光伏太阳能热泵的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏电池的转换效率随着工作温度的升高而下降,这常常会导致光伏电池在无冷却的条件下效率较低。为了降低光伏电池的工作温度,利用这部分热量,并同时提高太阳能的利用率,对太阳能进行光电、光热综合利用是一个很好的选择,近年来这方面的研究在国内外得以逐渐展开。
     参阅相关文献可以发现:光电/光热综合利用的研究主要有以下两种方式:一种是利用水作为冷却介质,被加热后用来作为生活用水,或者作为热泵系统的辅助热源;另一种是利用空气作为冷却介质,加热后的空气被导入到室内给房间采暖或进行其它形式的再利用。相关的研究表明:采取了上述冷却措施后,光伏电池的效率得以明显改善,同时太阳能的综合利用率也得以显著提高。
     然而为了使水或空气可以达到直接利用或再利用的目的,常常希望冷却介质的能达到较高的温度,这和提高光伏电池效率的方向是背道而驰的。为了从根本上解决这个问题,我们提出了一种新型的太阳能综合利用方案:即把光伏集热器和热泵系统直接偶合起来,利用温度较低的制冷剂带走光伏集热器的热量,由此可以达到很好的冷却效果,并可以在热泵的冷凝端输出品质提升后的热量用于采暖或制取生活用热水。这种系统被称为光伏太阳能热泵(photovoltaicsolar assisted heat pump,PV-SAHP),对其进行的相关研究表明该系统具有优良的热性能,并且光伏电池的转换效率也得以显著提高。
     本文利用分布参数模型对光伏太阳能热泵系统的核心部件—光伏蒸发器进行了深入的数值研究,并在此基础上构件了PV-SAHP系统模型,研究了结构参数、太阳辐射强度、环境参数等因素的改变对光伏蒸发器和整个热泵系统性能的影响。对光伏蒸发器的模拟采用了分布参数法,相对于集总参数法而言,这种方法具有更高的精度。它能够给出光伏蒸发器各绢件的温度分布以及能量流动特点,并同时给出光伏蒸发器的热/电输出等。
     在上述理论模拟的基础上,设计并搭建了光伏太阳能热泵实验台。并在合肥冬季的气候条件下,进行了相关的实验研究。对实验结果和数值模拟结果进行了对比分析,二者具有很高的一致性,验证了所建模型具有较高的精度。研究结果表明光伏蒸发器的热效率可以达到0.53~0.75:电效率可以达到0.124~0.135;综合效率可达到0.64~0.87,与同类型的集热器相比高出约10%以上。光伏太阳能热泵的COP最高达到8.4,平均COP为6.5。由此可见光伏太阳能热泵具有非常优越的性能。
     采用上述模型,本文还对光伏太阳能热泵的变频率工作特性进行了数值模拟研究。由于光伏太阳能热泵是工作在宽幅变动的太阳辐射和环境温度下,因此必须对制冷剂流量进行适时调整,以避免蒸发器山口的制冷剂处于两相状态,危及到压缩机的安全运行,或者蒸发器出口制冷剂的过热度太大,导致散热损失增加,降低蒸发器的热效率。本文采用了变频率和电子膨胀阀的二级调整方式调节制冷剂流量,使其与外界参数的变化相匹配,取得了很好的效果,使光伏太阳能热泵系统处于安全、高效的运行状态。
Photovoltaic efficiency declined with the increase of the working temperature. This leads to a relatively lower efficiency when solar cells operating without a cooling service. In order to utilize this part of thermal energy, which was discharged to the environment directly, a comprehensive utilization of the solar energy is a good alternative. Researches on this field have been widely carried on inside and outside china.
     References revealed two main modes were adopted by various authors in photovoltaic/photothermic (PV/T) utilization of the solar energy: in the first mode water was used as the coolant of the PV panels and the heated water was used for domestic usage or as a thermal resource of a heat pump. In the second mode air was used as the coolant, and the hot air was inducted to a room for space heating. The results demonstrated the photovoltaic efficiency was improved with the cooling effect, and the overall efficiency was also lifted to a higher level.
