导热增强型相变储能材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计合成了导热增强型相变储能材料,即以聚乙二醇(PEG)为有机相变组分来实现储能和释能,以SiO2为无机支撑骨架来实现定形,通过原位掺杂导热增强剂(如Al2O3、Cu和MCNT)得到相变焓值较高、导热性能好的复合定形相变储能材料。
     借助超声辅助溶胶-凝胶过程原位掺杂Al2O3制备PEG/SiO2-Al2O3复合定形相变储能材料。研究了制备方法和相变组分对材料定形效果、相变性能的影响。采用有机异丙醇铝和无机硝酸铝制备了不同A12O3含量的复合材料。通过宏观状态、红外、x射线衍射、差热分析、热重分析、导热系数测试和降温曲线,对材料进行结构与性能表征。结果表明:PEG与SiO2-Al2O3是物理嵌合的关系,PEG的结晶受到无机网络结构的限制,焓值略有下降。有机铝制备的材料Ai2O3含量为3.3%时,相变焓值为102.3J/g,导热系数达0.414W/(m·K),与PEG/SiO2相比,导热增强率为15%;硝酸铝制备的材料Al2O3含量为3.3%时,相变焓值达126.2J/g,导热系数达0.398W/(m·K),导热增强率为10.6%,降温曲线的测试结果与导热系数测试相符。复合材料在290℃以下均具有良好的热稳定性。
     借助超声辅助溶胶-凝胶过程原位还原Cu2+实现原位掺杂Cu单质制备PEG/Cu/SiO2复合定形相变储能材料。采用碘量法和XPS分析确定复合定形相变材料中Cu单质的含量。材料中铜主要以Cu单质的形式存在,材料表面形貌平整,SiO2的孔状结构被PEG和Cu完全填充。结构上三者是物理复合的。当复合相变材料中Cu单质含量为2.1%时,相变焓值为114.6J/g,导热系数达0.41W/(m·K),导热增强率为13.9%。当达到同一温度48℃时,Cu含量为2.1%的材料的降温时间与纯PEG相比,缩短了69.9%,具有较好的储能效果和导热性能。复合材料在260℃以下具有良好的热稳定性。
     借助超声辅助溶胶-凝胶过程原位掺杂多壁碳纳米管(MCNT)制备PEG/MCNT/SiO2复合定形相变储能材料。由于MCNT在紫外-可见区有全波段吸收,故可以作为光收集器掺杂到相变储能材料中进行太阳能的光热转换实现对能量的转换与存储。MCNT和PEG将作为无机骨架的SiO2的孔状结构完全填充,说明SiO2对它们起到包裹作用。当加热到相变组分的熔点以上时无液体渗出,具有良好的定形效果。红外分析证明PEG、 SiO2和MCNT之间无化学键生成。当MCNT含量为1%时,复合材料相变焓值为116J/g,导热系数达0.421W/(m·K),导热增强率为16.9%;复合材料在300℃以下具有良好的热稳定性,其光热转换效率达0.918.
The form-stable phase change materials (PCMs) with enhanced thermal conductivity were synthesized in this thesis. Polyethyleneglycol (PEG) was acted as oganic phase change component to realize the storage and release of energy, SiO2was used as inorganic supporting material to realize form-stable effect. The form-stable PCMs with high latent enthalpy and good thermal conductivity were prepared through in-stu thermal conductivity enhanced agents (such as Al2O3, Cu and MCNT) doping.
     PEG/SiO2-Al2O3form-stable composite PCMs were prepared through ultrasound assisted sol-gel method. The influence of preparation method and phase change component to the form-stable effect and phase change properties of the PCMs were researched. Aluminium isopropoxide and aluminium nitrate were used to prepare the form-stable composite PCMs with different content of Al2O3. The structure and properties of the PCMs were studied by FTIR, XRD, DSC, TGA and the thermal conductivity instrument. The results showed that PEG and SiO2-Al2O3combined physically, the latent heats were a little decrease because the crystallization of PEG were limited by the inorganic network. When the PCM prepared by aluminium isopropoxide included3.3%of Al2O3, the latent heat was102.3J/g, the thermal conductivity was0.414W/(m·K), the thermal conductivity enhancement was15%. While the PCM prepared by aluminium nitrat included3.3%of Al2O3, the latent heat was126.2J/g, the thermal conductivity was0.398W/(m·K), the thermal conductivity enhancement was10.6%. The results of cooling curves were corresponded with the thermal conductivities. The composite PCMs were stable below290℃.
