顾及模型误差的震源参数InSAR反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达干涉测量(InSAR)技术的迅速发展,极大丰富了大地形变观测数据,使得地球科学家们能够以一个全新的角度研究与地震断层相关的各种地球物理学现象。基于大地测量形变观测数据研究震源参数可以有效弥补地表破裂数据、地震记录等提取震源参数的不足。震源参数不仅可以用来分析发震断层机制及区域构造应力状况,而且也是研究活动断层破裂及扩展、特征断层演化、震后形变机制、大陆岩石圈内应变的吸收与调整、应力变化及未来地震危险性评估的重要基础。为此,震源参数的精准度越来越受到地球科学家们的重视。以确定更加精准的震源参数为核心目标,本文创新性地对顾及模型误差的震源参数InSAR反演开展了相关研究。
     本文建立了震源参数InSAR反演的数学模型并对其特征进行了分析。基于矩形位错理论、拉普拉斯平滑约束方法构建了震源参数InSAR反演的函数模型、随机模型及附等式约束的数学模型。将广义反演分析法引入震源滑动分布的反演分析中,给出了反演函数模型的数据分辨率、参数分辨率及方差的计算方法,并以走滑、逆冲断层及当雄地震为例分析了增加观测数据、附加约束条件对系数矩阵的数学特征项的影响。结果表明,增加观测数据可以在一定程度上增加系数矩阵的秩但不能改善其病态性,附加约束条件可以显著增加系数矩阵的秩并能改善其病态性,在一定程度上降低了数据分辨率,但较明显地增加了参数分辨率,并将其方差大小由几百米降低至厘米级。该结果为基于InSAR形变观测数据反演震源滑动分布提供了理论研究基础。在震源滑动分布反演中,附加一定的约束条件不可或缺。
     本文对数学模型误差对震源参数InSAR反演估值的影响进行了理论和模拟反演分析,并对函数模型误差和随机模型误差的区分性进行了探讨研究。在系统总结并分析震源参数InSAR反演中数学模型误差来源的基础上,引入了测量数据统计分析中线性反演的模型误差理论和非线性反演的蒙特卡罗误差估计方法。以走滑、斜滑、逆冲三种主要震源类型为例,通过非线性反演震源参数和线性反演震源滑动分布模拟分析了函数模型和随机模型存在误差对震源参数估值的影响。结果表明,函数模型和随机模型存在误差使得震源参数估值产生偏差、精度降低,与理论分析结果相一致。讨论了震源参数InSAR反演中模型误差的估计和识别方法,并对函数模型误差和随机模型误差的区分性进行了探讨分析,指出震源参数InSAR反演系统中对二者进行有效分离具有较大的挑战性。
     本文给出了震源参数InSAR反演的模型误差补偿方法并进行了反演计算分析,进一步地,给出了建议的反演方法。在系统总结并对比分析测量数据处理中模型误差补偿方法的基础上,提出了震源参数InSAR反演中通过调整随机模型对模型误差进行补偿的思路。通过引入测量数据处理中的方差分量估计和抗差估计理论和方法,设计了震源参数线性和非线性反演的方差分量估计类算法、抗差估计类算法和抗差方差分量估计类算法,给出了具体的反演计算步骤,通过模拟反演计算对算法的补偿效果进行了检测,其中,采用等价方差一协方差函数的抗差估计思想构建相应的权函数。基于虚拟观测原理将光滑约束条件方程转化为虚拟观测方程,将光滑因子表达为单位权方差与虚拟观测方差之商的形式,采用方差分量估计原理同时确定观测数据集权值和光滑因子的大小。在理论上对三类算法进行了比较分析,并对它们的补偿效果进行了分析。若观测数据集含有粗差,抗差估计算法能够较好地减免粗差对震源参数非线性反演估值的不良影响,但在滑动分布反演时具有一定的局限性,需要采用抗差方差分量估计算法;若两个或两个以上的观测数据集含有粗差,抗差方差分量估计算法的模型误差补偿效果优于方差分量估计算法。进一步地,给出了实际震源参数InSAR反演研究中建议的反演方法。
     本文以2008年10月6日当雄Mw6.3级地震和2008年11月10日大柴旦Mw6.3级地震为实际震例进行了系统深入的反演研究。就当雄地震而言,利用不同轨道、不同波长的Envisat和ALOS影像数据提取该地震的高质量InSAR同震形变场,采用本文设计的抗差方差分量估计类算法减免数学模型误差对震源参数估值的影响。结果表明,震源滑动分布主要发生在4.5-11km范围内,平均滑动角为-112.58°,平均滑动量为0.50m,最大滑动量为1.53m,深度位于6.1-7.1km范围内,依据该滑动分布模型得到的地震矩为4.22×1018Nm(Mw6.38)。方差分量估计确定的震源参数估值存在一定的偏差,(抗差)方差分量估计前确定的震源参数估值偏差整体上大于方差分量估计的结果,滑动角的偏差达-4.195°,精度水平也显著差于(抗差)方差分量估计的结果。就大柴旦地震而言,利用Envisat影像数据提取该地震的高质量InSAR同震形变场,采用非线性抗差估计反演确定震源破裂的几何参数,进一步地,采用线性抗差方差分量估计反演确定精细的震源滑动分布。结果表明,震源滑动分布主要发生在10-20km范围内,平均滑动角为104.2°,平均滑动量为0.2m,最大滑动量为0.64m,深度位于13.8-14.6km范围内,依据该滑动分布模型得到的地震矩为3.74×1018N m(Mw6.35)。由于InSAR形变场中包含的粗差观测值较少且量级较小,震源参数非线性反演时,是否进行抗差估计对参数估值的精度水平影响不大,但震源滑动分布线性反演时,需进行(抗差)方差分量估计以确定合理的光滑因子
     最后,讨论并分析了同震形变观测数据在震源参数反演中的权值大小。方差分量估计法可以较好的确定观测数据集间的权比,其既不等权,也不等于基于验前方差确定的权比。非线性反演震源参数和线性反演震源滑动分布时确定的权比并不相等,且差异较大,数据集间的权比需要分别通过方差分量估计原理予以确定。观测数据点的权值既不随着远离断层而增大,也不随着靠近断层而增大,按距离断层远近为准则对观测数据点定权并非合理。考虑数学模型误差,抗差估计原理可以为观测数据点的定权提供一种合理的方法。
Rapid development of Interferometric Synthetic Aperture Rarar (InSAR), greatly enriching crustal deformation observation data, enables the geoscience research community to probe into the various geophysical phenomena related to earthquake fault in a fully new perspective. When extracting hypocenter parameter, geodetic data can effectively compensate for intrinsic limitations of other observations such as surface rupture data and seismic record. Hypocenter parameter can not only be used to analyze the seismogenic fault mechanism and regional tectonic stress, but can also provide a basis for studying rupture and expansion of the active fault, evolution of the characteristic fault, mechanism of the postseismic deformation, strain absorption and adjustment of the continental lithosphere, stress changes and seismic hazard assessment in the future. Consequently, the accuracy of hypocenter parameter holds a more and more attention of geoscience scientist. To determine a more precise hypocenter parameter, this dissertation creatively carries out the work of InSAR inversion considering model error for hypocenter parameter.