     However the water or air was usually heated to a relatively high temperature on the purpose of a direct usage. This was on the opposite direction of the photovoltaic efficiency improvement. This paper proposed a novel system which was directly coupled of a PV solar collector and a heat pump. The solar collector acted as the evaporator of the heat pump. In the evaporator, refrigerant absorbed heat from the PV base plate, and discharged it to the cooling water in the condenser. In this way the PV panel's temperature dropped and the photovoltaic efficiency was improved at the same time. This novel system was named as photovoltaic solar assisted heat pump (PV-SAHP). Research has revealed it has a superior thermal and electrical performance.
     A distributed parameters approach has been successfully used to simulate the PV evaporator. On this base, the model of the PV-SAHP system was also built. Researches were focused on the structural parameters and environmental parameters, which influenced the performance of the heat pump. Compared to the lumped parameters approach, the distributed parameters approach has a higher accuracy. It can give the temperature distribution of the refrigerant along the tube, and calculate the thermal /electrical outputs at the same time.
     Based on the above theories we designed and built the experimental rigs of the PV-SAHP system. Experimental researches were taken under winter weather conditions of Hefei region. The results of the experiment and simulation agreed very well, which demonstrated the system's model has a high accuracy. The thermal efficiency, electricity efficiency and the overall efficiency of the PV evaporator were G.53~0.75, 0.124~0.135, and 0.64~0.87 respectively. Compared to a water-based or air-based PV/T collector the overall efficiency was 10% higher. The coefficient of performance (COP) reached 8.4 with an average value of 6.5, which demonstrated the PV-SAHP system has a superior performance.
     With the models above, this paper also give a numerical study of the PV-SAHP system working in a variable frequency condition. When PV-SAHP operates, the solar radiation intensity and ambient temperature varied in a wide range, so it is necessary to adjust the mass flow rate of the refrigerant according to the environment parameters. This can effectively avoid two-phase flow appears at the outlet of the evaporator, or control the superheated degree of the refrigerant within a suitable region. If the two-phase flow flushed into the compressor, the compressor would be seriously damaged. If the superheated degree is too high, the heat loss to the environment increased and the thermal efficiency of the evaporator dropped on the contrary. This paper adopted a two-stage modulation through the compressor frequency and the expansion valve to match the mass flow rate with the thermal load, which ensured the PV-SAHP system working in a healthy, effective state.
引文
1.闫长乐,张永泽等,中国能源发展报告2007,中国水利水电出版社,2007;
    2.滨川圭弘,西川炜一等,能源环境学,科学出版社,2003;
    3.“十五”国家高技术发展计划委员会,能源发展战略研究,北京,化学工业出版社,2004;
    4.呼宝民、李振国,中国能源—可持续战略,外文出版社,2007;
    5.中华人民共和国可再生能源法,第十届全国人民代表大会常务委员会第十四次会议通过,2005年2月28日:
    6.陆虎瑜,马胜红等,光伏/风力及互补发电系统,中国电力出版社,2004;
    7.赵争鸣,刘建政,孙晓英等,太阳能光伏发电及其应用,北京,科学出版社,2005;
    8.2006年中国太阳能行业现状分析与发展研究报告,中国市场调查研究中心;
    9. John C. ward and George O. G. lof, Long-term (18year) performance of a residential solar heating system, solar energy, Vol. 18, p301-308;
    10.裴刚,光伏太阳能热泵系统及多功能热泵系统的综合性能研究,中国科学技术大学博士学位毕业论文,2006;
    11. P. Ohanessian and W. W. S Charters, Thermal simulation of a passive solar house using a trombe-michel wall structure, Solar Energy, Vol. 20: 275-281
    12. Oliver M, Jackson T. 2001. Energy and economic evaluation of building-integrated photovoltaics, Energy, 26: 431-439
    13. Zondag HA, de Vries DW, van Helden WGV, et al. 2002. The thermal and electrical yield of a PV-thermal collector, Solar Energy 72: 113-128.
