石墨烯及其组装材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为碳纳米材料家族中独特的二维晶体结构材料,石墨烯纳米片(GNs)是在2004年被K.S.Novoselov和A.K.Geim等人首次发现并提出的。完美的石墨烯纳米片主要是指具有苯环结构的单个碳原子层。基于其在电学、光学、力学、热学等方面表现的优异性能,石墨烯纳米片已经成为目前材料科学和凝聚态物理研究的一个热点。同时,随着研究人员对石墨烯纳米片相关性能研究的不断深入,石墨烯量子点(GQDs)也以其良好的光致发光性能和在生物成像以及生物探针方面的应用进入研究人员的研究领域中。相应地,石墨烯基组装材料也逐渐成为人们研究的热点。本论文主要研究了石墨烯纳米片的制备及电化学性能研究,石墨烯量子点的制备及光致发光性能的研究以及几类石墨烯组装材料的制备及其性能应用。主要内容如下:
     (1)作者分别利用氧化还原的方法和超声波剥离的方法制备出石墨烯纳米片(GNs)。首先,以水合肼作为还原剂把利用传统的hummer方法制备的氧化石墨烯还原为石墨烯纳米片。其次,作者首次利用超声波剥离的方法,选用石墨粉体为原料,以物质的量浓度为0.001M的中性表面活性剂聚乙烯吡咯烷酮(PVP)为分散剂和稳定剂,分别选择去离子水和无水乙醇为溶剂,在不同的功率条件下超声不同的时间制备出了石墨纳米薄片和石墨烯。通过动态光散射仪(DLS)分别测试了氧化石墨烯和石墨烯的Zeta电位及尺寸大小,结果表明氧化石墨烯和石墨烯纳米片表面都呈现出良好的负电性。然后以石英玻璃为基底,采用层层自组装的方法(LBL)实现石墨烯纳米片的层层自组装,形成石墨烯纳米片的均质薄膜。用紫外可见吸收光度计(UV-Vis)表征了组装层数与吸光度的线性关系;以导电玻璃(ITO)为基底,采用电泳沉积的方法(EPD)获得了石墨烯导电薄膜。利用电化学工作站(CHI)初步研究了所制备的石墨烯导电薄膜在超级电容器方面的应用。
     (2)作者采用超声法一步简单快捷地合成了颗粒大小均一、分散均匀的光致发光的石墨烯量子点(GQDs),发现其具有良好的发光性能。以超声波剥离法获得石墨烯纳米片为原料,在不加入任何表面活性剂以及稳定剂的条件下,分别选用无水乙醇和N-甲基吡咯烷酮为溶剂,利用强力超声法一步简单快捷地合成了颗粒大小均一、分散均匀的光致发光的石墨烯量子点。
     (3)以石墨烯纳米片为模板,以氯化锌和硫脲分别作为锌源和硫源,无水乙醇作为溶剂,在不同锌离子浓度条件下,利用醇热反应在180℃下分别保温12h、14h和16h,最终获得了两种独特的石墨烯/硫化锌量子点组装材料和石墨烯/硫化锌量子片组装材料。在可见光照射下,这两种组装材料均表现出良好的光电反应现象,其最大光电压值分别达到了0.5mV和0.7mV。
     (4)分别利用溶剂热的方法和室温搅拌的方法制备了石墨烯纳米片与二氧化钛纳米管以及石墨烯量子点与二氧化钛纳米管的组装材料。然后在可见光照射下,研究并对比了这两种组装材料对有机染料亚甲基蓝(MB)的光催化降解能力,探讨了组装材料对MB光催化降解的简单机理。同时作为对比,作者也考察了单独二氧化钛纳米管作为光催化剂对MB水溶液的光降解效果。结果表明,组装材料的光催化性能明显优越于单独的二氧化钛纳米管。在可见光催化反应过程中,石墨烯充分起到了光敏作用。
     (5)以氧化石墨烯和硝酸银为原料,分别选用柠檬酸钠和硼氢化钠为还原剂,在液相体系中原位合成了银/石墨烯组装材料。选用吡啶为目标探测分子,作者首次对银/石墨烯纳米组装材料作为表面增强拉曼活性基底对吡啶分子拉曼信号增强的性能进行了初步研究。
     (6)首先,利用2-氨基乙硫醇实现了石墨烯的巯基化共价修饰;其次,以二水合醋酸锌为原料制备了氧化锌量子点;最后,借助于Zn-S键的键合作用成功地实现了氧化锌量子点在石墨烯表面的锚接。在紫外光照射下,以有机染料罗丹明B水溶液模拟工厂污水,氧化锌/石墨烯组装材料为光降解催化剂,测试了所合成氧化锌/石墨烯组装材料的光催化降解性能,分析了其对罗丹明B催化降解的机理过程。同时作为对比,作者也考察了单独氧化锌量子点作为光催化剂对罗丹明B水溶液的光降解效果。结果表明,组装材料的光催化性能优越于单独的氧化锌量子点。
     本论文主要以化学纯的石墨粉为原料,分别制备了石墨烯纳米片和石墨烯量子点。然后又在制备的石墨烯纳米片和石墨烯量子点的基础上合成了石墨烯基组装材料,研究了石墨烯纳米片、石墨烯量子点以及石墨烯基组装材料的电性能、荧光性能、光电转化性能、光催化性能以及在表面增强拉曼(SERS)性能等方面的潜在应用。本论文的创新点主要在于:(1)首次在表面活性剂聚乙烯吡咯烷酮存在的条件下,超声制备出了石墨烯纳米片,并以该石墨烯纳米片为原料采用强力超声破碎的方法合成了石墨烯量子点。(2)利用石墨烯纳米片的模板效应,控制一定的反应时间和锌离子浓度,第一次成功可控地实现了硫化锌从量子点到量子片的生长转变;所制备的两种结构独特的ZnS/GNs组装材料都表现出较好的光电响应性能,而ZnSQFs/GNs组装材料的光生电压响应值更优于ZnSQDs/GNs组装材料的光生电压响应值。(3)首次合成了在可见光下具有较高催化性能的石墨烯量子点敏化的二氧化钛纳米管组装材料。(4)首次探索了Ag/GNs组装材料作为表面增强拉曼活性基底对吡啶分子拉曼信号的增强性能,同时也考察了组装材料中银纳米颗粒对石墨烯拉曼信号的增强效果。
As a unique two-dimensional crystal structure material of carbon nanomaterials, graphene nanosheets (GNs) were first discovered and raised in2004by K.S.Novoselov and A.K.Geim. The perfect GNs mainly refer to a single layer of carbon atoms with a benzene ring structure. Based on its excellent performance in the electrical, optical, mechanical and thermal, GNs have become a hot topic in the fields of materials science and condensed matter physics. Meanwhile, with the deepening research about the related properties of GNs, graphene quantum dots (GQDs) gradually appeared in the scope of researchers and attracted much more interests for its good photoluminescence properties and remarkable application in the bio-imaging and bio-probe et al. In view light of this, many researchers have also paid most of their attention to the graphene-based composite materials. In this thesis, preparation and electrochemical properties of the GNs and preparation and photoluminescence properties of the GQDs have been primarily studied, and several types of graphene-based assembled materials and their performance applications have also been discussed. The main contents are as follows:
     (1) GNs were prepared respectively with oxidation-reduction method and ultrasonic peeling method. Firstly, using hydrazine hydrate as a reducing agent, graphene oxide prepared via traditional hummer's method was reduced into GNs. Secondly, Slecting graphite powder as raw material and deionized water or ethanol as solvent, using neutral surfactant polyvinyl pyrrolidone (PVP) with concentrations of0.001M as dispersing agents and stabilizers, graphite nanosheets and graphene in the absolute ethanol or deionized water solution were prepared via the ultrasonic peeling method for the first time. Zeta potential and nanosize of graphene oxide and graphene were tested by dynamic light scattering (DLS), the results showed that a good negatively charge of graphene oxide and graphene nanosheets emerged. And then using quartz glass slip as substrate, via the layer by layer self-assembled (LBL) method, a homogeneous GNs film was made. A linear relationship of the assembled layers and the absorbance was characterized by UV-Vis; using electrophoretic deposition (EPD) method with conductive glass (ITO) as the base, graphene conductive thin film was obtained, and their application on the supercapacitor has also been preliminarily studied using electrochemical workstation (CHI).