     This article first establishes the mathematical model of InSAR inversion for hypocenter parameter, and studies its intrinsic features. According to the rectangular dislocation theory and Laplace smoothing constraint method, functional model, stochastic model and mathematical model with equality constraint appropriate for InSAR inversion for hypocenter parameter are proposed. Method of the generalized inverse analysis is introduced into focal slip distribution inversion to give the calculation formulas of data resolution, parameter resolution and variance for the coefficient matrix of the functional model. By taking strike, thrust faults and Dangxiong earthquake as examples, the effects of adding observation data and adding constraint condition on the mathematical feature items are studied. The results show that adding observation data can to a certain extent increase the rank of the coefficient matrix, but cannot improve its morbidity; adding constraint condition can significantly increase the rank of the coefficient matrix, can improve its morbidity, can to a certain extent reduce the data resolution, but can significantly increase the parameter resolution, and can reduce its variance from hundreds of meters down to centimeter level. These results can provide a theoretical basis for inverting InSAR deformation observations for focal slip distribution. During focal slip distribution inversion, adding constraint condition is indispensable.
     This article then explores the effects of mathematical model error on InSAR inversion solutions of hypocenter parameter theoretically, performs the synthetic inversion tests, and investigates the distinction of functional model error and stochastic model error. Sources of model error in the InSAR inversion for hypocenter parameter is summarized, and model error theory of linear inversion from surveying data statistical analysis and method of Monte Carlo error estimation in the nonlinear inversion are introduced. By taking strike, oblique and thrust faults as examples, the effects of the functional model error and stochastic model error on inversion solutions of hypocenter parameter are analyzed by calculations of nonlinear inversion for hypocenter parameter and linear inversion for slip distribution, respectively. The results show that the functional model and the stochastic model containing errors can bias the hypocenter parameter solutions, and reduce the corresponding precision, consistent with results from theoretical prediction. Model error estimation and identification methods in the InSAR inversion for hypocenter parameter are discussed, and the distinction of functional model error and stochastic model error is investigated. The result indicates that effective separation of these two errors in InSAR inversion system of hypocenter parameter still faces larger challenge.
     This article then presents the model error compensation method in the InSAR inversion for hypocenter parameter, implements the synthetic inversion experiments, and gives recommended inversion strategy. Model error compensation method from surveying data processing is summarized in detail, and strategy of adjusting stochastic model to compensate for model error in the InSAR inversion for hypocenter parameter is proposed. By introducing variance component estimation (VCE) and robust estimation theory and methods from surveying data processing, VCE algorithm, robust estimation algorithm and robust VCE algorithm suitable for linear and nonlinear inversion for hypocenter parameter are designed, and the corresponding concrete implementing procedures are presented respectively, where the equivalent variance-covariance function is used to construct the corresponding weight function. At the same time, compensation abilities of these methods are measured by exhaustively synthetic inversion experiments. Smoothing constraint condition equation is translated into virtual observation equation by relying on the virtual observation principle, smoothing factor is then expressed in the form of unit weight variance divided by virtual observation variance, and VCE method is used to work out the weight of observing data sets and smoothing factor, simultaneously. Three types of algorithms are elaborately compared, their compensation strengthes are also analyzed. If the observing data set contains gross error, robust estimation algorithm can better reduce or eliminate the negative effects of gross error on source parameter solutions when nonlinearly inverting for hypocenter parameter, but has certain limitations when linearly invering for slip distribution, where robust VCE algorithm is required. If two or more data sets contain gross errors, robust VCE algorithm performs better than VCE algorithm on ability of compensation for model error. And then the recommended inversion strategy in the actual InSAR inversion for hypocenter parameter is proposed.
     This article then studies the October6,2008Dangxiong Mw6.3earthquake and November10,2008Dachaidan Mw6.3earthquake extensively. For Dangxiong earthquake, Envisat and ALOS image data with different tracks and different wavelengths are processed to extract high-quality InSAR coseismic deformation, robust VCE method designed by this study is used to reduce or eliminate the effects of model error on source parameter solutions. The results show that the focal slip mainly occurs in the depth range4.5-11km, the average rake angle and slip are-112.58°and0.50m, the maximum slip of1.53m is located in the depth range6.1-7.1km, and the corresponding seismic moment is4.22×1018N m (Mw6.38). Hypocenter parameter solutions from VCE have a certain bias. Biases without (robust) VCE are larger than those with VCE, and deviation of rake angle is-4.195°. Precisions without (robust) VCE are also significantly worse than those with (robust) VCE. For Dachaidan earthquake, Envisat image data is processed to extract high-quality InSAR coseismic deformation, nonlinear robust estimation is used to determine the focal fault geometry, and further linear robust VCE method is adopted to derive the fine focal slip distribution. The results show that the focal slip mainly occurs in the depth range10~20km, the average rake angle and slip are104.2°and0.2m, the maximum slip of0.64m is located in the depth range13.8-14.6km, and the corresponding seismic moment is3.74×1018N m (Mw6.35). Due to that the drived InSAR deformation field contains fewer gross errors with smaller magnitude, whether do robust estimation has little impact on the precision level of the parameter estimation when nonlinearly inverting for hypocenter parameter, but (robust) VCE is needed to fix the reasonable smoothing factor when linearly inverting for fine focal slip model.
     This article finally explores the weight of coseismic deformation observation data when inverting for hypocenter parameter. VCE method can better determine the weight ratio among different observation data sets, value of which is neither equal, nor equal to value calculated according to prior variances. Weight ratios from nonlinear inversion for hypocenter parameter and linear inversion for focal slip distribution are not equal and differ widely in magnitude, and should be estimated by VCE principle, respectively. The weights of the observing data points neither increase as far from the fault, nor increase as close to the fault. The criterion of assessing weight by distance from the fault trace is not reasonable. Considering mathematical model error, robust estimation principle can provide a fittable way to determine weight for each observing data point.
引文
Aki, K., and P. G. Richards, Quantitative seismology, Sausalito, California: University Science Books,2002:700.
    Ammon, C. J., C. Ji, H. K. Thio, D. Robinson, S. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, and D. Helmberger, Rupture process of the 2004 Sumatra-Andaman earthquake, Science,2005, 308(5725):1133-1139, doi:10.1126/science.1112260.
    Armijo, R., P. Tapponnier, J. Mercier, and H. Tong-Lin, Quaternary extension in southern Tibet: field observations and tectonic implications, Journal of Geophysical Research,1986,91(B14): 13803-13872, doi:10.1029/JB091iB14p13803.
    Arnadottir, T., P. Segall, and M. Matthews, Resolving the discrepancy between geodetic and seismic fault models for the 1989 Loma Prieta, California, earthquake, Bulletin of the Seismological Society of America,1992,82(5):2248-2255.
    Atzori, S., and A. Antonioli, Optimal fault resolution in geodetic inversion of coseismic data, Geophysical Journal International,2011,185(1):529-538, doi: 10.1111/j.1365-246X.2011.04955.x.
    Baarda, W., A testing procedure for use in geodetic networks, Delft, Netherlands:Rijkscommissie voor Geodesie,1968:97.
    Banerjee, P., F. Pollitz, B. Nagarajan, and R. Burgmann, Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets, Bulletin of the Seismological Society of America,2007,97(1A):S86-S102, doi: 10.1785/0120050609.
    Barnhart, W., and R. Lohman, Automated fault model discretization for inversions for coseismic slip distributions, Journal of Geophysical Research,2010,115(B10):B10419, doi: 10.1029/2010JB007545.
    Ben-Menahem, A., S. J. Singh, and F. Solomon, Static deformation of a spherical earth model by internal dislocations, Bulletin of the Seismological Society of America,1969,59(2):813-853.