    14 Chow Tin-Tai, He Wei, Ji Jie. 2006. Hybrid photovoltaic-thermosyphon water heating system for residential application. Solar Energy 80: 298-306.
    15. Kern Jr. E. C, Russell M. C, Combined photovoltaic and thermal hybrid collector systems. Proc. 13th IEEE Photovoltaic specialists, Washington, USA, 1978, p1153-1157
    16. Hendrie S. D, Evaluation of combined photovoltaic/thermal collectors. Proc. ISES Int. Congress, Atlanta, USA, Vol. 3, p 1865-1869
    17. Florschueta L. W, Extension of the Hottel-Whillier model to the analysis of combined
    18. Raghuraman P, Analytical predictions of liquid and air photovoltaic/thermal flat plate collector performance. J. of Solar Energy Engineering Vol. 103, p 291-298
    19. Cox C. H, Raghuraman P, Design considerations for flat-plate thermal collectors, Solar Energy, Vol. 35, p227-245
    20. Lalovic B, A Hybrid amorphous silicon photovoltaic and thermal solar collector, Solar Cells, Vol. 19, p 131-138
    21. Loferski J. J, Ahmad J. M, Pandey A, Performance of photovoltaic cells incorporated into unique hybrid photovoltaic/thermal panels of a 2.8 Kw residential solar energy conversion system, Proc. Of the 1988 Annual Meeting, American Solar Energy Society, Cambridge, Massachusetts, p427-432
    22. Bhargava A. K, Garg H. P, Agarwal R. K, Study of a hybrid solar system-solar air heater combined with solar cells, Energy Convers. Mgmt. Vol. 31, p471-479
    23. Prakash J, Transient analysis ofa photovoltaic-thermal solar collector for cogeneration of electricity and hot air/water, Energy Conversion and Management. Vol. 35, p967-972
    24. Sopian K, Liu H. T, Yigit K. S. et al, An investigation into the performance of a double pass photovoltaic thermal solar collector. Proc. ASME Int. Mechanical Engineering Congress and Exhibition, San Francisco, USA, AES Vol. 35, p89-94
    25. Sopian K, Liu H. T, Kakac S. et al, Performance of a hybrid photovoltaic thermal solar collector, Proc. ASME Int. Mechanical Engineering Congress and Exhibiton, Atlanta, USA, AES Vol. 36 p341-346
    26. Takashima T, Tanaka T, Doi T. et al, New proposal for photovoltaic-thermal solar energy utilization method, Solar Energy, Vol. 52, p241-245
    27. Bergene T, Lovvik O. M, Model calculations on a flat-plate solar heat collector with integrated solar cells. Solar Energy Vol. 55, p453-462
    28. Garg H. P, Ahhikari R. S, Conventional hybrid photovoltaic/thermal(PV/T) air heating collector: steady-state simulation, Renewable Energy, Vol. 11, p363-385
    29. Garg H. P. and Agarwal R. K. Some aspects of a PV/T collector/ forced circulation flat plate solar water heater with solar cells, Energy Conversion and Management, Vol. 36(2), p87-99
    30. Imre L, Bitai A, Bohonyey F, Hecker G. et al, PV-Thermal combined building elements, Proc. ISES Solar World Congress, Budapest, Hungary, Vol. 3, p277-280
    31. Posnansky M, Grips S, Coonen, The importance of hybrid PV-building integration, Proc. IEEE First World Conf. On Photovoltaic Energy Conversion, Waikoloa, Hawaii, Vol. Ⅰ, p998-1003
    32. Ricaud A, Roubeau P, Capthel, a 66% efficient hybrid solar module and the Ecothel co-generation solar system, Proc. IEEE First World Conf. On Photovoltaic Energy Conversion, Waikoloa, Hawaii, Vol. Ⅰ, p 1012-1015