     A novel type of PEG/Cu/SiO2hybrid form-stable PCM with high thermal conductivity was obtained by in situ reduction of CUSO4solution through ultrasound-assisted sol-gel method. The XPS result of this material showed that the valence state of copper was mainly zero. The FTIR demonstrated that there was no new chemical bond between Cu, PEG6000and SiO2. The SEM images showed that SiO2network in the composites was filled with PEG and Cu additives. The phase change enthalpy of Cu/PEG/SiO2PCM reached up to114.6J/g, and the thermal conductivity was0.414W/(m·K) for2.1wt%Cu in PEG/SiO2, which was enhanced by13.9%compared with PEG/SiO2. The PEG/Cu/SiO2hybrid material had excellent thermal stability below260℃. To achieve the same temperature of48℃, the freezing time of the form-stable PEG/Cu/SiO2(2.1wt%) composite PCM was reduced by699%compared with that of pure PEG.
     PEG/MCNT/SiO2composite forma-stable PCMs were synthesized through in-situ doping multi-walled carbon nanotube (MCNT) by ultrasound assisted sol-gel method. We introduced MCNT, which has broad absorbance of UV-Vis light and good light-thermal conversion capability, into PCMs system to store solar thermal energy. The results showed the SiO2network in the composites were filled with additives, which confirm the quasi-uniform distribution of the additives in the shape-stabilized PCMs. When the PCMs were heated over the melting point of the phase change component, there was no liquid leakeage. The FTIR ananlysis proved that there was no chemical bond between MCNT, SiO2net and PEG. When the mass fraction of MCNT was1%in the PCM, the phase change enthalpy was116J/g, the thermal conductivity was0.421W/(m·K), the thermal conductivity enhancement was16.9%. The composite PCM had a good stability below340℃, the light-thermal efficiency reached0.918.
引文
[1]BAKER J. New technology and possible advances in energy storage[J]. Energy Policy, 2008,36(12):4368-4373.
    [2]DUFFIELD J A, COLLINS K. Evolution of renewable energy policy[J]. Choices,2006, 21(1):9-14.
    [3]张寅平,胡汉平,孔祥东.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社,1996,12-15.
    [4]GARG H P, MULLICK S C, BHARGAVA A K. Solar thermal energy storage[M]. D. Reidel Publishing Co,1985.
    [5]Project Report. Energy conservation through thermal energy storage. An AICTE project[R],1997.
    [6]宋德清,方利国,王聃.相变储能材料的研究进展及在建筑中的应用[J].节能,2008,6:4-7.
    [7]XIA L, ZHANG P, WANG R Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material [J]. Carbon,2010,48:2538-2548.
    [8]HUIJBREGTS M A J, ROMBOUTS L J A, HELLWEG S, et al. Is cumulative fossil energy demand a useful indicator for the environmental performance of products[J] Environmental Science & Technology.2006,40 (3):641-648.
    [9]SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications [J]. Renewable & Sustainable Energy Reviews,2009, 13(2):318-345.
    [10]FREEDERIC K, DAMIEN D, KEVYN J, et al. A review on phase change materials integrated in building walls[J]. Renewable and Sustainable Energy Reviews,2011,15(1): 379-391.
    [11]付英,曾令可,王慧,等.相变储能材料在工业余热回收领域的应用研究进展[J].工业炉,2009,31(5):11-14.
    [12]孙玉钗,刘磊.相变材料在智能调温纺织品中的应用[J].河北纺织,2009(2):25-28.