    Ben-Menahem, A., S. J. Singh, and F. Solomon, Deformation of a homogeneous earth model by finite dislocations, Reviews of Geophysics and Space Physics,1970,8(3):591-632, doi: 10.1029/RG008i003p00591.
    Biggs, J., D. P. Robinson, and T. H. Dixon, The 2007 Pisco, Peru, earthquake (M8.0):seismology and geodesy, Geophysical Journal International,2009,176(3):657-669, doi: 10.1111/j.1365-246X.2008.03990.x.
    Bonilla, M. G., R. K. Mark, and J. J. Lienkaemper, Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement, Bulletin of the Seismological Society of America,1984,74(6):2379-2411.
    Brown, L. D., R. E. Reilinger, S. R. Holdahl, and E. I. Balazs, Postseismic crustal uplift near Anchorage, Alaska, Journal of Geophysical Research,1977,82(23):3369-3378, doi: 10.1029/JB082i023p03369.
    Byerly, P., and J. DeNoyer, Energy in earthquakes as computed from geodetic observations[A], in: H. Benioff, M. Ewing, B. F. Howell Jr. and F. Press, Contributions in geophysics in honor of Beno Gutenberg, New York: Pergamon,1958:17-35.
    Cakir, Z., J. B. Chabalier, R. Armijo, B. Meyer, A. Barka, and G. Peltzer, Coseismic and early post seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations, Geophysical Journal International,2003,155(1):93-110.
    Canitez, N., and M. N. Toksoz, Static and dynamic study of earthquake source mechanism: San Fernando earthquake, Journal of Geophysical Research,1972,77(14):2583-2594, doi: 10.1029/JB077i014p02583.
    Chen, Q., J. T. Freymueller, Z. Yang, C. Xu, W. Jiang, Q. Wang, and J. Liu, Spatially variable extension in southern Tibet based on GPS measurements, Journal of Geophysical Research,2004, 109(B09):B09401, doi:10.1029/2002JB002350.
    Clarke, P. J., Tectonic motions and earthquake deformation in Greece from GPS measurements[D], Oxford, UK:University of Oxford,1996.
    Dawson, J., and P. Tregoning, Uncertainty analysis of earthquake source parameters determined from InSAR:a simulation study, Journal of Geophysical Research,2007,112(09):B09406, doi: 10.1029/2007 JB005209.
    Delouis, B., P. Lundgren, J. Salichon, and D. Giardini, Joint inversion of InSAR and teleseismic data for the slip history of the 1999 Izmit (Turkey) earthquake, Geophysical Research Letters, 2000,27(20):3389-3392, doi:10.1029/2000GL011511.
    Delouis, B., D. Giardini, P. Lundgren, and J. Salichon, Joint inversion of InSAR, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip:application to the 1999 Izmit mainshock, Bulletin of the Seismological Society of America,2002,92(1): 278-299, doi:10.1785/0120000806.
    Delouis, B., J. M. Nocquet, and M. Vallee, Slip distribution of the February 27,2010 Mw=8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data, Geophysical Research Letters,2010,37(17):L17305, doi: 10.1029/2010GL043899.
    Devlin, S., B. Isacks, M. Pritchard, W. Barnhart, and R. Lohman, Depths and focal mechanisms of crustal earthquakes in the central Andes determined from teleseismic waveform analysis and InSAR, Tectonics,2012,31(2):TC2002, doi:10.1029/2011TC002914.
    Du, Y., A. Aydin, and P. Segall, Comparison of various inversion techniques as applied to the determination of a geophysical deformation model for the 1983 Borah Peak earthquake, Bulletin of the Seismological Society of America,1992,82(4):1840-1866.
    Elliott, J., R. Walters, P. England, J. Jackson, Z. Li, and B. Parsons, Extension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology, Geophysical Journal International,2010,183:503-535, doi:10.1111/j.1365-246X.2010.04754.x.
    Elliott, J., B. Parsons, J. Jackson, X. Shan, R. Sloan, and R. Walker, Depth segmentation of the seismogenic continental crust: the 2008 and 2009 Qaidam earthquakes, Geophysical Research Letters,2011,38(6):L06305, doi:10.1029/2011GL046897.
    Elliott, J., E. Nissen, P. England, J. Jackson, S. Lamb, Z. Li, M. Oehlers, and B. Parsons, Slip in the 2010-2011 Canterbury earthquakes, New Zealand, Journal of Geophysical Research,2012, 117(B3):B03401,doi:10.1029/2011JB008868.
    Farr, T. G., and M. Kobrick, Shuttle radar topography mission produces a wealth of data, EOS Transactions Ameriacan Geophysical Union 2000,81:583-585.
    Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf, The shuttle radar topography mission, Reviews of Geophysics,2007, 45(2), doi: 10.1029/2005rg000183.
    Feigl, K. L., A. Sergent, and D. Jacq, Estimation of an earthquake focal mechanism from a satellite radar interferogram:application to the December 4,1992 Landers aftershock, Geophysical Research Letters,1995,22(9):1037-1040, doi:10.1029/94GL03212.
    Feigl, K. L., F. Sarti, H. Vadon, S. McClusky, S. Ergintav, P. Durand, R. Burgmann, A. Rigo, D. Massonnet, and R. Reilinger, Estimating slip distribution for the Izmit mainshock from coseismic GPS, ERS-1, RADARSAT, and SPOT measurements, Bulletin of the Seismological Society of America,2002,92(1):138-160.
    Feigl, K. L., and C. H. Thurber, A method for modelling radar interferograms without phase unwrapping: application to the M 5 Fawnskin, California earthquake of 1992 December 4, Geophysical Journal International,2009,176(2):491-504, doi: 10.1111/j.1365-246X.2008.03881.x.
    Feng, G. C., E. A. Hetland, X. L. Ding, Z. W. Li, and L. Zhang, Coseismic fault slip of the 2008 Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements, Geophysical Research Letters,2010,37(1):L01302, doi:10.1029/2009GL041213.
    Feng, G, and S. Jonsson, Shortcomings of InSAR for studying megathrust earthquakes: the case of the Mw 9.0 Tohoku-Oki earthquake, Geophysical Research Letters,2012,39(10):L10305, doi: 10.1029/2012GL051628.
    Fialko, Y., M. Simons, and D. Agnew, The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, California, from space geodetic observations, Geophysical Research Letters,2001,28(16):3063-3066, doi: 10.1029/2001GL013174.
    Fialko, Y., D. Sandwell, D. Agnew, M. Simons, P. Shearer, and B. Minster, Deformation on nearby faults induced by the 1999 Hector Mine earthquake, Science,2002,297(5588):1858-1862, doi: 10.1126/science.1074671.
    Fialko, Y, D. Sandwell, M. Simons, and P. Rosen, Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit, Nature,2005,435(7040):295-299, doi:10.1038/nature03425.
    Fielding, E. J., P. R. Lundgren, R. Burgmann, and G. J. Funning, Shallow fault-zone dilatancy recovery after the 2003 Bam earthquake in Iran, Nature,2009,458(7234):64-68, doi: 10.1038/nature07817.
    Freed, A. M., R. Burgmann, E. Calais, J. Freymueller, and S. Hreinsdottir, Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology, Journal of Geophysical Research,2006, 111(B1):B01401, doi: 10.1029/2005JB003894.