    33. Elazari A, Multi solar system. Solar multimodule for electrical and hot water supply for residentially building. Proc. Of 2nd World Conf. And Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria, p2430-2433
    34. Hauser T, Rogash H, Latent heat storage on photovoltaics, Proc. 16th European PV Solar Energy Conf, Glasgow, U. K, Vol. Ⅲ, p2265-2267
    35. Thomas H. P, Hayter S. I, Martin R. L. etal, PV and PV/Hybrid products for buildings. Proc. 16th European Solar Energy Conf. Glasgow, U. K. Vol. Ⅱ, p1894-1897
    36. Huang B. J, Lin T. H, Huang W. C. etal, Performance evaluation of solar photovoltaic/thermal systems, Solar Energy, Vol. 70, p443-448
    37. S. A. Kalogirou and Y. Tripanagnostopoulos. Hybrid PV/T solar system for domestic hot water and electricity production. Energy Conversion and Mangement. Vol. 47(18-19), p3368-3382
    38. Bjornar Sandnes and John Rekstad. A photovoltaic/thermal collector with a polymer absorber plate. Experimental study and analytical model. Solar Energy. Vol. 72(Ⅰ). P63-73
    39. J. K. Tonui and Y. Tripanagnostopoulos. Performance improvement of PV/T solar collectors with natural air flow operation. Solar Energy. (in press)
    40. Huang BJ, Chyng JP. 2001. Performance characteristics of integral type solarassisted heat pump, Solar Energy 71(6): 403-414
    41. Tiwari A, Sodha MS. 2006. Performance of evaluation of solar PV/T system: an experimental validation, Solar Energy, 80(7): 751-759.
    42. Tiwari A, Sodha MS, et al. 2006. Performance evaluation of photovoltaic thermal solar air collector for composite climate of India, Solar Energy Materials & Solar Cells 90: 175-189
    43. Jones AD, Underwood CP. 2001. A thermal model for photovoltaic systems, Solar Energy 70: 349-359.
    44. Chow TT. 2003. Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Solar Energy 75: 143-152.
    45. Badescu V. 2002. Model of a space heating system integrating a heat pump: photothermal collectors and solar cells. Renewable Energy 27: 489-505.
    46. Ji Jie, Chow T. T, He Wei, Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong, Building and Environment, Vol. 38, p1327-1334, 2003
    47.季杰,程洪波,何伟等,太阳能光伏光热一体化系统的试验研究,太阳能学报,Vol.26(2),p170-174,2005
    48.季杰,易桦,何伟等,PV新型Trombe墙光电光热性能数值模拟,太阳能学报,Vol.27(9),p870-877,2006
    49.葛新石,叶宏,PV/T电热联产系统在理想条件下的性能简化分析,太阳能学报,Vol.27(1),p30-35,2006
    50.翟辉,代彦军,吴静怡.基于菲聂尔透镜的聚焦太阳能PV/T系统热电性能研究,工程热物理学报,Vol.28(5),2007
    51. Sporn P and Ambrose ER. The heat pump and solar energy. Proceeding of the World Symposium on Applied Solar Energy, Phoenix, Arizona, 1955, pp. 159-170.
    52. F. B. Gorozabel Chata, S. K. Chaturvedi, Analysis of a direct expansion solar assisted heat pump using different refrigerants [J]. Enerogy Conversion and Management. 2005, 46: 2614-2624
    53. W. Aziz, S. K. Chaturvedi, A. 1999. Kheireddine. Thermodynamic analysis of two-component, two-phase flow in solar collectors with application to a directexpansion solar-assisted heat pump. Energy 24: 247-259.
    54. Badescu V. 2002. Model of a space heating system integrating a heat pump: photothermal collectors and solar cells. Renewable Energy 27: 489-505.
