基于DEM的山区玉米生产潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文着眼于山区粮食资源的可持续开发利用,基于DEM数据,利用GIS技术、ANUSPLIN和DSP等软件,并结合相关实测气象数据,建立山区复杂地形条件下的生态环境各因子时空分布模型,定量计算日照时数、太阳辐射、温度、降水量、作物参照蒸散量等生态因子。在此基础上,采用联合国粮农组织(FAO)推荐的农业生态区域法(AEZ),对豫西山区主要粮食作物之一——玉米的生产潜力资源进行估算;并结合模拟的研究区各生态因子分布情况,分析山区玉米作物的生产潜力资源禀赋;另外与实际大田生产统计数据作对比,对基于县域尺度单元的生产潜力利用率进行评价,同时也计算并分析了相对应的各层次生态因子的利用效率。其研究结果表明:
     1)豫西山区玉米的各层次生产潜力地域差异显著,空间分异规律较为明显,整体值较高。光合、光温生产潜力整体上呈现出由中间向四周逐渐增加的趋势,其平均值分别为达到56.5t/hm2、10.8t/ hm2;气候生产潜力和自然生产潜力整体上表现出南高北低的空间分布格局,其平均值分别为9.05t/ hm2、6.39t/ hm2。
     2)分析各层次的生产潜力利用率,其空间分布也有着一定的规律性。光合、光温潜力利用率大致表现出从西向东递增的空间分布趋势,其平均值分别为6.13%、31.72%;气候潜力利用率和自然潜力利用率却呈现出由南至北大体增多的空间分布格局,其平均值分别达到39.03%、56.11%。说明了全区玉米现实生产力距离光合生产潜力、光温生产潜力、气候生产潜力和自然生产潜力上限分别存在16倍多、三倍多、2.5倍及超2/5的增长空间。
     3)定量计算并分析豫西地区的光能利用率、热量产出率、降水产出率和土地产出率,发现其生态环境因子利用率与相对应层次的生产潜力和生产潜力利用率具有一定的相关性。
     4)豫西南部和西北地区是现实资源利用率较低、可开发空间较大的区域;而中东部地区,各层次生产潜力利用率均较高,是现实资源利用率较高、可开发程度较低的区域。提高豫西的玉米生产量,在短期时间内,行之有效的快捷方法是提高中东部地区的玉米生产潜力资源利用效率,可采用的方法有延长生长期、控制田间持水量、改良土壤或培育新品种等。从长远战略来看,整体上提升豫西玉米的产量,必须大力开发南部和西北部地区的生产潜力,可采用适时播种和收获、及时排涝和抗旱、科学施肥及改良品种等方法。
Focusing Grain resources sustainable development using in the mountainous area, the thesis establishes spatial-temporal distribution model of the eco-environmental factors (including sunshine hours, radiation, temperature, precipitation as well as crop reference evapotranspiration) in complex terrain of mountainous area with the meteorological data, basing on the DEM data, Using the GIS and software of ANUSPLIN and DSP. Proceeding from this, the FAO-AEZ approach is adopted to estimate the potential productivity of maize, which is one of the important crops in Western Henan mountainous. This paper analyzes the potential productivity resources of maize with the simulation of ecological factors in study area, and evaluates the potential productivity resources utilization efficiency at country cell level, comparing the actual production data. At the same time, the paper calculates and analyzes the utilization efficiency of ecological factors at various levels. The results as follows:
     1) The difference of the potential productivity of maize at various levels in the Western Henan mountainous is significant. But, the spatial distribution regular is more manifest, and the overall value is high. The results show that in general the potential productivity of photosynthetic and photo-temperature tends to be higher from center to surroundings, and the average potential productivity of photosynthetic and photo-temperature is 56.5t/hm2 and 10.8t/hm2. But the potential productivity of climate and the potential productivity of nature tend to be higher in South than in North in general, the average value of which is 9.05t/ hm2 and 6.39t/ hm2.
     2) It shows that the spatial distribution also has some regularity to analyzing the potential productivity resources utilization efficiency at various levels. The utilization efficiency of photosynthetic and utilization efficiency of phtoto-temperature display that the value tends to increasing from West to East, and the average value is 6.13%, 31.72%. But the utilization efficiency of climate and utilization efficiency of nature are increasing from South to North, and the average value is 39.03%, 56.11%. The results shows that the present maize productivity has more than 16 double, 3 double, 2.5 double and 2/5 increasing space according to the potential photosynthetic, photo-temperature ,climate and nature productivity.
     3) To calculate and analyze the utilization efficiency of light, the productive efficiency of heat, the productive efficiency of Precipitation, the productive efficiency of land, we could find that there is a relationship between the utilization efficiency of eco-environmental factors and the potential productivity, the potential productivity resources utilization efficiency.