    Fu, G., W. Sun, Y. Fukuda, and S. Gao, Coseismic displacements caused by point dislocations in a three-dimensional heterogeneous, spherical earth model, Geophysical Journal International,2010, 183(2):706-726, doi:10.1111/j.1365-246X.2010.04757.x.
    Fukahata, Y, A. Nishitani, and M. Matsu'ura, Geodetic data inversion using ABIC to estimate slip history during one earthquake cycle with viscoelastic slip-response functions, Geophysical Journal International,2004,156(1):140-153, doi:10.1111/j.1365-246X.2004.02122.x.
    Fukahata, Y., and T. J. Wright, A non-linear geodetic data inversion using ABIC for slip distribution on a fault with an unknown dip angle, Geophysical Journal International,2008,173(2):353-364, doi:10.1111/j.1365-246X.2007.03713.x.
    Funning, G. J., B. Parsons, T. J. Wright, J. A. Jackson, and E. J. Fielding, Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery, Journal of Geophysical Research,2005,110(B09):B09406, doi: 10.1029/2004 JB003338.
    Funning, G. J., B. Parsons, and T. J. Wright, Fault slip in the 1997 Manyi, Tibet earthquake from linear elastic modelling of InSAR displacements, Geophysical Journal International,2007, 169(3):988-1008, doi:10.1111/j.1365-246X.2006.03318.x.
    Furuya, M., T. Kobayashi, Y. Takada, and M. Murakami, Fault source modeling of the 2008 Wenchuan earthquake based on ALOS/PALSAR data, Bulletin of the Seismological Society of America,2010,100(5B):2750-2766, doi:10.1785/0120090242.
    Gan, W., P. Zhang, Z.-K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng, Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements, Journal of Geophysical Research,2007,112(B08):B08416, doi:10.1029/2005jb004120.
    Goldstein, R., H. Zebker, and C. Werner, Satellite radar interferometry: two-dimensional phase unwrapping, Radio Science,1988,23(4):713-720, doi:10.1029/RS023i004p00713.
    Goldstein, R. M., and C. L. Werner, Radar interferogram filtering for geophysical applications, Geophysical Research Letters,1998,25(21):4035-4038, doi:10.1029/1998GL900033.
    Gutenberg, B., Amplitudes of surface waves and magnitudes of shallow earthquakes, Bulletin of the Seismological Society of America,1945a,35(1):3-12.
    Gutenberg, B., Amplitudes of P, PP, and S and magnitude of shallow earthquakes, Bulletin of the Seismological Society of America,1945b,35(2):57-69.
    Hanks, T. C., and H. Kanamori, A moment magnitude scale, Journal of Geophysical Research,1979, 84(B5):2348-2350.
    Hanssen, R. F., Radar interferometry: data interpretation and error analysis, Dordrecht, Netherlands: Kluwer Academic Publishers,2001:301.
    Hao, K. X., H. J. Si, H. Fujiwara, and T. Ozawa, Coseismic surface-ruptures and crustal deformations of the 2008 Wenchuan earthquake Mw 7.9, China, Geophysical Research Letters, 2009,36(11):L11303, doi:10.1029/2009g1037971.
    Hashimoto, M., M. Enomoto, and Y. Fukushima, Coseismic deformation from the 2008 Wenchuan, China, earthquake derived from ALOS/PALSAR images, Tectonophysics,2010,491(1):59-71, doi:10.1016/j.tecto.2009.08.034.
    Huber, P. J., Robust statistics, New York: Wiley,1981.
    Ji, C., D. J. Wald, and D. V. Helmberger, Source description of the 1999 Hector Mine, California, earthquake, part I:wavelet domain inversion theory and resolution analysis, Bulletin of the Seismological Society of America,2002,92(4):1192-1207, doi: 10.1785/0120000916.
    Ji, C., D. V Helmberger, D. J. Wald, and K. F. Ma, Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake, Journal of Geophysical Research,2003,108(B9):2412, doi: 10.1029/2002JB001764.
    Johnson, K. M., Y. J. Hsu, P. Segall, and S. B. Yu, Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data, Geophysical Research Letters, 2001,28(11):2285-2288, doi:10.1029/2000GL012761.
    Jonsson, S., H. Zebker, P. Segall, and F. Amelung, Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements, Bulletin of the Seismological Society of America,2002,92(4):1377-1389, doi: 10.1785/0120000922.
    Kasahara, K., The nature of seismic origins as inferred from seismological and geodetic observations, Bulletin of the Earthquake Research Institute, Tokyo University,1957,35(3): 473-532.
    Kasahara, K., Physical conditions of earthquake faults as deduced from geodetic data, Bulletin of the Earthquake Research Institute, Tokyo University,1958,36(4):455-464.
    Lanari, R., P. Berardino, M. Bonano, F. Casu, A. Manconi, M. Manunta, M. Manzo, A. Pepe, S. Pepe, and E. Sansosti, Surface displacements associated with the L'Aquila 2009 Mw 6.3 earthquake (central Italy):new evidence from SBAS-DInSAR time series analysis, Geophysical Research Letters,2010,37(20):L20309, doi:10.1029/2010GL044780.
    Lasserre, C., G. Peltzer, F. Cramp, Y. Klinger, J. Van der Woerd, and P. Tapponnier, Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry, Journal of Geophysical Research,2005,110(B12):B12408, doi: 10.1029/2004 JB003500.
    Li, Z., W. Feng, Z. Xu, P. Cross, and J. Zhang, The 1998 Mw 5.7 Zhangbei-Shangyi (China) earthquake revisited: a buried thrust fault revealed with interferometric synthetic aperture radar, Geochemistry Geophysics Geosystems,2008,9(4):Q04026, doi:10.1029/2007GC001910.
    Li, Z., J. R. Elliott, W. Feng, J. A. Jackson, B. E. Parsons, and R. J. Walters, The 2010 Mw 6.8 Yushu (Qinghai, China) earthquake: constraints provided by InSAR and body wave seismology, Journal of Geophysical Research,2011,116(B10):B10302, doi:10.1029/2011JB008358.
    Linkwitz, K., Zur vermittelnden Ausgleichung mit Bedingungsgleichungen fur die Unbekannten bei singularer Teilmatrix, Zeitschrift f. Verm, wesen,1971.
    Lisowski, M., W. Prescott, J. Savage, and M. Johnston, Geodetic estimate of coseismic slip during the 1989 Loma Prieta, California, earthquake, Geophysical Research Letters,1990,17(9): 1437-1440, doi:10.1029/GL017i009p01437.
    Liu, Y., C. Xu, Y. Wen, P. He, and G. Jiang, Fault rupture model of the 2008 Dangxiong (Tibet, China) Mw 6.3 earthquake from Envisat and ALOS data, Advances in Space Research,2012, 50(7):952-962, doi:10.1016/j.asr.2012.06.006.
    Lohman, R. B., and M. Simons, Some thoughts on the use of InSAR data to constrain models of surface deformation: noise structure and data downsampling, Geochemistry Geophysics Geosystems,2005,6(1):Q01007, doi:10.1029/2004GC000841.
    Mansinha, L., and D. E. Smylie, The displacement fields of inclined faults, Bulletin of the Seismological Society of America,1971,61(5):1433-1440.
    Marone, C. J., C. Scholtz, and R. Bilham, On the mechanics of earthquake afterslip, Journal of Geophysical Research,1991,96(B5):8441-8452, doi:10.1029/91JB00275.
    Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, The displacement field of the Landers earthquake mapped by radar interferometry, Nature,1993,364: 138-142, doi:10.1038/364138a0.