     (2) Employing the GNs prepared by ultrasonic stripping method as raw materials, absolute ethanol and N-methyl pyrrolidone as solvent, the homogeneous GQDs with uniform size and excellent photoluminescence performance were synthesized via the simply and efficiently powerful ultrasonic method. Then its remarkable photoluminescence performance was discussed by fluorescence spectrometer (FL). Morphologies and UV-Vis absorption characteristic peaks of GQDs were performed on the TEM and UV-Vis spectrophotometer.
     (3) Selecting GNs as a template, zinc chloride and thiourea as zinc source and sulfur source, anhydrous ethanol as a solvent, the two unique ZnSQDs/GNs and ZnS QFs/GNs assembled materials were obtained with the Zn2+concentration of0.0001M and0.01M. Under visible light irradiation, these two assembled materials showed good photo-voltage response phenomenon, its voltage maximum values have reached respectively0.5mV and0.7mV.
     (4) Via solvothermal method and simply mixed/stirred at room temperature, TNTs/GNs assembled materials and TNTs/GQDs assembled materials were synthesized. Their photocatalytic performance about degradation of organic dyes MB under visible light was explored and compared. And meanwhile, as a comparison, the separate TNTs were also investigated for photodegradation of MB aqueous. The results showed that the photocatalytic properties of the composite materials are significantly superior to the individual TNTs. Under the visible light irridation, the GNs acted as a photosensitive.
     (5) Using graphene oxide and silver nitrate as raw material, sodium citrate and sodium borohydride as the reducing agent respectively, Ag/GNs assembled materials were in situ synthesized in liquid phase system. Selecting pyridine molecule as target object, the performance of Ag/GNs assembled materials as SERS active substrates for the enhancement of the pyridine molecule Raman signal were preliminary characterized and studied.
     (6) Firstly, the graphene thiolated covalent modification was achieved with2-aminoethanethiol; Secondly, the zinc oxide quantum dots (ZnO QDs) were prepared from zinc acetate dihydrate; Finally, ZnO QDs were successfully anchored on the surface of the graphene by means of Zn-S bond in cooperation. Under UV irradiation, using the organic dye rhodamine B (RhB) aqueous solution as analog factory effluent, photocatalytic degradation performance of ZnOQDs/GNs assembled materials photodegradation catalyst was tested, and the catalyzed degradation mechanism on Rhodamine B was also analyzed. The results showed that the photocatalytic properties of the composite materials are significantly superior to the individual ZnO. Under UV irridation, the presence of GNs produced negative effects to the photocatalytic properties.
     In brief, this thesis is mainly employing the chemically pure graphite powder as raw materials to synthesize the GNs and GQDs. And then, based on the graphene materials, the graphene-based composite materials were also prepared. The fluorescence properties, optoelectronic conversion performance photocatalytic properties and potential applications of surface-enhanced Raman (SERS) performance of the materials were invesgatied and studied.
引文
[1]Kroto H W, Heath J R, O'Brien S C, et al., C60:buckminsterfullerene. Nature, 1985,318(6042):162-163.
    [2]Iijima S, Helical microtubules of graphitic carbon. Nature,1991, 354(6348):56-58.
    [3]Novoselov K S, Geim A K, Morozov S V, et al., Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669.
    [4]Kim K S, Zhao Y, Jang H, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457(7230):706-710.
    [5]Balandin A A, Ghosh S, Bao W, et al., Superior thermal conductivity of single-layer graphene. Nano Lett,2008,8(3):902-907.
    [6]Lee C, Wei X, Kysar J W, et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2,008,321(5887):385-388.