    [13]KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews,2007,11:1913-1965.
    [14]沈学忠,张仁元.相变储能材料的研究和应用[J].节能技术,2006,24(5):460-463.
    [15]PINCEMIN S, OLOVES R, PY X, et al. Highly conductive composites made of phasechangematerials and graphite for thermal storage[J]. Solar Energy Materials & Solar Cells,2008,92(3):603-613.
    [16]BISWAS D R. Thermal energy storage using sodium sulphate decahydrate and water [J]. Solar Energy,1977,19(1):99-100.
    [17]TELKES M. Nucleation of super saturated inorganic salt solution[J]. Industrial & Engineering Chemistry,1952,44(6):1308-1310.
    [18]ZALBA B, MARIN J, CABEZA L F, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applicat ions[J]. Applied Thermal Engineering,2003,23:251-283.
    [19]樊耀峰,张兴祥.有机固-固相变材料的研究进展[J].材料导报,2003,17(7):50-53.
    [20]牟兴瑞.多元醇固-相变材料的研究[D].河北:河北工业大学,2007.
    [21]XI P, XIA L, FEI P F, et al. Preparation and performance of a novel thermoplastics polyurethane solid-solid, phase change materials for energy storage[J]. Solar Energy Materials & Solar Cells,2012,102:36-43.
    [22]MENG Q H, HU J L. A poly(ethylene glycol)-based smart phase change material[J]. Solar Energy Materials & Solar Cells,2008,92:1260-1268.
    [23]PIELICHOWSKA K, PIELICHOWSKI K. Biodegradable PEO/cellulose-based solid-solid phase change materials[J]. Polymers for Advanced Technologies.2011,22(12): 1633-1641.
    [24]SU J C, LIU P S. A novel solid-solid phase change heat storage material with polyurethane block copolymer structure[J]. Energy Conversion & Management,2006, 47 (18-19):3185-3191.
    [25]CAO Q, LIU P S. Hyperbranched polyurethane as novel solid-solid phase change material for thermal energy storage[J]. European Polymer Journal,2006,42: 2931-2939.
    [26]GUO Y, TONG Z, CHEN M, et al. Solution miscibility and phase-change behavior of a polyethylene glycol-diacetate cellulose composite[J]. Journal of Applied Polymer Science,2003,88:652-658.
    [27]JIANG Y, DING E Y, LI G K. Study on transition characteristics of PEG/CDA solid-solid phase change materials[J]. Polymer,2002,43:117-122.
    [28]ZANG Y N, DING E Y. Energy storage properties of phase change materials prepared from PEG/CPP[J]. Chinese Chemical Letters,2005,16:1375-1378.
    [29]LI Y, LIU R, HUANG Y. Synthesis and phase transition of cellulose-graft-poly (ethylene glycol) copolymers[J]. Journal of Applied Polymer Science,2008:110: 1797-1803.
    [30]YUAN X P, DING E Y. Synthesis and characterization of storage energy materials prepared from nano-crystalline cellulose/polyethylene glycol [J]. Chinese Chemical Letters,2006,17:1129-1132.
    [31]ZHANG M, NA Y, JIANG Z. Preparation and properties of polymeric solid-solid phase change materials of polyethylene glycol (PEG)/poly (vinyl alcohol) (PVA) copolymers by graft copolymerization[J]. Chemical Journal of Chinese Universities, 2005,26:170-174.
    [32]姜勇,丁恩勇,黎国康.化学改性纤维素固态相变材料的热性能研究[J].纤维素科学与技术,2000,8(3):8-14.
    [33]SARI A, ALKAN C, BICER A, et al. Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acidcopolymersas solid-solid phasechangematerials[J]. Solar Energy Materials and Solar Cells,2011,95: 95-3201.
    [34]CHEN C Z, LIU W M, YANG H, et al. Synthesis of solid-solid phase change material for thermal energy storage by crosslinking of polyethylene glycol with poly(glycidyl methacrylate)[J]. Solar Energy,2011,85:2679-2685.