    Massonnet, D., K. L. Feigl, H. Vadon, and M. Rossi, Coseismic deformation field of the M= 6.7 Northridge, California earthquake of January 17,1994 recorded by two radar satellites using interferometry, Geophysical Research Letters,1996,23(9):969-972, doi:10.1029/96GL00729.
    Matsuura, M., Inversion of geodetic data. I:mathematical formulation, Journal of Physics of the Earth,1977,25:69-90.
    Meyer, B., R. Armijo, D. Massonnet, J. De Chabalier, C. Delacourt, J. Ruegg, J. Achache, P. Briole, and D. Papanastassiou, The 1995 Grevena (northern Greece) earthquake:fault model constrained with tectonic observations and SAR interferometry, Geophysical Research Letters,1996,23(19): 2677-2680, doi:10.1029/96GL02389.
    Motagh, M., J. Klotz, F. Tavakoli, Y. Djamour, S. Arabi, H. U. Wetzel, and J. Zschau, Combination of precise leveling and InSAR data to constrain source parameters of the M w= 6.5,26 December 2003 Bam earthquake, Pure and Applied Geophysics,2006,163(1):1-18, doi: 10.1007/s00024-005-0005-y.
    Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America,1985,75(4):1135-1154.
    Okada, Y., Internal deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America,1992,82(2):1018-1040.
    Ozawa, S., T. Nishimura, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire, Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature,2011,475(7356): 373-376, doi:10.1038/nature10227.
    Park, J., T. R. A. Song, J. Tromp, E. Okal, S. Stein, G Roult, E. Clevede, G. Laske, H. Kanamori, and P. Davis, Earth's free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake, Science,2005,308(5725):1139-1144, doi:10.1126/science.1112305.
    Parsons, B., T. Wright, P. Rowe, J. Andrews, J. Jackson, R. Walker, M. Khatib, M. Talebian, E. Bergman, and E. Engdahl, The 1994 Sefidabeh (eastern Iran) earthquakes revisited:new evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault, Geophysical Journal International,2006,164(1):202-217, doi: 10.1111/j.1365-246X.2005.02655.x.
    Pathier, E., E. Fielding, T. Wright, R. Walker, B. Parsons, and S. Hensley, Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery, Geophysical Research Letters,2006,33(20):L20310, doi:10.1029/2006GL027193.
    Pedersen, R., S. Jonsson, T. rnadottir, F. Sigmundsson, and K. L. Feigl, Fault slip distribution of two June 2000 Mw 6.5 earthquakes in South Iceland estimated from joint inversion of InSAR and GPS measurements, Earth and Planetary Science Letters,2003,213(3-4):487-502, doi: 10.1016/S0012-821X(03)00302-9.
    Peyret, M., J. Chery, Y. Djamour, A. Avallone, F. Sarti, P. Briole, and M. Sarpoulaki, The source motion of 2003 Bam (Iran) earthquake constrained by satellite and ground based geodetic data, Geophysical Journal International,2007,169(3):849-865, doi: 10.1111/j.1365-246X.2007.03358.x.
    Pollitz, F. F., Coseismic deformation from earthquake faulting on a layered spherical earth, Geophysical Journal International,1996,125(1):1-14, doi: 10.1111/j.1365-246X.1996.tb06530.x.
    Pollitz, F. F., B. Brooks, X. Tong, M. G Bevis, J. H. Foster, R. Biirgmann, R. Smalley Jr, C. Vigny, A. Socquet, and J. C. Ruegg, Coseismic slip distribution of the February 27,2010 Mw 8.8 Maule, Chile earthquake, Geophysical Research Letters,2011,38(9):L09309, doi: 10.1029/2011GL047065.
    Press, F., Displacements, strains, and tilts at teleseismic distances, Journal of Geophysical Research, 1965,70(10):2395-2412, doi:10.1029/JZ070i010p02395.
    Reid, H. F., The mechanism of the earthquake, in the California earthquake of April 18,1906, Washington, DC:Carnegie Institution,1910.
    Reilinger, R., Evidence for postseismic viscoelastic relaxation following the 1959 M=7.5 Hebgen Lake, Montana, earthquake, Journal of Geophysical Research,1986,91(B9):9488-9494, doi: 10.1029/JB091iB09p09488.
    Richter, C. F., An instrumental earthquake magnitude scale, Bulletin of the Seismological Society of America,1935,25(1):1-32.
    Rosen, F. A., S. Hensley, G Peltzer, and M. Simons, Updated repeat orbit interferometry package released, Eos Transactions AGU,2004,85(5):47.
    Rybicki, K., The elastic residual field of a very long strike-slip fault in the presence of a discontinuity, Bulletin of the Seismological Society of America,1971,61(1):79-92.
    Rybicki, K., Static deformation of a laterally inhomogeneous half-space by a two-dimensional strike-slip fault, Journal of Physics of the Earth,1978,26(4):351-366.
    Ryder, I., B. Parsons, T. J. Wright, and G. J. Funning, Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling, Geophysical Journal International, 2007,169(3):1009-1027, doi:10.1111/j.1365-246X.2006.03312.x.
    Ryder, I., R. Burgmann, and J. Sun, Tandem afterslip on connected fault planes following the 2008 Nima-Gaize (Tibet) earthquake, Journal of Geophysical Research,2010,115(B03):B03404, doi: 10.1029/2009JB006423.
    Salichon, J., B. Delouis, P. Lundgren, D. Giardini, M. Costantini, and P. Rosen, Joint inversion of broadband teleseismic and interferometric synthetic aperture radar (InSAR) data for the slip history of the Mw= 7.7, Nazca ridge (Peru) earthquake of 12 November 1996, Journal of Geophysical Research,2003,108(B2):2085, doi:10.1029/2001JB000913.
    Sato, R., and M. Matsuura, Static deformations due to the fault spreading over several layers in a multi-layered mdedium. Part I. displacement, Journal of Physics of the Earth,1973,21(3): 227-249.
    Savage, J., and L. Hastie, A dislocation model for the Fairview Peak, Nevada, earthquake, Bulletin of the Seismological Society of America,1969,59(5):1937-1948.
    Schaffrin, B., A note on constrained total least-squares estimation, Linear algebra and its applications,2006,417(1):245-258, doi:10.1016/j.laa.2006.03.044.
    Segall, P., and J. L. Davis, GPS applications for geodynamics and earthquake studies, Annual Review of Earth and Planetary Sciences,1997,25(1):301-336, doi: 10.1146/annurev.earth.25.1.301.
    Serpelloni, E., L. Anderlini, and M. Belardinelli, Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L'Aquila earthquake from inversion of GPS displacements, Geophysical Journal International,2012,188(2):473-489, doi: 10.1111/j.1365-246X.2011.05279.x.
    Shao, G, C. Ji, and E. Hauksson, Rupture process and energy budget of the 29 July 2008 Mw 5.4 Chino Hills, California, earthquake, Journal of Geophysical Research,2012,117(B7):B07307, doi:10.1029/2011JB008856.
    Shen, Z. K., D. D. Jackson, Y. Feng, M. Cline, M. Kim, P. Fang, and Y. Bock, Postseismic deformation following the Landers earthquake, California,28 June 1992, Bulletin of the Seismological Society of America,1994,84(3):780-791.
    Shen, Z. K., J. Sun, P. Zhang, Y. Wan, M. Wang, R. Burgmann, Y. Zeng, W. Gan, H. Liao, and Q. Wang, Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake, Nature Geoscience,2009,2(10):718-724, doi: 10.1038/ngeo636.