    [7]Bolotin K I, Sikes K, Jiang Z, et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications,2008,146(9):351-355.
    [8]Novoselov K S, Jiang Z, Zhang Y, et al., Room-temperature quantum Hall effect in graphene. Science,2007,315(5817):1379.
    [9]Novoselov K S, Geim A K, Morozov S V, et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438(7065):197-200.
    [10]Zhang Y, Tan Y W, Stormer H L, et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005, 438(7065):201-204.
    [11]Han M Y, Ozyilmaz B, Zhang Y, et al., Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett,2007,98(20):206805.
    [12]Geim A K, Novoselov K S, The rise of graphene. Nat Mater,2007,6(3):183-191.
    [13]Mermin N D, Wagner H, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Physical Review Letters, 1966,17(22):1133-1136.
    [14]Fujita M, Wakabayashi K, Nakada K, et al., Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan,1996,65(7):1920-1923.
    [15]Nakada K, Fujita M, Dresselhaus G, et al., Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B Condens Matter, 1996,54(24):17954-17961.
    [16]Nair R R, Blake P, Grigorenko A N, et al., Fine structure constant defines visual transparency of graphene. Science,2008,320(5881):1308.
    [17]Ni Z, Wang H, Kasim J, et al., Graphene thickness determination using reflection and contrast spectroscopy. Nano letters,2007,7(9):2758-2763.
    [18]Ponomarenko L, Schedin F, Katsnelson M, et al., Chaotic Dirac billiard in graphene quantum dots. Science,2008,320(5874):356-358.
    [19]Hewageegana P, Apalkov V, Electron localization in graphene quantum dots. Physical Review B,2008,77(24):245426.
    [20]Hod O, Scuseria G E, Electromechanical properties of suspended graphene nanoribbons. Nano letters,2009,9(7):2619-2622.
    [21]Zhang Y, Tan Y-W, Stormer H L, et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005, 438(7065):201-204.
    [22]Katsnelson M I, Graphene:carbon in two dimensions. Materials today,2007, 10(1):20-27.
    [23]Schedin F, Geim AK, Morozov SV, et al., Detection of individual gas molecules adsorbed on graphene. Nature materials,2007,6(9):652-655.
    [24]Elias D, Nair R, Mohiuddin T, et al., Control of graphene's properties by reversible hydrogenation:evidence for graphane. Science,2009, 323(5914):610-613.
    [25]Oostinga J B, Heersche H B, Liu X, et al., Gate-induced insulating state in bilayer graphene devices. Nature materials,2007,7(2):151-157.
    [26]Frank O, Tsoukleri G, Parthenios J, et al., Compression behavior of single-layer graphenes. ACS nano,2010,4(6):3131-3138.
    [27]Stankovich S, Dikin D A, Dommett G H, et al., Graphene-based composite materials. Nature,2006,442(7100):282-286.
    [28]Schniepp H C, Kudin K N, Li J-L, et al., Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS nano, 2008,2(12):2577-2584.
    [29]Gao Y, Hao P, Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E:Low-dimensional Systems and Nanostructures, 2009,41(8):1561-1566.
    [30]Seol J H, Jo I, Moore A L, et al., Two-dimensional phonon transport in supported graphene. Science,2010,328(5975):213-216.
    [31]朱宏伟,徐志平,谢丹,石墨黑烯结构制备方法与性能表征集.北京:清华大学出版社,2011,p184.
    [32]Berger C, Song Z, Li T, et al., Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B,2004,108(52):19912-19916.
    [33]Berger C, Song Z, Li X, et al., Electronic confinement and coherence in patterned epitaxial graphene. Science,2006,312(5777):1191-1196.
    [34]Pan Y, Zhang H, Shi D, et al., Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru(0001). Adv Mater,2009, 21(27):2777-2780.
    [35]Hummers Jr W S, Offeman R E, Preparation of graphitic oxide. J Am Chem Soc, 1958,80(6):1339-1339.
    [36]Matsuo Y, Sugie Y, Preparation, structure and electrochemical property of pyrolytic carbon from graphite oxide. Carbon,1998,36(3):301-303.
    [37]Ramesh P, Bhagyalakshmi S, Sampath S, Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide. J Colloid Interface Sci,2004,274(1):95-102.
    [38]Dikin D A, Stankovich S, Zimney E J, et al., Preparation and characterization of graphene oxide paper. Nature,2007,448(7152):457-460.
    [39]Shin H J, Kim K K, Benayad A, et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials,2009,19(12):1987-1992.
    [40]Fan X, Peng W, Li Y, et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation. Adv Mater,2008, 20(23):4490-4493.
    [41]Li Y, Gao W, Ci L, et al., Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon,2010,48(4):1124-1130.
    [42]Tung V C, Allen M J, Yang Y, et al., High-throughput solution processing of large-scale graphene. Nat Nanotechnol,2009,4(1):25-29.
    [43]Hirata M, Gotou T, Horiuchi S, et al., Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon,2004, 42(14):2929-2937.
    [44]Stankovich S, Piner R D, Chen X,et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry,2006, 16(2):155-158.
    [45]Li D, Muller M B, Gilje S, et al., Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol,2008,3(2):101-105.
    [46]Liu N, Luo F, Wu H, et al., One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite. Advanced Functional Materials,2008,18(10):1518-1525.
    [47]Hernandez Y, Nicolosi V, Lotya M, et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol,2008,3(9):563-568.
    [48]Baker S N, Baker G A, Luminescent carbon nanodots:emergent nanolights. Angew Chem Int Ed Engl,2010,49(38):6726-6744.
    [49]Pan D, Zhang J, Li Z, et al., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv Mater,2009, 22(6):734-738.
    [50]Zhu S, Zhang J, Qiao C, et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun.,2011, 47(24):6858-6860.
    [51]Shen J, Zhu Y, Chen C, et al., Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun.,2011,47(9):2580-2582.
    [52]Yan X, Cui X, Li L S, Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc,2010,132(17):5944-5945.