    55. S. K. Chaturvedi, Y. F. Chiang and A. S. Roberts, Analysis of two-phase flow solar collector with application to heat pumps[J]. Journal of Solar Energy Engineering, 1982, 104: 358-365
    56. S. K. Chaturvedi, Y. F and James Y. Shen, Thermal performance of a direct expansion solar-assisted heat pump[J]. Solar Energe 1984, 33: 155-162
    57. M. P. O'Dell, J. W. Mitchell, Design method and performance of heat pumps with refrigerant-filled solar collectors. Journal of Solar Energy Engineering, 1984, 106: 159-164
    58. G.. L. Morrison, Simulation of packaged solar heat-pump water heaters. Solar Energy, 1994, 53: 249-257
    59. M. N. A. Hawlader, K. A. Jahangeer, Solar heat pump drying and water heating in the tropics. Solar Energy, Vol. 80: 492-499
    60. J. G. Cervantes and E. Torres-Reyes, Experiments on a solar-assisted heat pump and an exergy analysis of the system. Applied Thermal Engineering 2002, 22: 1289-1297
    61. B. J. Huang and C. P. Lee. Performance evaluation method of solar assisted heat pump water heater. Applied Thermal Engineering, Vol. 27(2-3), p568-575
    62. Viorel Badescu, First and second law analysis of a solar assisted heat pump based heating system, Energy Conversion and Management, 2002, 43: 2539-2552
    63. Y. W. Li, R. Z. Wang, etc. Experimental performance analysis on a directexpansion solar-assisted heat pump water heater. Applied thermal Engineering. Vol. 27: 2858-2868
    64.旷玉辉,王如竹,许煜雄,直膨式太阳能热泵供热水系统的性能研究,工程热物理学报,25 (5):737-740,2004
    65.旷玉辉,王如竹,直膨式太阳能热泵热水器的试验研究,工程热物理 学报,26 (3):379-381,2005
    66.余延顺,廉乐明,寒冷地区太阳能—土壤源热泵系统运行方式的探讨,太阳能学报,24 (1):111-115,2003
    67.李舒宏,武文彬,张小松等,太阳能热泵热水装置试验研究与应用分析,东南大学学报 (自然科学版),35 (1):82-85,2005
    68.杨卫波,施明恒,董华,太阳能土壤源热泵系统联合供暖运行模式的探讨,暖通空调,35 (8):25-31,2005
    69.阳季春,季杰,裴刚等,间接膨胀式太阳能多功能热泵供热实验,中国科学技术大学学报,37 (1),p53-60,2007
    70.韩宗伟,郑茂余等,太阳能-土壤源热泵相变蓄热供暖系统运行模式,可再生能源,25(4):10-15,2007
    71.涂爱民,太阳能热泵-地板辐射供热系统实验研究,暖通空调,37(1):108-112.2007
    72. Ito S, Miura N, Takano Y. 2005. Studies of heat pumps using direct expansion type solar collectors, Journal of Solar Energy Engineering 127: 60-64
    73. Ito S, Miura N, et al. 1997. Heat pump using a solar collector with photovoltaic modules on the surface, Journal of Solar Energy Engineering 119: 147-151
    [1] 丁国良,张春路.制冷空调装置仿真与优化[M].北京:科学出版社.2001
    [2] J. A. Duffle, W. A. Beckman. Solar engineering of thermal processes, 2nd edition, John Willy&Sons, 1991
    [3] 葛新石,龚堡,陆维德等,太阳能工程—原理和应用,学术期刊出版社,1988
    [4] Incropera FP, Dewitt DP. 1985. Fundamentals of heat transfer and mass transfer, Wiley: New York, USA
    [5] M. Willatzen , N. B. O. L. Pettit, L. Ploug-Sorensen. A general dynamic simulation model for evaporators and condensers in refrigeration, Part Ⅰ and Ⅱ[J]. International Journal of refrigeration, Vol. 21 (5), pp. 398-414
    [6] Dittus FW, Boelter LMK. 1930. Heat transfer in automobile radiators of the tubular type, University of California- Berkeley, Pub. Eng. 2: 443.