     4) The South region and Northwest region in Western of Henan province have the lower utilization efficiency of reality resources, which also have more space to improve the productivity; but the Mideast has higher potential productivity and reality resources utilization efficiency and lower development degree. In short period, to improving the maize productivity in Western of Henan, it is a better and quick methods to enhance the potential productivity resources utilization efficiency in Mideast, including extending growth period, controlling field capacity, improving soil and cultivating new varieties. In the long term strategy, it is the best methods to large developing the potential productivity in South and Northwest, by timely planting and harvesting, timely draining and drought resistance, scientific fertilization, improving species and so on.
引文
[1]UNEP/WCMC. Mountains and Mountain Forests[M].UK,Cambridge,2002:365-370.
    [2]FAO Report on the Agro-Ecological Zones Project. Methodology and Results for Africa.[M]. Rome,1978,(1):4-11.
    [3]Bliss.L.C., Chabot B.F. Physiological Ecology of North American Plant Communities[J]. New York, Chapman and Hall,1995:41-65.
    [4]中国科学院地理研究所经济地理研究室编著.中国农业地理总论[M].北京:科学出版社,1980:105-106.
    [5]王宇.云南山区日照时数的垂直分布[J].山地研究,1993,11(1):1-8.
    [6]马志福,谭芳.塔里木盆地日照时数分布规律研究与应用[J].资源科学,2000,22(2):40-44.
    [7]Power, H,C. Estimating clear-sky beam irradiation from sunshine duration[J].Solar Energy,2002,71(4):217-224.
    [8]傅抱璞.山地气候[M].北京:科学出版社,1983:182-183.
    [9] Fu, P. and Rich P.M. Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales[R].San Diego: ERSI,1999.
    [10]李占清.坡面散射辐射的分布特征及其计算模式[J].气象学报,1988,46(3):349-356.
    [11]翁笃鸣,罗哲贤.山区地形气候[M].北京:气象出版社,1990:1-10.
    [12]Lalit Kumar, Andrew K Skidmore, Edmund Knowles Modeling topographic variation in solar radiation in a GIS environment[J]. Geographical Information Science,1997,11(5):475-497.
    [13]Wang J, White K,Robinson G J. Estimating Surface Net Solar Radiation by Use of Landsat-5 TM and Digital Elevation Models[J]. Int J. Remote Sensing ,2002,21(1):31-43.
    [14]曾燕,邱新法,缪启龙等.起伏地形下我国可照时间的空间分布[J].自然科学进展,2003,13(5):545-548.
    [15]张勇,陈良富,柳钦火等.日照时间的地形影响与空间尺度效应[J].遥感学报,2005,9(45):521-529.
    [16] DOZIER J, OUTCALT S I. A approach toward energy balance simulation over rugged terrain[C].Geog Ana l,1979,11:65-85.
    [17] DOZIER J, FREW J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data[J].IEEE Transaction on Geoscience and Remote Sensing, 1990,28(5): 963-969.
    [18] CONESE C, GILABERT M A, MASELLI F. Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models[J]. Photogrammetric Engineering and Remote Sensing,1990,28(5):963-969.
    [19] CIVCO D L. Topographic normalization of landsat the matic mapper digital imagery[J]. Photogrammatric Engineering and Remote Sensing,1993,59(12):1745-1753.
    [20]傅抱璞,虞静明,卢其尧.山地气候资源与开发利用[M].南京:南京大学出版社,1996.
    [21]朱志辉.墙面太阳辐照的理论计算与模式估计——以上海为例[J].地理学报,1987,42(1):28-41.
    [22]李占清,翁笃鸣.丘陵山地总辐射的计算模式[J].气象学报,1988,46(4):461-468.
    [23]李新,程国栋,陈贤章,等.任意条件下太阳辐射模型的改进[J].科学通报,1999,44(9):993-998.
    [24]李新,陈贤章,增群柱.利用数字高程模型计算复杂地形下的短波辐射平衡[J].1996,18(增刊):344-353.
    [25]汤国安,杨昕,张茜等.基于数字高程模型的太阳辐射模拟[J].西北大学学报(自然科学网络版),2003,7(1):212-215.
    [26]翁笃鸣.大寨大队沟梁坡地的小气候分析[J].南京气象学报,1978,(1):68-80.
    [27]倪国裕,杨荆安,刘可群等.神农架山地的若干气候特征[A].亚热带丘陵山区农业气候资源研究论文集,北京:气象出版社,1988:89-96.
    [28]卢其尧.山区年月平均气温推算方法的研究[J].地理学报,1988,45(3):213-222.
    [29]虞静明,詹兴伴,张宜平.山区小地形对温度影响的确定[J].地理学报,1988,43(2):224-231.
    [30]沈国权.考虑宏观地形的小网格温度场分析方法及应用[J].气象学报,1994,(6):22-27.