    [53]Li Y, Hu Y, Zhao Y, et al., An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics. Adv Mater,2011,23(6):776-780.
    [54]Minati L, Torrengo S, Maniglio D, et al., Luminescent graphene quantum dots from oxidized multi-walled carbon nanotubes. Materials Chemistry and Physics, 2012,137(1):12-16.
    [55]Gupta V, Chaudhary N, Srivastava R, et al., Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc,2011,133(26):9960-9963.
    [56]Geng X, Niu L, Xing Z, et al., Aqueous-Processable Noncovalent Chemically Converted Graphene-Quantum Dot Assembled materials for Flexible and Transparent Optoelectronic Films. Adv Mater,2009,22(5):638-642.
    [57]Sutter P W, Flege J I, Sutter E A, Epitaxial graphene on ruthenium. Nat Mater, 2008,7(5):406-411.
    [58]Hsu A. Wang H, Kim K K, et al., High frequency performance of graphene transistors grown by chemical vapor deposition for mixed signal applications. Japanese Journal of Applied Physics,2011,50(7):0114.
    [59]Li X, Cai W, An J, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324(5932):1312-1314.
    [60]Howard J B, McKinnon J T, Makarovsky Y, et al., Fullerenes C60 and C70 in flames. Nature,1991,352(6331):139-141.
    [61]Howard J B, Daschowdhury K, Vandersande J B, Carbon shells in flames. Nature,1994,370(6491):603-603.
    [62]Li Z, Zhu H, Wang K, et al., Ethanol flame synthesis of highly transparent carbon thin films. Carbon,2011,49(1):237-241.
    [63]Liao L, Fang P, Pan C, Nitrogen-doped carbon nanotubes from amine flames. J Nanosci Nanotechnol,2011,11 (2):1060-1067.
    [64]Zhang Y, Cao B, Zhang B, et al., The production of nitrogen-doped graphene from mixed amine plus ethanol flames. Thin Solid Films,2012, 520(23):6850-6855.
    [65]Jung I, Pelton M, Piner R, et al., Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano letters,2007, 7(12):3569-3575.
    [66]Blake P, Hill E, Castro Neto A, et al., Making graphene visible. Applied physics letters,2007,91(6):063124-063124-063123.
    [67]Park J S, Reina A, Saito R, et al., band Raman spectra of single, double and triple layer graphene. Carbon,2009,47(5):1303-1310.
    [68]Singh V, Joung D, Zhai L, et al., Graphene based materials:Past, present and future. Progress in Materials Science,2011,56(8):1178-1271.
    [69]Paredes J, Villar-Rodil S, Solis-Fernandez P, et al., Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir,2009,25(10):5957-5968.
    [70]Luo J, Tian P, Pan C-T, et al., Ultralow Secondary Electron Emission of Graphene. ACS nano,2011,5(2):1047-1055.
    [71]Hassan H M A, Abdelsayed V, Khder A E R S, et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. Journal of Materials Chemistry,2009,19(23):3832-3837.
    [72]Gomez-Navarro C, Meyer J C, Sundaram R S, et al., Atomic structure of reduced graphene oxide. Nano letters,2010,10(4):1144-1148.
    [73]Girit C O, Meyer J C, Erni R, et al., Graphene at the edge:stability and dynamics. Science,2009,323(5922):1705-1708.
    [74]Meyer J C, Kisielowski C, Erni R, et al., Direct imaging of lattice atoms and topological defects in graphene membranes. Nano letters,2008, 8(11):3582-3586.
    [75]Gass M H, Bangert U, Bleloch A L, et al., Free-standing graphene at atomic resolution. Nature nanotechnology,2008,3(11):676-681.
    [76]Prawer S, Nugent K, Jamieson D, et al., The Raman spectrum of nanocrystalline diamond. Chemical physics letters,2000,332(1):93-97.
    [77]Ferrari A, Robertson J, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B,2001,64(7):075414.
    [78]Wei J, Jiang B, Zhang X, et al., Raman study on double-walled carbon nanotubes. Chemical physics letters,2003,376(5):753-757.
    [79]Malard L, Nilsson J, Elias D, et al., Probing the electronic structure of bilayer graphene by Raman scattering. Physical Review B,2007,76(20):201401.
    [80]Ferrari A C, Meyer J C, Scardaci V, et al., Raman spectrum of graphene and graphene layers. Phys Rev Lett,2006,97(18):187401.
    [81]Bak S-M, Nam K-W, Lee C-W, et al., Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. Journal of Materials Chemistry,2011, 21(43):17309-17315.
    [82]雀部博之,白川英树,导电高分子材料.北京:科学出版社,1989.
    [83]Zheng W, Wong S C, Electrical conductivity and dielectric properties of PMMA/expanded graphite assembled materials. Assembled materials Science and Technology,2003,63(2):225-235.
    [84]Eda G, Chhowalla M, Graphene-based composite thin films for electronics. Nano Lett,2009,9(2):814-818.
    [85]Ansari S, Giannelis E P, Functionalized graphene sheet-Poly (vinylidene fluoride) conductive nanoassembled materials. Journal of Polymer Science Part B: Polymer Physics,2009,47(9):888-897.
    [86]Wang J, Han Z, The combustion behavior of polyacrylate ester/graphite oxide assembled materials. Polymers for advanced technologies,2006,17(4):335-340.
    [87]Shi L, Li Z M, Xie B H, et al., Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams. Polymer international,2006,55(8):862-871.
    [88]Liang J, Xu Y, Huang Y, et al., Infrared-triggered actuators from graphene-based nanoassembled materials.J. Phys. Chem. C,2009,113(22):9921-9927.
    [89]Yoo E, Okata T, Akita T, et al., Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett,2009, 9(6):2255-2259.
    [90]Scheuermann G M, Rumi L, Steurer P, et al., Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc,2009, 131(23):8262-8270.
    [91]Xu C, Wang X, Zhu J, Graphene-metal particle nanoassembled materials. The Journal of Physical Chemistry C,2008,112(50):19841-19845.