    Simons, M., Y. Fialko, and L. Rivera, Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations, Bulletin of the Seismological Society of America,2002,92(4):1390-1402, doi: 10.1785/0120000933.
    Steketee, J. A., On Volterra's dislocations in a semi-infinite elastic medium, Canadian Journal of Physics,1958,36(2):192-205.
    Sun, W., S. Okubo, and P. Vanicek, Global displacements caused by point dislocations in a realistic earth model, Journal of Geophysical Research,1996,101(B4):8561-8577, doi: 10.1029/95JB03536.
    Sun, J., Z. Shen, X. Xu, and R. Burgmann, Synthetic normal faulting of the 9 January 2008 Nima (Tibet) earthquake from conventional and along-track SAR interferometry, Geophysical Research Letters,2008,35(22):L22308, doi: 10.1029/2008GL035691.
    Sun, W., S. Okubo, G. Fu, and A. Araya, General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-applicable to deformed earth surface and space-fixed point, Geophysical Journal International,2009,177(3):817-833, doi:10.1111/j.1365-246X.2009.04113.x.
    Sun, J., K. M. Johnson, Z. Cao, Z. Shen, R. Burgmann, and X. Xu, Mechanical constraints on inversion of coseismic geodetic data for fault slip and geometry:example from InSAR observation of the 6 October 2008 Mw 6.3 Dangxiong-Yangyi (Tibet) earthquake, Journal of Geophysical Research,2011,116(B01):B01406, doi:10.1029/2010JB007849.
    Suzuki, W., S. Aoi, H. Sekiguchi, and T. Kunugi, Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M 9.0) inverted from strong-motion data, Geophysical Research Letters, 2011,38(00):L00G16, doi:10.1029/2011GL049136.
    Talebian, M., E. J. Fielding, G. J. Funning, M. Ghorashi, J. Jackson, H. Nazari, B. Parsons, K. Priestley, P. A. Rosen, and R. Walker, The 2003 Bam (Iran) earthquake:rupture of a blind strike-slip fault, Geophysical Research Letters,2004,31(11):L11611, doi: 10.1029/2004GL020058.
    Thatcher, W, Nonlinear strain buildup and the earthquake cycle on the San Andreas fault, Journal of Geophysical Research,1983,88(B7):5893-5902, doi:10.1029/JB088iB07p05893.
    Tobita, M., T. Nishimura, T. Kobayashi, K. X. Hao, and Y. Shindo, Estimation of coseismic deformation and a fault model of the 2010 Yushu earthquake using PALSAR interferometry data, Earth and Planetary Science Letters,2011,307(3):430-438, doi:10.1016/j.epsl.2011.05.017.
    Tocher, D., Earthquake energy and ground breakage, Bulletin of the Seismological Society of America,1958,48(2):147-153.
    Tong, X., D. T. Sandwell, and Y. Fialko, Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data, Journal of Geophysical Research,2010,115(B04):B04314, doi:10.1029/2009 JB006625.
    Van Huffel, S., and J. Vandewalle, The total least squares problem:computational aspects and analysis, Philadelphia, Pennsylvania:SIAM,1991:300.
    Walters, R., J. Elliott, N. D'Agostino, P. England, I. Hunstad, J. Jackson, B. Parsons, R. Phillips, and G. Roberts, The 2009 L'Aquila earthquake (central Italy):a source mechanism and implications for seismic hazard, Geophysical Research Letters,2009,36:17312, doi: 10.1029/2009GL039337.
    Wang, R., F. L. Martin, and F. Roth, Computation of deformation induced by earthquakes in a multi-layered elastic crust-FORTRAN programs EDGRN/EDCMP, Computers & Geosciences, 2003,29(2):195-207, doi:10.1016/S0098-3004(02)00111-5.
    Wang, H., C. Xu, and L. Ge, Coseismic deformation and slip distribution of the 1997 Mw7.5 Manyi, Tibet, earthquake from InSAR measurements, Journal of Geodynamics,2007,44(3-5): 200-212, doi:10.1016/j.jog.2007.03.003.
    Wang, Q., X. Qiao, Q. Lan, J. Freymueller, S. Yang, C. Xu, Y. Yang, X. You, K. Tan, and G Chen, Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan, Nature Geoscience,2011,4(9):634-640, doi:10.1038/ngeo1210.
    Wells, D. L., and K. J. Coppersmith, New empirical relationships amont magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America,1994,84(4):974-1002.
    Wen, Y.-Y, and K.-F. Ma, Fault geometry and distribution of asperities of the 1997 Manyi, China (Mw= 7.5), earthquake: Integrated analysis from seismological and InSAR data, Geophysical Research Letters,2010,37(5):L05303, doi:10.1029/2009g1041976.
    Wen, Y, Z. Li, C. Xu, I. Ryder, and R. Burgmann, Postseismic motion after the 2001 Mw 7.8 Kokoxili earthquake in Tibet observed by InSAR time series, Journal of Geophysical Research, 2012,117(B8):B08405, doi:10.1029/2011JB009043.
    Wiggins, R. A., The general linear inverse problem: Implication of surface waves and free oscillations for earth structure, Reviews of Geophysics and Space Physics,1972,10(1):251-285, doi:10.1029/RG010i001p00251.
    Williams, S., Y. Bock, and P. Fang, Integrated satellite interferometry: tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products, Journal of Geophysical Research,1998,103(B11):27051-27067, doi:10.1029/98JB02794.
    Wright, T. J., B. Parsons, J. Jackson, M. Haynes, E. Fielding, P. England, and P. Clarke, Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling, Earth and Planetary Science Letters,1999,172(1):23-38, doi: 10.1016/S0012-821X(99)00186-7.
    Wright, T. J., Crustal deformation in Turkey from Synthetic Aperture Radar Interferometry[D], Oxford, UK:University of Oxford,2000.
    Wright, T. J., Remote monitoring of the earthquake cycle using satellite radar interferometry, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,2002,360(1801):2873-2888, doi:10.1098/rsta.2002.1094.
    Wright, T. J., Z. Lu, and C. Wicks, Source model for the Mw 6.7,23 October 2002, Nenana Mountain earthquake (Alaska) from InSAR, Geophysical Research Letters,2003,30(18):1974, doi:10.1029/2003GL018014.
    Wright, T. J., Z. Lu, and C. Wicks, Constraining the slip distribution and fault geometry of the Mw 7.9,3 November 2002, Denali fault earthquake with interferometric synthetic aperture radar and global positioning system data, Bulletin of the Seismological Society of America,2004,94(6B): S175-S189, doi:10.1785/0120040623.
    Xu, C., K. Ding, J. Cai, and E. W. Grafarend, Methods of determining weight scaling factors for geodetic-geophysical joint inversion, Journal of Geodynamics,2009a,47(1):39-46, doi:DOI 10.1016/j.jog.2008.06.005.
    Xu, X., X. Wen, G. Yu, G. Chen, Y. Klinger, J. Hubbard, and J. Shaw, Co seismic reverse-and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China, Geology,2009b,37(6):515-518, doi:10.1130/G25462A.1.
    Xu, C., Y. Liu, Y. Wen, and R. Wang, Coseismic slip distribution of the 2008 Mw 7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data, Bulletin of the Seismological Society of America,2010,100(5B):2736-2749, doi:10.1785/0120090253.