    [31]Yizhak,F.A method of simulating monthly mean temperature in county-size mountain areas[J]. Applied Meteorology,2001,(35):1153-1158.
    [32]陈晓峰等.利用GIS方法建立山区温度分布模型[J].中国图像图形学报,1998,3(3):234-238.
    [33]张洪亮,倪绍祥,邓自旺等.基于DEM的山区气温空间模拟方法[J].山地学报,2002,20(3):360-364.
    [34]陈晓峰,刘纪远,张增祥等.利用GIS方法建立山区温度分布模型[J].中国图象图形学报,1998,(03):234-238.
    [35]杨青,史玉光,袁玉江等.基于DEM的天山山区气温和降水序列推算方法研究[J].冰川冻土,2006,(03):337-341.
    [36]杨昕,汤国安,王春等.基于DEM的山区气温地形修正模型——以陕西省耀县为例[J].地理科学,2007,(04):525-530.
    [37]莫申国,张百平.基于DEM的秦岭温度场模拟[J].山地学报,2007,25(4):406-411.
    [38]蔡迪花,郭铌,李崇伟.基于DEM的气温插值方法研究[J].干旱气象,2009,(01):10-17.
    [39]袁淑杰,谷晓平,缪启龙等[J].自然资源学报,2010,25(5):879-865.
    [40]Miquel Ninyer ola, Xavier Pons, Joan M Roure. A methodological approach of climatol-ogical modeling of air temperature and precipitation through GIS techniques[J]. International Journal of Climatology, 2000, 20 (14): 1823-1841.
    [41]Ustmul Z,Czekierda D.Application of GIS for the development of climatological air temperature maps: An example from Poland[J]. Meteorological Applications,2005,12(1):43-50.
    [42]刘志红,Li Lingtao, Tin R等.专用气候数据空间插值软件ANUSPLIN及其应用[J].气象学报,2008,34(2):92-100.
    [43]Eleanor, P Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J].Journal of Hydrology, 2000,(228):113-129.
    [44]Daly C, Neilson, R.P, Stow C.D. A Statistical topographic model for mapping climatological precipitation over mountainous terrain[J]. International Journal of Climatology,2003,(23):1359-1371.
    [45]Jorge Marques, Javier L., Estimation models for precipitation in mountainous regions:the use of GIS and multivariate analysis[J].Journal of Hydrology,2003,(270):1-11.
    [46]Serrano M, Pons X, A methodological approach of climatological modeling of air temperature and precipitation through GIS techniques[J]. International Journal of Climatology,2000,20(14):1823-1841.
    [47]梁天刚,王兮之,戴若兰.多年平均降水资源空间变化模拟方法的研究[J].西北植物学报,2000,20(5):856-862.
    [48]孙鹏森,刘世荣,李崇巍.基于地形和主风向效应模拟山区降水空间分布[J].生态学报,2004,(09):1910-1915.
    [49]鲁振宇,杨太保,郭万钦.降水空间插值方法应用研究[J].兰州大学学报,2006,42(4):11-14.
    [50]朱蕾,黄敬峰.山区县域尺度降水量空间插值方法比较[J].农业工程学报,2007,(07):458-465.
    [51]Smith M. Report on the expert consultation on revision of FAO methodologies for crop water requirements[R]. Rome ,FAO,1991:265-269.
    [52]Hashmi M A, Garcia L A, Fontane D G. Spatial estimation of regional crop evapotranspiration[J]. Transactions of the ASAE,1995, 39 (5):1345-1351.
    [53]Chung H W, Choi J Y, Bae S J. Calculation of spatial distribution of potential evapotranspiration using GIS[A].ASAE Annual International Meeting.USA, Paper American Society of Agricultural Engineers, 1997:973-983.
    [54]牛振国,李保国,张凤荣,陈焕伟.参考作物蒸散量的分布式模型[J].自然科学进展, 2002,(03):303-307.
    [55]Odhiambo L O, Yoder R E, Yoder D C, et al. Optimization of fuzzy evapotranspiration model through neural training with input-output examples[J]. Trans ASAE, 2005, 44(6):1625-1633.
    [56]张瑞美,彭世彰.参考作物蒸发蒸腾量的气象因子响应模型[J].节水灌溉,2007,(02):1-6.
    [57]Odum E P.生态学基础[M].北京:人民教育出版社,1981:42-61.
    [58]Blackman G E,Nblack J.植物环境分析中生理生态研究[A].作物产量交异的生物基础译文集.北京:科学出版社,1965:378-380.
    [59]村田吉男.光合作用与水稻最高产量上限[M].北京:农业技术出版社,1996:25-26.
    [60]Bonner J. The upper limit of crop yield[J]. Science,1966:37(3):285-292.
    [61]Hanks R J. Yield and Water-Use Relationships : An Overview[A]. Tayloretal H M. Limitations to Efficient Water Use In Crop Production,1983:395-398.