    [35]李海建,冀志江,王静,等.复合相变材料的研究现状[J].材料导报,2008,22:248-251.
    [36]李金辉,刘晓兰,张荣军.新型相变储能材料研究进展[J].化工新型材料,2006,34(8):18-21.
    [37]王澜,李鑫,赵子,叶志殷.聚烯烃/石蜡复合相变储能材料的研究.中国塑料,2008,22(4):25-27.
    [38]LI M, WU Z S. A review of intercalation composite phase change material Preparation, structure and properties[J]. Renewable & Sustainable Energy Reviews.2012,16: 2094-2101.
    [39]MEI D D, HANG B, LIU R C, et al. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Solar Energy Materials & Solar Cells,2011,95:2772-2777.
    [40]陈中华,肖春香.十二醇/蒙脱土复合相变储能材料的制备及性能研究[J].功能材料,2008,39(4):629-631.
    [41]周盾白,周子鹄,贾德民.石蜡/蒙脱土纳米复合相变材料的制备及分析[J].化工新型材料.2009,37(7):108-110.
    [42]马银陈,周宁琳,陈亚红,等.二元脂肪酸/蒙脱土复合相变储能材料的制备及性能研究[J].化工新型材料,2007,35(10):7-9,35.
    [43]郭艳芹,董连洋,张正国,等.不同十八烷含量膨润土基复合相变储热材料的性能研究[J].非金属矿,2010,33(3):42-44.
    [44]Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials[J]. Energy Conversion & Management,2008,49:718-23.
    [45]CHEN M Z, ZHENG S P, WU S P, et al. Melting intercalation method to prepare lauricacid/organophilic montmorillonite shape-stabilized phase change material [J]. Journal of Wuhan University of Technology-Materials Science Edition, 2010,25(4):674-677.
    [46]FAN 1. W, KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage:A review[J]. Renewable & Sustainable Energy Reviews, 2011,15:24-46.
    [47]JEGADHEESWARAN S, POHEKAR S D. Performance enhancement in latent heat thermal storage system:A review[J]. Renewable and Sustainable Energy Reviews,2009,13: 2225-2244.
    [48]XIA L, ZHANG P, WANG R Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material [J]. Carbon,2010,48:2538-2548.
    [49]SARI A, KARAIKLI A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage[J]. Solar Energy Materials & Solar Cells,2009,93:571-576.
    [50]FIEDLER T, OCHSNER A, BELOVA I V, et al. Thermal conductivity enhancement of compact heat sinks using cellular materials [J]. Defect and Diffusion Forum,2008,273-276: 222-226.
    [51]MESALHY 0, LAFDI K, ELGAFI A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porousmatrix[J]. Energy Conversion & Management,2005,46(6):847-867.
    [52]WU S Y, ZHU D S, ZHANG X R, et al. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)[J]. Energy Fuels,2010, 24:1894-1898
    [53]WANG J F, XIE H Q, XIN Z, er al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010,84:339-344.
    [54]WANG W L, YANG X X, FANG Y T, et al. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using O-Aluminum nitride[J]. Applied Energy,2009,86:1196-1200.
    [55]KHUDHAIR A M, FARID M H. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J]. Energy Conversion & Management,2004,45(2):263-275.
    [56]KARAIPEKLI A, SARI A. Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage[J]. Renewable Energy,2008,33:2599-2605.
    [57]贾超, 唐炳涛,张淑芬,刘楠平.超声辅助溶胶凝胶法制备硬脂酸/SiO2定形相变储能材料[J].复合材料学报,2012,29(1):85-90.
    [58]SHI T, GUO X Z, YANG H. Preparation and characterization of nanocrystalline γ-A1203 by sol-gel process[J]. Rare metal materials & engineering,2008,37(2): 379-382.
    [59]张其春,余志化,敦文杰.具有良好热稳定性的勃姆石纳米粉体的制备及表征[J].矿物岩石,2008,28(2):6-9.