    [92]Muszynski R, Seger B, Kamat P V, Decorating graphene sheets with gold nanoparticles. The Journal of Physical Chemistry C,2008,112(14):5263-5266.
    [93]Si Y, Samulski E T, Exfoliated graphene separated by platinum nanoparticles. Chemistry of materials,2008,20(21):6792-6797.
    [94]Rao C N, Sood A K, Subrahmanyam K S, et al., Graphene:the new two-dimensional nanomaterial. Angew Chem Int Ed Engl,2009, 48(42):7752-7777.
    [95]Kamat P V, Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. The Journal of Physical Chemistry Letters,2009, 1(2):520-527.
    [96]Kaniyoor A, Jafri R I, Arockiadoss T, et al., Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale,2009, 1(3):382-386.
    [97]Wang G, Wang B, Wang X, et al., Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry,2009,19(44):8378-8384.
    [98]Park S, Ruoff R S, Chemical methods for the production of graphenes. Nat Nanotechnol,2009,4(4):217-224.
    [99]Li Z, Wang J, Liu S, et al., Synthesis of hydrothermally reduced graphene/MnO2 assembled materials and their electrochemical properties as supercapacitors. Journal of Power Sources,2011,196(19):8160-8165.
    [100]Yu G, Hu L, Vosgueritchian M, et al., Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano letters,2011, 11(7):2905-2911.
    [101]Qian Y, Lu S, Gao F, Preparation of MnO 2/graphene composite as electrode material for supercapacitors. Journal of Materials Science,2011, 46(10):3517-3522.
    [102]Chen Y, Zhang Y, Geng D, et al., One-pot synthesis of MnO2 graphene/carbon nanotube hybrid by chemical method. Carbon,2011,49(13):4434-4442.
    [103]Lee H, Kang J, Cho M S, et al., MnO2/graphene composite electrodes for supercapacitors:the effect of graphene intercalation on capacitance. Journal of Materials Chemistry,2011,21(45):18215-18219.
    [104]Wu Z S, Ren W, Wang D W, et al., High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS nano,2010, 4(10):5835-5842.
    [105]Mao L, Zhang K, Chan H S O, et al., Nanostructured MnO2/graphene assembled materials for supercapacitor electrodes:the effect of morphology, crystallinity and composition. Journal of Materials Chemistry,2012, 22(5):1845-1851.
    [106]Fan Z, Yan J, Wei T, et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Advanced Functional Materials,2011,21(12):2366-2375.
    [107]Yan J, Fan Z, Wei T, et al., Fast and reversible surface redox reaction of graphene-MnO2 assembled materials as supercapacitor electrodes. Carbon,2010, 48(13):3825-3833.
    [108]Zhang J, Jiang J, Zhao X, Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets. The Journal of Physical Chemistry C,2011,115(14):6448-6454.
    [109]Qian Y, Lu S, Gao F, Preparation of MnO2/graphene composite as electrode material for supercapacitors. Journal of Materials Science,2011, 46(10):3517-3522.
    [110]Mo Z, Liu P, Guo R, et al., Graphene sheets/Ag2S nanoassembled materials: Synthesis and their application in supercapacitor materials. Materials Letters, 2012,68:416-418.
    [111]Chen S Q, Wang Y, Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry,2010,20(43):9735-9739.
    [112]Wang B, Wu X L, Shu C Y, et al., Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem., 2010,20(47):10661-10664.
    [113]Paek S M, Yoo E J, Honma I, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano letters,2008,9(1):72-75.
    [114]Zhong C, Wang J, Chen Z, et al., SnO2-Graphene Composite Synthesized via an Ultrafast and Environmentally Friendly Microwave Autoclave Method and Its Use as a Superior Anode for Lithium-Ion Batteries. The Journal of Physical Chemistry C,2011,115(50):25115-25120.
    [115]Cao A, Liu Z, Chu S, et al., A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanoassembled materials as Promising Optoelectronic Materials. Adv Mater,2010,22(1):103-106.
    [116]Yan X, Cui X, Li B, et al., Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett,2010,10(5):1869-1873.
    [117]Girit C O, Meyer J C, Erni R, et al., Graphene at the edge:stability and dynamics. Science,2009,323(5922):1705-1708.
    [118]Guo C X, Yang H B, Sheng Z M, et al., Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed Engl,2010,49(17):3014-3017.
    [119]Zhuo S, Shao M, Lee S T, Upconversion and downconversion fluorescent graphene quantum dots:ultrasonic preparation and photocatalysis. ACS nano, 2012,6(2):1059-1064.
    [1]Novoselov K S, Geim A K, Morozov S V, et al., Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669.
    [2]Mermin N D, Wagner H, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Physical Review Letters, 1966,17(22):1133-1136.
    [3]黄毅,陈永胜,石墨烯的功能化及其相关应用.中国科学B辑:化学,2009,39(9):887-896.
    [4]Dikin D A, Stankovich S, Zimney E J, et al., Preparation and characterization of graphene oxide paper. Nature,2007,448(7152):457-460.
    [5]Park S, Lee K S, Bozoklu G, et al., Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS nano, 2008,2(3):572-578.
    [6]Stoller M D, Park S, Zhu Y, et al., Graphene-based ultracapacitors. Nano Lett, 2008,8(10):3498-3502.
    [7]Blake P, Brimicombe P D, Nair R R, et al., Graphene-based liquid crystal device. Nano Lett,2008,8(6):1704-1708.
    [8]Bunch J S, van der Zande A M, Verbridge S S, et al., Electromechanical resonators from graphene sheets. Science,2007,315(5811):490-493.
    [9]Wang Y, Shi Z, Huang Y, et al., Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C,2009,113(30):13103-13107.
    [10]Bullis K, Graphene transistors. Technology Review,2008.
    [11]Hummers Jr W S, Offeman R E, Preparation of graphitic oxide. J Am Chem Soc, 1958,80(6):1339-1339.