    Zha, X., R. Fu, Z. Dai, P. Jing, S. Ni, and J. Huang, Applying InSAR technique to accurately relocate the epicentre for the 1999 Ms=5.6 Kuqa earthquake in Xinjiang province, China, Geophysical Journal International,2009,176(1):107-112, doi: 10.1111/j.1365-246X.2008.03994.x.
    Zha, X., Z. Dai, L. Ge, K. Zhang, X. Li, X. Chen, Z. Li, and R. Fu, Fault geometry and slip distribution of the 2010 Yushu earthquakes inferred from InSAR measurement, Bulletin of the Seismological Society of America,2011,101(4):1951-1958, doi:10.1785/0120100192.
    Zhang, L., J. Wu, L. Ge, X. Ding, and Y. Chen, Determining fault slip distribution of the Chi-Chi Taiwan earthquake with GPS and InSAR data using triangular dislocation elements, Journal of Geodynamics,2008,45(4):163-168, doi:10.1016/j.jog.2007.10.003.
    Zhang, G, C. Qu, X. Shan, X. Song, C. Wang, J. C. Hu, and R. Wang, Slip distribution of the 2008 Wenchuan Ms 7.9 earthquake by joint inversion from GPS and InSAR measurements:a resolution test study, Geophysical Journal International,2011,186(1):207-220, doi: 10.1111/j.1365-246X.2011.05039.x.
    常利军,王椿镛,丁志峰,周民都,杨建思,徐智强,姜旭东,郑秀芬,青藏高原东北缘上地幔各向异性研究,地球物理学报,2008,51(2):431-438.
    常旭,刘伊克,地震正反演与成像,北京:华文出版社,2001:172.
    陈桂华,徐锡伟,J. M. Nocquet, Y. Klinger,张晓青,2008年青海大柴旦Ms 6.3地震的连续GPS观测记录及其发震构造意义[A],in:中国地球物理年会,宁波:地震出版社,2010:730-731.
    陈颙,测定浅震震源参数的宏观方法,地球物理学报,1975,18(4):246-255.
    陈颙,黄庭芳,刘恩儒,岩石物理学,合肥:中国科学技术大学出版社,2009:496.
    陈运泰,林邦慧,林中洋,李志勇,根据地面形变的观测研究1966年邢台地震的震源过程,地球物理学报,1975,18(3):164-181.
    陈运泰,林邦慧,王新华,黄立人,刘妙龙,用大地测量资料反演的1976年唐山地震的位错模式,地球物理学报,1979,22(3):201-217.
    陈运泰,刘瑞丰,地震的震级,地震地磁观测与研究,2004,25(6):1-12.
    崔希璋,於宗俦,陶本藻,刘大杰,于正林,孙海燕,王新洲,广义测量平差,武汉:武汉大学出版社,2005:171.
    邓起东,陈社发,赵小麟,龙门山及其邻区的构造和地震活动及动力学,地震地质,1994,16(4):389-403.
    邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝,中国活动构造基本特征,中国科学,2002, 32(12):1020-1031.
    杜平山,则木河断裂带的走滑位移及滑动速率,四川地震,2000,1-2:49-64.
    冯万鹏,许力生,许忠淮,李振洪,李春来,赵华,利用InSAR资料反演2008年西藏改则Mw6.4和Mw 5.9地震的断层参数,地球物理学报,2009,52(4):983-993.
    冯万鹏,许力生,李振洪,2008年10月当雄Mw 6.3级地震断层参数的InSAR反演及其构造意义,地球物理学报,2010,53(5):1134-1142.
    傅容珊,黄建华,地球动力学,北京:高等教育出版社,2001:320.
    傅容珊,刘斌,固体地球物理学基础,合肥:中国科学技术大学出版社,2009:237.
    高星,段宗奇,王卫民,郭志,2008年10月6日当雄Ms 6.6级地震破裂过程,地球物理学报,2010,53(9):2083-2090.
    巩守义,王庆良,林继华,共和6.9级地震垂直形变场位错模式及其演化特征的研究,地震学报,1993,15(3):289-295.
    国家地震局阿尔金活动断裂带课题组,阿尔金活动断裂带,北京:地震出版社,1992:335.
    国家地震局地质研究所,宁夏自治区地震局,海原活动断裂带,北京:地震出版社,1990:335.
    国家地震局地质研究所,国家地震局兰州地震研究所,祁连山—河西走廊活动断裂系,北京:地震出版社,1993:340.
    黄汉纯,黄庆华,马寅生,柴达木盆地地质与油气预测,北京:地质出版社,1996:257.
    黄立人,李建中,鲜水河断裂带上两次地震的反演研究,地震研究,1988,11(4):361-367.
    黄幼才,数据探测和抗差估计,北京:测绘出版社,1990:388.
    蒋峰云,王双绪,张希,张晓亮,薛富平,郑申宝,王继英,用二维有限元研究青藏块体东北缘地壳的水平运动,大地测量与地球动力学,2007,27(4):21-30.
    蒋光伟,涂锐,抗差Helmert方差分量估计在精密单点定位中的应用,测绘科学,2011,36(6):187-188.
    康开轩,邢灿飞,李辉,邢乐林,彭鹏,周新,抗差Helmert方差分量估计在重力网平差中的应用,大地测量与地球动力学,2008,28(5):115-119.
    李德仁,利用选择权迭代法进行粗差定位,武汉测绘科技大学学报,1984,9(1):46-68.
    李德仁,误差处理和可靠性理论,北京:测绘出版社,1988:331.
    李德仁,模型误差理论及其应用,武测科技,1989,4:1-8.
    李明峰,陶本藻,平差系统模型误差补偿的配置法,大地测量与地球动力学,2004,24(3):11-14.
    李世愚,陈运泰,地震震源的研究,地震学报,2003,25(5):453-464.
    李振洪,刘经南,许才军,InSAR数据处理中的误差分析,武汉大学学报·信息科学版,2004,29(1):72-76.
    李志才,许才军,赵少荣,温扬茂,邓洪涛,同震变形分析中不同地球结构模型差异性研究,大地测量与地球动力学,2005,25(3):39-44.
    李智敏,屠泓为,田勤俭,张军龙,李文巧,2008年青海大柴旦6.3级地震及发震背景研究,地球物理学进展,2010,25(3):768-774.
    刘洁,宋惠珍,邢台地震断层运动特征反演分析,地震地质,1999,21(3):229-237.
    刘经南,姚宜斌,施闯,基于等价方差-协方差阵的稳健最小二乘估计理论研究,测绘科学,2000,25(3):1-7.
    刘小龙,袁道阳,青海德令哈巴音郭勒河断裂带的新活动特征,西北地震学报,2004,26(4):303-308.
    刘长建,马高峰,Helmert方差分量估计的粗差检验与抗差解,测绘信息与工程,2002,27(6): 5-7.
    刘长建,张前恩,王玉成,随机模型不正确对方差一致性检验统计量的影响,测绘学院学报,2004,21(2):85-87.
    鲁铁定,总体最小二乘平差理论及其在测绘数据处理中的应用[D],武汉:武汉大学,2010.
    马超,单新建,昆仑山Ms 8.1地震震源参数的多破裂段模拟研究,地球物理学报,2006,49(2):428-437.
    欧吉坤,粗差的拟准检定法(QUAD法),测绘学报,1999,28(1):15-20.
    乔学军,游新兆,杨少敏,王琪,杜瑞林,当雄Ms 6.6地震的InSAR观测及断层位错反演,大地测量与地球动力学,2009,29(6):1-7.