    [60]CHENG L, LEI L, GUO S R. In vitro and in vivo evaluation of praziquantel loaded implants based on PEG/PCL blends [J]. International Journal of Pharmaceutics,2010, 387:129-138.
    [61]HUANG C, YANG C Z. Fractal aggregation and optical absorption of copper nanoparticles prepared by in situ chemical reduction within a Cu2+-polymer complex[J]. Applied Physics Letters,1999,74:1692-1694.
    [62]KHANNA P K, GAIKWAD S, ADHYPAK P V, et al. Synthesis and characterization of copper nanoparticles[J]. Materials Letters,2007,61:4711-4714
    [63]LIU M S, LIN M C C, TSAI C Y, et al. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. International Journal of Heat and Mass Transfer,2006,49:3028-3033.
    [64]WANG Y H, CHEN P L, LIU M H. Synthesis of well-defined copper nanocubes by a one-pot solution process[J]. Nanotechnology,2006,17:6000-6006.
    [65]SHEERAN D. Copper content in synthetic copper carbonate:A statistical comparison of experimental and expected results[J]. Journal of Chemical Education,1998,75: 453-456.
    [66]HAEMERS G, VERBIST J J, MAROIE S. Surface oxidation of polycrystalline a 75% Cu et 25% Zn) and β (53% Cu et 47% Zn) brass as studied by XPS:influence of oxygen pressure[J]. Applied Surface Science,1984,17:463-476.
    [67]DZHURINSKII B F, GATI D, SERGUSHIN N P, et al. Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides[J]. Russian Journal of Inorganic Chemistry,1975,20:2307-2314.
    [68]HABIB I H I. Colorimetric determination of copper (I) and copper (II) oxides in borate glasses[J]. Glass Technology.2003,44:137-138(2).
    [69]ZENG J L, LIU Y Y, CAO Z X, et al. Thermal conductivity enhancement of MWCNTS on the PANI/tetradecanol form-stable PCM[J]. Journal of Thermal Analysis and Calorimetry,2008,91:443-446.
    [70]ZENG J L, CAO Z, YANG D W, et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material [J]. Journal of Thermal Analysis and Calorimetry, 2010,101:385-389.
    [71]SARI A, KARAIPEKLI A. Preparation, thermal properties and thermal reliability of (?)apric acid/expanded perlite composite for thermal energy storage[J]. Materials Chemistry and Physics,2008,109:459-464.
    [72]CHANG M H, LIU H S, TAI C Y, Preparation of copper oxide nanoparticles and its application in nanofluid[J]. Powder Technology,2011,207:378-386.
    [73]ARMAROLI N, BALZANI V. The future of energy supply:challenges and opportunities [J]. Angewandte Chemie International Edition,2006,45:2-17.
    [74]KRAEMER D, POUDEL B, FENG H P, et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration[J]. Nature Materials, 2011,10:532-538.
    [75]LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Advanced Materials,2010,22:E28-E62.
    [76]KOCA A, OZTOP H F, KOYUN T, et al. Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector[J]. Renewable Energy,2008,33:567-574.
    [77]BAKHTIARI A B S, HSIAO D, XIN G X, et al. An efficient method based on the photothermal effect for the release of molecules from metal nanoparticle surfaces [J]. Angewandte Chemie International Edition,2009,48:4166-4169.
    [78]ZHAO B, HU H, HADDON R C, Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer[J]. Advanced functional materials,2004,14(1):71-76.
    [79]MIYAKO E, NAGATA H, HIRANO K, et al. Carbon nanotube-polymer composite for light-driven microthermal control[J]. Angewandte Chemie International Edition, 2008,47:3610-3613.
    [80]ENTROP A G, BROUWERS H J H, Reinders A H M E. Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in dutch houses. Solar Energy,2011,85:1007-1020.
    [81]MIYAKO E, NAGATA H, HIRANO K, et al. Photoinduced antiviral carbon nanohorns[J]. Nanotechnology,2008,19:075106-075111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700