    [12]杨永岗,陈成猛,温月芳,et al.,氧化石墨烯及其与聚合物的组装.新型炭材料,2008,23(3):193-200.
    [13]Hernandez Y, Nicolosi V, Lotya M, et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol,2008,3(9):563-568.
    [14]李香琴,刘天庆,陈彦田,SiO2纳米粒子自组装膜的制备与表征.高校化学工程学报,2005,19(3):403-406.
    [15]Clark S L, Hammond P T, Engineering the Microfabrication of Layer-by-Layer Thin Films. Adv Mater,1998,10(18):1515-1519.
    [16]Antolini E, Gonzalez E, Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics,2009,180(9):746-763.
    [17]刘粤惠,刘平安,X射线衍射分析原理与应用.北京:化学工业出版社,2003.
    [18]傅玲,刘洪波,邹艳红,et al., Hummers法制备氧化石墨时影响氧化程度的工艺因素研究.炭素,2006,(4):10-14.
    [19]樊小军,刘衍晟,陈明霞,et al.,透射电镜在纳米材料检测中的应用.纳米科技,2008,5(3):63-64.
    [20]张磊.氧化石墨及其聚合物纳米组装材料的制备及表征.青岛大学,山东,2009.
    [21]Nethravathi C, Rajamathi M, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008,46(14):1994-1998.
    [22]Compton O C, Nguyen S T, Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials. Small,2010, 6(6):711-723.
    [23]Liu C, Yu Z, Neff D, et al., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett,2010,10(12):4863-4868.
    [24]Paredes J I, Villar-Rodil S, Martinez-Alonso A, et al., Graphene oxide dispersions in organic solvents. Langmuir,2008,24(19):10560-10564.
    [25]Li D, Muller M B, Gilje S, et al., Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol,2008,3(2):101-105.
    [26]Yurekli K, Mitchell C A, Krishnamoorti R, Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J Am Chem Soc, 2004,126(32):9902-9903.
    [27]Prawer S, Nugent K, Jamieson D, et al., The Raman spectrum of nanocrystalline diamond. Chemical physics letters,2000,332(1):93-97.
    [28]Ferrari A, Robertson J, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B,2001,64(7):075414.
    [29]Wei J, Jiang B, Zhang X, et al., Raman study on double-walled carbon nanotubes. Chemical physics letters,2003,376(5):753-757.
    [30]Malard L, Nilsson J, Elias D, et al., Probing the electronic structure of bilayer graphene by Raman scattering. Physical Review B,2007,76(20):201401.
    [31]Ferrari A C, Meyer J C, Scardaci V, et al., Raman spectrum of graphene and graphene layers. Phys Rev Lett,2006,97(18):187401.
    [32]Ni Z, Chen W, Fan X, et al., Raman spectroscopy of epitaxial graphene on a SiC substrate. Physical Review B,2008,77(11):115416.
    [33]Calizo I, Ghosh S, Bao W, et al., Raman nanometrology of graphene: Temperature and substrate effects. Solid State Communications,2009, 149(27):1132-1135.
    [34]Tuinstra F, Koenig J L, Raman spectrum of graphite. The Journal of Chemical Physics,1970,53:1126.
    [35]Ferrari A, Robertson J, Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B,2000,61(20):14095-14107.
    [36]Reich S, Thomsen C, Raman spectroscopy of graphite. Philos Transact A Math Phys Eng Sci,2004,362(1824):2271-2288.
    [37]Pimenta M A, Dresselhaus G, Dresselhaus M S, et al., Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys,2007, 9(11):1276-1291.
    [38]Wang G, Yang J, Park J, et al., Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C,2008,112(22):8192-8195.
    [39]Xu C, Wang X, Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small,2009,5(19):2212-2217.
    [40]Ramesh P, Bhagyalakshmi S, Sampath S, Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide. J Colloid Interface Sci,2004,274(1):95-102.
    [41]Yoo J J, Balakrishnan K, Huang J, et al., Ultrathin planar graphene supercapacitors. Nano Lett,2011,11(4):1423-1427.
    [42]张伟,刘开宇,张莹, et al.,MnO2超级电容器充放电过程研究.化学通报,2007,3:217-221.
    [43]Zhang L L, Zhou R, Zhao X, Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry,2010,20(29):5983-5992.
    [1]AP A, Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science,1996, 271(5251):933-937.
    [2]Quantum dots show their true colours. Nature,2004,432(7014):247-247.
    [3]Karrai K, Warburton R J, Schulhauser C, et al., Hybridization of electronic states in quantum dots through photon emission. Nature,2004,427(6970):135-138.
    [4]Michalet X, Pinaud F F, Bentolila L A, et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science,2005,307(5709):538-544.
    [5]Tang B, Xing Y, Li P, et al., A rhodamine-based fluorescent probe containing a Se-N bond for detecting thiols and its application in living cells. J Am Chem Soc, 2007,129(38):11666-11667.
    [6]Koide Y, Urano Y, Kenmoku S, et al., Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. J Am Chem Soc,2007,129(34):10324-10325.
    [7]Madhankumar A B, Slagle-Webb B, Mintz A, et al., Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther,2006,5(12):3162-3169.
    [8]Derfus A M, Chan W C W, Bhatia S N, Probing the cytotoxicity of semiconductor quantum dots. Nano letters,2004,4(1):11-18.
    [9]Tsay J M, Michalet X, New light on quantum dot cytotoxicity. Chem Biol,2005, 12(11):1159-1161.
    [10]Qiao Z A, Wang Y, Gao Y, et al., Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun (Camb),2010,46(46):8812-8814.
    [11]Yifeng E, Bai L, Fan L, et al., Electrochemically generated fluorescent fullerene [60] nanoparticles as a new and viable bioimaging platform. Journal of Materials Chemistry,2011,21(3):819-823.
    [12]Yang S T, Wang X, Wang H, et al., Carbon dots as nontoxic and high-performance fluorescence imaging agents. The Journal of Physical Chemistry C,2009,113(42):18110-18114.