    秦显平,杨元喜,抗差方差分量估计在卫星定轨中的应用,大地测量与地球动力学,2003,23(4):40-43.
    施闯,大规模高精度GPS网平差与分析理论及其应用[D],武汉:武汉测绘科技大学,1998.
    宋方敏,汪一鹏,俞维贤,曹忠权,申旭辉,沈军,小江活动断裂带,北京:地震出版社,1998:237.
    宋龙伯,江铁鹰,断层破裂长度与震级关系的讨论,地震研究,1987,10(1):45-54.
    孙海燕,吴云,半参数回归与模型精化,武汉大学学报·信息科学版,2002,27(2):172-174.
    孙建宝,徐锡伟,沈正康,石耀霖,梁芳,基于线弹性位错模型及干涉雷达同震形变场反演1997年玛尼Mw 7.5级地震参数-I.均匀滑动反演,地球物理学报,2007,50(4):1097-1110.
    唐颖哲,杨元喜,宋小勇,2000国家GPS大地控制网数据处理方法与结果,大地测量与地球动力学,2003,23(3):77-82.
    陶本藻,附加系统参数的平差模型和假设检验,测绘学报,1986,15(4):241-248.
    陶本藻,施闯,姚宜斌,顾及系统误差的平差模型研究,测绘学院学报,2002,19(2):79-81.
    陶本藻,地球重力场平差模型误差的控制,武汉大学学报·信息科学版,2003,28(6):668-671.
    陶本藻,测量数据处理的统计理论和方法,北京:测绘出版社,2007:238.
    万永革,沈正康,王敏,张祖胜,甘卫军,王庆良,盛书中,根据GPS和InSAR数据反演2001年昆仑山口西地震同震破裂分布,地球物理学报,2008,51(4):1074-1084.
    王椿镛,朱成男,刘玉权,用地形变资料测定通海地震的地震断层参数,地球物理学报,1978,21(3):191-198.
    王根厚,冉书明,李明,塔里木盆地北缘赛什腾—锡铁山左行逆冲断裂及地质意义,地质力学学报,2001,7(3):254-260.
    王家映,地球物理反演理论,北京:高等教育出版社,2011:187.
    王乐洋,基于总体最小二乘的大地测量反演理论及应用研究[D],武汉:武汉大学,2011.
    王绳祖,烈度分布的几何特征和震源参数的估计,地震地质,1988,10(1):1-9.
    王振杰,测量中不适定问题的正则化解法,北京:科学出版社,2006.
    温扬茂,利用InSAR资料研究若干强震的同震和震后形变[D],武汉:武汉大学,2009.
    温扬茂,许才军,基于敏感度的迭代拟合法反演玛尼Ms 7.9级地震滑动分布,武汉大学学报·信息科学版,2009,34(6):732-735.
    温扬茂,何平,许才军,刘洋,联合Envisat和ALOS卫星影像确定L'Aquila地震震源机制,地球物理学报,2012,55(1):53-65.
    温扬茂,许才军,刘洋,何平,利用断层自动剖分技术的2008年青海大柴旦Mw 6.3级地震InSAR反演研究,武汉大学学报·信息科学版,2012,37(4):458-462.
    吴珍汉,胡道功,刘崎胜,夏浩东,鄢犀利,西藏当雄地区构造地貌及形成演化过程,地球学报,2002,23(5):423-428.
    吴中海,赵希涛,江万,胡道功,西藏当雄—羊八井盆地的第四纪地质与断裂活动研究,地质力学学报,2006,12(3):305-316.
    吴中海,叶培盛,吴珍汉,2008年10月6日西藏当雄Ms 6.6级强震的地震烈度控震构造和发震机理,地质通报,2009,28(6):713-725.
    武汉大学测绘学院测量平差学科组,误差理论与测量平差基础,武汉:武汉大学出版社,2003:225.
    徐锡伟,闻学泽,叶建青,马保起,陈杰,周荣军,何宏林,田勤俭,何玉林,王志才,孙昭民,冯希杰,于贵华,陈立春,陈桂华,于慎鄂,冉勇康,李细光,李陈侠,安艳芬,汶川Ms 8.0地震地表破裂带及其发震构造,地震地质,2008,30(3):597-629.
    许才军,随机模型误差对函数模型选择的影响,武汉测绘科技大学学报,1992,17(3):36-42.
    许才军,大地测量联合反演理论和方法研究进展,武汉大学学报·信息科学版,2001,26(6):555-561.
    许才军,刘洋,温扬茂,利用GPS资料反演汶川Mw 7.9级地震滑动分布,测绘学报,2009,38(3):195-201.
    杨元喜,抗差估计理论及其应用,北京:八一出版社,1993:303.
    杨元喜,自适应动态导航定位,北京:测绘出版社,2006:324.
    叶建青,沈军,汪一鹏等,柴达木盆地北缘的活动构造[A],in:《活动断裂研究》编委会,活动断裂研究,北京:地震出版社,1996:172-180.
    袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华,青藏高原东北缘晚第四纪活动构造的几何图像与构造转换,地质学报,2004,78(2):270-278.
    袁旭东,汪汉胜,柯小平,王志勇,同震变形中模型分层和重力影响研究,大地测量与地球动力学,2007,27(1):69-76.
    张朝玉,大地测量反演若干理论问题研究[D],武汉:武汉大学,2006.
    张国宏,屈春燕,宋小刚,汪驰升,单新建,胡植庆,基于InSAR同震形变场反演汶川 Mw 7.9地震断层滑动分布,地球物理学报,2010,53(2):269-279.
    张红,王超,单新建,马瑾,汤益先,郭子祺,基于SAR差分干涉测量的张北—尚义地震震源参数反演,科学通报,2001,46(21):1837-1840.
    张军,尼玛,尚荣波,2008年西藏当雄6.6级地震浅析,高原地震,2008,20(4):40-45.
    张克亮,魏东平,重力与粘弹性对汶川地震同震及震后变形的影响,物理,2009,38(4):254-260.
    张培震,中国大陆岩石圈最新构造变动与地震灾害,第四纪研究,1999,5:404-413.
    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪,中国大陆的强震活动与活动地块,中国科学D辑,2003,33(增刊):12-20.
    张勇,冯万鹏,许力生,周成虎,陈运泰,2008年汶川大地震的时空破裂过程,中国科学D辑,2008,38(10):1186-1194.
    张勇,许力生,陈运泰,2008年汶川大地震震源机制的时空变化,地球物理学报,2009,52(2):379-389.
    张勇,许力生,陈运泰,2010年青海玉树地震震源过程,中国科学,2010,40(7):819-821.
    张祖胜,利用大地测量资料反演地震震源参数的若干问题,地震学报,1984,6(2):167-181.
    赵明,陈运泰,巩守义,王庆良,用水准测量资料反演1990年青海共和地震的震源机制,地壳形变与地震,1992,12(4):1-11.
    赵少荣,利用大地测量资料反演的1976年唐山地震双断层位错模式,测绘学报,1995,24(4):250-258.
    中国地震局震害防御司,中国历史强震目录,北京:地震出版社,1995.
    中国地震局震害防御司,中国近代地震目录,北京:中国科学技术出版社,1999.
    周江文,经典误差理论与抗差估计,测绘学报,1989,18(2):115-120.
    周江文,黄幼才,杨元喜,欧吉坤,抗差最小二乘法,武汉:华中理工大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700