZF, Yang TM, Sun QX, Liu ZY. Molecular identification of Pm12-carrying introgression lines in wheat using genomic and EST-SSR markers[J]. Euphytica, 2007, 158: 95-102.
    [205] Spetsov P, Plamenov D, Kiryakova V. Distribution and characterization of Aegilops and Triticum species from the Bulgarian Black Sea coast[J]. Central European Journal ofBiology, 2006, 1(3): 399-411.
    [206] Tadesse W, Hsam SLK, Wenzel G, Zeller FJ. Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L.×Aegilops tauschii Coss.) [J]. Crop Science, 2006, 46: 1212-1217.
    [207] Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ. Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines[J]. Theor Appl Genet, 2007, 114: 855-862.
    [208] Tanguy AM, Coriton O, Abélard P, Dedryver F, Jahier J. Structure of Aegilops ventricosa chromosome 6Nv,the donor of wheat genes Yr17, Sr38, and Cre5[J]. Genome, 2005, 48: 541-546.
    [209] Tsujimoto H, Tsunewaki K. Gametocidal genes in wheat and its relatives.Ⅲ. Chromosome location and effects of two Aegilops speltoides-derived gametocidal genes in common wheat. Genome, 1988, 30: 239-244.
    [210] Tsunewaki K. Genetic diversity of the cytoplasmin Triticum and Aegilops[A]. Proc 7th Inter Wheat Genet Sym, Cambridge: UK, 1988, 53~62.
    [211] Tsunewaki K, Mukai Y, Ryu Endo T. Genetic diversity of the cytoplasm in Triticum and Aegilops:ì. Distribution of the haploid inducing cytoplasms [ J ].Japan. J. Genet., 1976, 51: 193~200.
    [212] Tyankova ND, Zagorska NA, Dimitrov B. Callus induction and organogenesis in wheat / Aegilops longissima chromosome addition lines[J]. Plant Cell, Tissue and Organ Culture, 2003, 72: 193-197.
    [213] Vahl U, Bringezu T, Müller G. Gliadins as biochemical markers for Aegilops turcomanica genes in wheat lines[J]. Plant Breeding, 1999, 118: 293-296.
    [214] Wang T, Xu SS, Harris MO, Hu JG, Liu LW, Cai XW. Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegiplos tauschii in synthetic wheat[J]. Theor Appl Genet, 2006, 113: 611-618.
    [215] Watanabe N, Fujii Y, Takesada N, Martinek P. Cytological and microsatellite mapping of the gene for brittle rachis in a Triticum aestivum- Aegilops tauschii introgression line[J]. Euphytica, 2006, 151: 63-69.
    [216] Watanabe N, Noda Y, Goto N, Miura H. Variation for apparent amylose content ofendosperm starch in Triticum durum and Aegilops squarrosa[J]. Euphytica, 1998, 101: 283-286.
    [217] Whelan EDP, Thomas JB. Chromosomal location in common wheat of a gene (Cmcl) from Aegilops squarrosa that conditions resistance to colonization by the wheat curl mite[J]. Genome, 1989, 32: 1033-1036.
    [218] Wieser H, Hsam SLK, Zeller FJ. Relationship between the qualitative and quantitative compositions of gluten protein types and technological properties of synthetic hexaploid wheat derived from Triticum durum and Aegilops tauschii[J]. Cereal Chemistry, 2003, 80(3): 247-251.
    [219] Yan YM, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis[J]. Euphytica, 2003, 130: 377-385.
    [220] Yang WY, Yu Y, Zhang Y, Hu XR, Wang Y, Zhou YC, Lu BR. Inheritance and expression of stripe rust resistance in common wheat (Triticum aestivum) transferred from Aegilops tauschii and its utitization[J]. Hereditas, 2003, 139: 49-55.
    [221] Yang ZJ, Li GR, Jiang HR, Ren ZL. Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale Silvestre[J]. Euphytica, 2001, 119: 317–321.
    [222] Yen Y, Kimber G. Reinvestigation of the S genome in Triticum kotschyi[J]. Genome, 1990, 33: 521-524.
    [223] Yehuda PB, Eilam T, Manisterski J, Shimoni A, Anikster Y. Leaf rust on Aegilops speltoides caused by a new forma specialis of Puccinia triticina[J]. Phytopathology, 2004, 94(1): 94-101.
    [224] Zaharieva M, Dimov A, Stankova P, David J, Monneveux P. Morphological diversity and potential interest for wheat improvement of three Aegilops L. species from Bulagria[J]. Genetic Resources and Crop Evlution, 2003, 50: 507-517.
    [225] Zaharieva M, Monneveux P, Henry M, Rivoal R, Valkoun J, Nachit MM. Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits[J]. Euphytica, 2001, 119: 33-38.
    [226] Zaharieva M, Prosperi J, Monneveux P. Ecological distribution and species diversity of Aegilops L. genus in Bulgaria[J]. Biodiversity and Conservation, 2004, 13: 2319-2337.
    [227] Zhang AM, Yu FT, Zhang FS. Alien cytoplasm effects on phytosiderophore release in two spring wheats (Triticum aestivum L.) [J]. Genetic Resources and Crop Evolution, 2003, 50: 767-772.
    [228] Zhang H, Reader SM, Liu X, Jia JZ, Gale MD, Devos KM. Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat[J]. Theor Appl Genet, 2001, 103: 518-525.
    [229] Zhang LQ, Liu DC, Yan ZH, Lan XJ, Zheng YL, Zhou YH. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat[J]. Science in China Ser. C Life Sciences, 2004, 47(6): 553—561.
    [230] Zhang LQ, Yen Y, Zheng YL, Liu DC. Meiotic restrition in emmer heat is controlled by one or more nuclear genes that continue to function in derived lines[J]. Sex Plant Reprod, 2007, 20: 159-166.
    [231] Zhang XQ, Wang XP, Jing JK, Ross K, Hu H, Gustafson JP. Characterization of wheat-Triticale doubled haploid lines by cytological and biochemical markers[J]. Plant breeding, 1998, 117: 7-12.
    [232] Zhu LC, Smith CM, Fritz A, Boyko E, Voothuluru P, Gill BS. Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii[J]. Theor Appl Genet, 2005, 111: 831-837.
    [233] Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ. Microsatellite marker identification of a Triticum aestivum-Aegilops umbellulata substitution line with powdery mildew resistance[J]. Euphytica, 2006, 150: 149-153.
    [234] Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ. Microsatellite markers linked to the powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat[J]. Genome, 2005, 48: 585-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700