    [13]Cao L, Wang X, Meziani M J, et al., Carbon dots for multiphoton bioimaging. J Am Chem Soc,2007,129(37):11318-11319.
    [14]RAY S, SAHA A, JANA N R, et al., Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. Journal of physical chemistry. C,2009,113(43):18546-18551.
    [15]Goncalves H, Jorge P A S, Fernandes J, et al., Hg (Ⅱ) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensors and Actuators B:Chemical,2010,145(2):702-707.
    [16]Ponomarenko L A, Schedin F, Katsnelson M I, et al., Chaotic Dirac billiard in graphene quantum dots. Science,2008,320(5874):356-358.
    [17]Yang K, Zhang S, Zhang G, et al., Graphene in mice:ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett,2010,10(9):3318-3323.
    [18]Minati L, Torrengo S, Maniglio D, et al., Luminescent graphene quantum dots from oxidized multi-walled carbon nanotubes. Materials Chemistry and Physics, 2012.
    [19]Pan D, Zhang J, Li Z, et al., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv Mater,2009, 22(6):734-738.
    [20]张景春.水溶性碳量子点荧光探针的制备及其性质研究.上海大学,2011.
    [21]Zhuo S, Shao M, Lee S T, Upconversion and downconversion fluorescent graphene quantum dots:ultrasonic preparation and photocatalysis. ACS nano, 2012,6(2):1059-1064.
    [22]Hernandez Y, Nicolosi V, Lotya M, et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol,2008,3(9):563-568.
    [23]Eda G, Lin Y Y, Mattevi C, et al., Blue photoluminescence from chemically derived graphene oxide. Adv Mater,2009,22(4):505-509.
    [24]卓淑娟.基于石墨烯量子点及金属/硅纳米结构的荧光过程研究.苏州大学,苏州,2012.
    [25]Gupta V, Chaudhary N, Srivastava R, et al., Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc,2011,133(26):9960-9963.
    [1]Chen Z, Berciaud S, Nuckolls C, et al., Energy transfer from individual semiconductor nanocrystals to graphene. ACS nano,2010,4(5):2964-2968.
    [2]Gubin S, Kataeva N, Khomutov G, Promising avenues of research in nanoscience: chemistry of semiconductor nanoparticles. Russian chemical bulletin,2005, 54(4):827-852.
    [3]Dhas N A, Zaban A, Gedanken A, Surface synthesis of zinc sulfide nanoparticles on silica microspheres:Sonochemical preparation, characterization, and optical properties. Chemistry of materials,1999, 11(3):806-813.
    [4]Kar S, Biswas S, Chaudhuri S, et al., Finite-size effects on band structure of CdS nanocrystallites studied by positron annihilation. Physical Review B,2005, 72(7):075338.
    [5]Trindade T, O'Brien P, Pickett N L, Nanocrystalline semiconductors:synthesis, properties, and perspectives. Chemistry of materials,2001,13(11):3843-3858.
    [6]Wang L, Xu X, Yuan X, Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid-state reaction. Journal of Luminescence,2010, 130(1):137-140.
    [7]Biswas S, Kar S, Chaudhuri S, Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process. JPhys Chem B,2005,109(37):17526-17530.
    [8]Kar S, Chaudhuri S, Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons. J Phys Chem B,2005,109(8):3298-3302.
    [9]Kar S, Chaudhuri S, Synthesis and optical properties of single and bicrystalline ZnS nanoribbons. Chemical physics letters,2005,414(1):40-46.
    [10]Zhao Y, Zhang Y, Zhu H, et al., Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals. J Am Chem Soc,2004,126(22):6874-6875.
    [11]Murakoshi K, Hosokawa H, Tanaka N, et al., Phase transition of ZnS nanocrystallites induced by surface modification at ambient temperature and pressure confirmed by electron diffraction. Chem. Commun.,1998, (3):321-322.
    [12]Huang F, Banfield J F, Size-dependent phase transformation kinetics in nanocrystalline ZnS. J Am Chem Soc,2005,127(12):4523-4529.
    [13]Wang X, Gao P, Li J, et al., Rectangular Porous ZnO-ZnS Nanocables and ZnS Nanotubes. Adv. Mater,2002,14(23):1732-1735.
    [14]Ma C, Moore D, Li J, et al., Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Adv Mater,2003,15(3):228-231.
    [15]Jiang Y, Meng X M, Liu J, et al., Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Adv Mater,2003,15(4):323-327.
    [16]Zhu Y C, Bando Y, Xue D F, Spontaneous growth and luminescence of zinc sulfide nanobelts. Applied physics letters,2003,82(11):1769-1771.
    [17]Falcony C, Garcia M, Ortiz A, et al., Luminescent properties of ZnS:Mn films deposited by spray pyrolysis. Journal of applied Physics,1992,72(4):1525-1527.
    [18]Anand K V, Chinnu M K, Kumar R M, et al., Formation of zinc sulfide nanoparticles in HMTA matrix. Applied Surface Science,2009, 255(21):8879-8882.
    [19]Zhang H, Qi L, Low-temperature, template-free synthesis of wurtzite ZnS nanostructures with hierarchical architectures. Nanotechnology,2006, 17(15):3984-3988.
    [20]Yao WT,Yu S H, Wu Q S, From Mesostructured Wurtzite ZnS-Nanowire/Amine Nanoassembled materials to ZnS Nanowires Exhibiting Quantum Size Effects:A Mild-Solution Chemistry Approach. Advanced Functional Materials,2007,17(4):623-631.
    [21]Xu J, Ji W, Characterization of ZnS nanoparticles prepared by new route. Journal of materials science letters,1999,18(2):115-117.
    [22]Sun L, Liu C, Liao C, et al., ZnS nanoparticles doped with Cu (I) by controlling coordination and precipitation in aqueous solution. Journal of Materials Chemistry,1999,9(8):1655-1657.
    [23]Zhang M, Su L, Mao L, Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon,2006,44(2):276-283.