    [7] Shah MM. 1979. A general correlation for heat transfer during film condensation inside pipes, International Journal of Heat & Mass Transfer 22: 547-556
    [8] 缪道平,吴业正,制冷压缩机,机械工业出版社,2005年4月
    [9] 王宝龙,石文星,李先庭.制冷空调用涡旋压缩机数学模型,清华大学学报 (自然科学版),45(6):726-729,2005
    [10] 刘振全,杜桂荣.涡旋压缩机理论机构模型,机械工程学报,35(2):38-41,1999
    [11] 2C*123*7AA02型变频涡旋压缩机说明书,日本松下电器;
    [12] 李连生,涡旋压缩机,北京:机械工业出版社,1998:
    [13] Chasik Park, Honghyun Cho, Yongtaek Lee and Yongchan Kim. Mass flow characteristic and empirical modeling of R22 and R410A flowing through electronic expansion valves, International Journal of Refrigeration, Available online 14 April 2007.
    [14] 张川,马善伟,陈江平等.电子膨胀阀节流机构流量特性的实验研究,上海交通大学学报,40(2):282-285,2006
    [15] 徐波,陈儿同等.电子膨胀阀在低温装置上降温特性的实验研究,制冷学报,28(2):32-35,2007
    [16] 丁国良,小型制冷装置动态仿真研究,博士学位论文,上海交通大学热能与动力工程学院,1992
    [17] 葛云亭,房间空调器仿真模型研究,博士学位论文,清华大学热能工程系,1997
    [18] 张春路,基于模型的制冷窄调装置智能仿真方法基础研究,博士学位论文,上海交通大学热能与动力工程学院,1999
    [19] 刘志刚,刘成定,赵冠春,制冷工质热物性程序的编制,科学出版社,1991
    [1] Li Junfeng, Wang Zhongying and Shi Jingli. 2005. China review: Status and potential of renewable energy in China. Refocus, 2005, 6(6), 42-44.
    [2] Yuwen Zhao. 2001. Photovoltaics in China: Research, development and market potential. Refocus, 2001, 2(3), 34-36.
    [3] Du Enshe. Status and countermeasure of applying solar energy in Tibet. Tibetan technology, 2001(9), 54-58.
    [4] Jie Ji, Keliang Liu, et al. 2007. Thermal analysis of PV/T evaporator of a solarassisted heat pump, International Journal of Energy Research, 31(5): 525-545.
    [5] Kern Jr, EC, Russell MC. 1978. Combined photovoltaic and thermal hybrid collector systems. Proceedings of the 13th IEEE PV specialist conference, Washington, DC. 5-8 June p. 1153-1157.
    [6] Florschuetz LW. 1979. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal fiat plate collectors, Solar Energy 22, 361-366.
    [7] Moshfegh B, Sandberg M. 1998. Flow and heat transfer in the air gap behind photovoltaic panels. Renew Sustain Energy Rev, 2: 287-301.
    [8] B. J. Huang. 2001. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy, 70, 443-448.
    [9] Zondag HA, de Vries DW, van Helden WGV et al. 2002. The thermal and electrical yield of a PV-thermal collector, Soelar Energy, 72: 113-128.
    [10] Incropera FP, Dewitt DP. 1985. Fundamentals of heat transfer and mass transfer, Wiley: New York, USA
    [11] Duffle JA, Beckman WA. 1991. Solar engineering of thermal processes, 2nd Ed. New York: Wiley.
    [12] Dittus FW, Boelter LMK. 1930. Heat transfer in automobile radiators of the tubular type, University of California- Berkeley, Pub. Eng 2: 443.
    [13] Shah MM. 1979. A general correlation for heat transfer during film condensation inside pipes, International Journal of Heat & Mass Transfer 22: 547-556.
    [14] Chasik Park, Honghyun Cho, Yongtaek Lee and Yongchan Kim. Mass flow characteristic and empirical modeling of R22 and R410A flowing through electronic expansion valves, International Journal of Refrigeration, Available online 14 April 2007.
    [15] Liu, B. Y. H. and Jordan, R. C. The long-term average performance of flat-plate solar energy collectors: with design data for the U. S., its outlying possessions and Canada, Solar Energy, 7: 53-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700