    [62]切尔沙尼卡.大气中co2浓度倍增时植被生产力的变化[J].气象科技,1987,10(4):327-335.
    [63]樱谷哲夫.旱地蒸散与生产力[J].国外农学-农业气象,1988,11(4),85-92.
    [64]任美锷.四川省作物生产力的地理分布[J].地理学报,1950,(16):1-22.
    [65]竺可桢.论我国气候的几个特点及其粮食作物生产的关系[J].地理学报,1964,(1):1-13.
    [66]黄秉维.中国农业生产潜力—光合潜力[A].地理集刊(17).北京:科学出版社,1985:1-5.
    [67]于沪宁,赵丰收.光热资源和农作物的光热生产潜力[J].气象学报,1982,40(3):321-327.
    [68]李世奎等.中国农业气候资源和农业气候区划[M].北京:科学出版社,1983,58-92.
    [69]孙惠南.自然地理学中的农业生产潜力研究及我国生产潜力的分布特征[A].地理集刊.北京:科学出版社,1985:321-329.
    [70]郑剑非,卢志光.北京市冬小麦气候潜力及干旱时最佳灌水方案[J].中国农业气象,1982:18-23.
    [71]Hutchinson M F. ANUSPLIN Version 4.3 User Guide [M]. Canberra: The Australia National University, Center for Resource and Environment Studies ,2004:324-328.
    [72] Hutchinson M F. The application of thin plate spline to continent-wide data assimilation, Data Assimilation Systems, BMRC Research Report NO.27[M].Melbourne: Bureau of Meteorology,1991:104-113.
    [73] Price DT, McKenney D W, Papadopol P. et a1. High resolution future scenario climate data for North America[A]. American Meteorological Society Annual Meetings, Vancouver, 2004:85-92.
    [74]Hijmans R J, Cameron S E, Parra J L, et al. very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology,2005,(25):1965-1978.
    [75]阎洪.薄板光滑样条插值与中国气象空间模拟[J].地理科学,2004,24(2):163-169.
    [76]Yan Hong, Nix H A, Hutchinson M F, et al. Spatial interpolation of monthly mean climate data for China[J]. International Journal of Climatology .2005,25(10):1369-1379.
    [77]河南省科学院地理研究所编著,河南农业地理[M].郑州:河南科学技术出版社,1982:15-16.
    [78]李克煌,豫西山地平均降水量的推算和分析,河南师大学报,1983,3(1):33-42.
    [79]千怀遂,李明霞,豫西山区的水分特点和水分调控,河南大学学报(自然科学版),1992,22(1):43-49.
    [80]马程远.豫西山地地貌的发育和分区,河南师范大学报,1982,6(1):34-40.
    [81]邬伦,刘瑜,张晶等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2001:198-199.
    [82]Untied States Geological Survey. Shuttle Radar Topography Mission documentation: STRM Topography[EB/OL].http://edcftp.cr.usgs.gov/pub/data/srtm/ documentation/SRTM_Topo.
    [83]汤国安,刘学军,闾国年著.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005:63-70.
    [84]傅抱璞,虞晓静,卢其尧.山地气候资源与开发利用[M].南京:南京大学出版社,1996:182-189.
    [85]Bates D, Lindstrom M, Wahba G. Gcvpack-routines for generalized cross validation[J].Communications in Statistics B-Simulation and Computation.1987,(16):263-297.
    [86]《中国农业气象百科全书》编委会.中国农业百科全书(农业气象卷)[M].北京:农业出版社,1986:385-386.
    [87]PEREIRA A R, GREEN S, NOVA N A. Penman2 Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration[J].Agricultural Water Management,2006:153-161.
    [88]J.杜林博斯,A.H.卡萨姆.产量与水的关系[M].联合国粮农组织,罗马,1979:3-23.
    [89]FAO Report on the Agro-ecological Zones Project.Vol.1.World Soil Resources Report No 48[R]. Rome, FAO,1978.
    [90]FAO Report on the Agro-ecological Zones Project. World Soil Resources Report 48(1)-Africa, 48(2)-Southwest Asia,48(3)-South and Central America,48(4)-Southeast Asia[R].Rome, FAO, 1981.
    [91] FAO Report on the Agro-ecological Zones Project.Vol.3.Methodology and results for south and Central America. World Soil Resources Report No 48/3[R].Rome, FAO, 1981.
    [92]吴绍洪,靳京,戴尔卓.基于PS123作物生长模型的黑龙江海伦市玉米生产潜力计算[J]农业工程学报,2005,21(8):93-96.
    [93]马树庆,袁福香.吉林省粮食生产的农业自然资源利用率研究[J].中国农业气象,1997,18(2):24-28.
    [94]封志明编著.资源科学导论[M].北京:科学出版社,2004:110-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700