    [24]Yan X, Cui X, Li L S, Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc,2010,132(17):5944-5945.
    [25]Lian P, Zhu X, Liang S, et al., Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta,2010, 55(12):3909-3914.
    [26]Gunes F, Gang H H, Kim K K, et al., Large-area graphene-based flexible transparent conducting films. Nano,2009,4(02):83-90.
    [27]Wang G, Wang B, Wang X, et al., Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry,2009,19(44):8378-8384.
    [28]Chen S, Chen P, Wu M, et al., Graphene supported Sn-Sb@ carbon core-shell particles as a superior anode for lithium ion batteries. Electrochemistry Communications,2010,12(10):1302-1306.
    [29]Chen S Q, Wang Y, Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem.,2010,20(43):9735-9739.
    [30]Wang H, Hao Q, Yang X, et al., A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale,2010,2(10):2164-2170.
    [31]Lian P, Zhu X, Xiang H, et al., Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta,2010,56(2):834-840.
    [32]Zhou G, Wang D W, Li F, et al., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chemistry of materials,2010,22(18):5306-5313.
    [33]Paek S M, Yoo E J, Honma I, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano letters,2008,9(1):72-75.
    [34]Wang H, Casalongue H S, Liang Y, et al., Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc,2010,132(21):7472-7477.
    [35]Wang B, Wu X L, Shu C Y, et al., Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem., 2010,20(47):10661-10664.
    [36]Wang D, Kou R, Choi D, et al., Ternary self-assembly of ordered metal oxide-graphene nanoassembled materials for electrochemical energy storage. ACS nano,2010,4(3):1587-1595.
    [37]Zou Y, Wang Y, NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale,2011,3(6):2615-2620.
    [38]Huang X, Yin Z, Wu S, et al., Graphene-based materials:synthesis, characterization, properties, and applications. Small,2011,7(14):1876-1902.
    [39]Williams G, Kamat P V, Graphene-Semiconductor Nanoassembled materials: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir,2009,25(24):13869-13873.
    [40]Kim Y T, Han J H, Hong B H, et al., Electrochemical Synthesis of CdSe Quantum-Dot Arrays on a Graphene Basal Plane Using Mesoporous Silica Thin-Film Templates. Adv Mater,2010,22(4):515-518.
    [41]Li L L, Liu K P, Yang G H, et al., Fabrication of graphene-quantum dots assembled materials for sensitive electrogenerated chemiluminescence immunosensing. Advanced Functional Materials,2011,21(5):869-878.
    [42]Kamat P V, Graphene-based nanoassemblies for energy conversion. The Journal of Physical Chemistry Letters,2011,2(3):242-251.
    [43]Zedan A F, Sappal S, Moussa S, et al., Ligand-controlled microwave synthesis of cubic and hexagonal cdse nanocrystals supported on graphene. Photoluminescence quenching by graphene. The Journal of Physical Chemistry C,2010,114(47):19920-19927.
    [44]Wang P, Jiang T, Zhu C, et al., One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanoassembled materials and their interesting photovoltaic properties. Nano Research,2010,3(11):794-799.
    [45]Cao A, Liu Z, Chu S, et al., A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanoassembled materials as Promising Optoelectronic Materials. Adv Mater,2010,22(1):103-106.
    [46]Guo C X, Yang H B, Sheng Z M, et al., Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed Engl,2010,49(17):3014-3017.
    [47]Nethravathi C, Nisha T, Ravishankar N, et al., Graphene-nanocrystalline metal sulphide assembled materials produced by a one-pot reaction starting from graphite oxide. Carbon,2009,47(8):2054-2059.
    [48]Hummers Jr W S, Offeman R E, Preparation of graphitic oxide. J Am Chem Soc, 1958,80(6):1339-1339.
    [49]Kovtyukhova N I, Ollivier P J, Martin B R, et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of materials,1999, 11(3):771-778.
    [50]Park S, An J, Piner R D, et al., Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of materials,2008, 20(21):6592-6594.
    [51]Feng M, Sun R, Zhan H, et al., Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties. Nanotechnology,2010,21(7):75601.
    [52]Nethravathi C, Rajamathi M, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008,46(14):1994-1998.
    [53]Compton O C, Nguyen S T, Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials. Small,2010, 6(6):711-723.
    [54]Sakai N, Ebina Y, Takada K, et al., Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. JAm Chem Soc,2004,126(18):5851-5858.
    [1]Hoffmann M R, Martin S T, Choi W, et al., Environmental applications of semiconductor photocatalysis. Chemical reviews,1995,95(1):69-96.
    [2]Gou Y, Chen D, Su Z, Photocatalyst of nanometer TiO2//conjugated polymer complex employed for depigmentation of methyl orange. Applied Catalysis A: General,2004,261(1):15-18.
    [3]Molinari R, Mungari M, Drioli E, et al., Study on a photocatalytic membrane reactor for water purification. Catalysis Today,2000,55(1):71-78.
    [4]Chemseddine A, Boehm H, A study of the primary step in the photochemical degradation of acetic acid and chloroacetic acids on a TiO2 photocatalyst. Journal of Molecular Catalysis,1990,60(3):295-311.
    [5]In S, Orlov A, Berg R, et al., Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. JAm Chem Soc,2007,129(45):13790-13791.
    [6]Zollinger H, Color chemistry:syntheses, properties, and applications of organic dyes and pigments. Wiley-VCH,2004.
    [7]Pekakis P A, Xekoukoulotakis N P, Mantzavinos D, Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res,2006,40(6):1276-1286.
    [8]Ramya M, Anusha B, Kalavathy S, Decolorization and biodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation,2008, 19(2):283-291.
    [9]Assadi M M, Rostami K, Shahvali M, et al., Decolorization of textile wastewater by Phanerochaete chrysosporium. Desalination,2001,141(3):331-336.
    [10]Gad H M, Daifullah A E-H A, Impact of surface chemistry on the removal of indigo carmine dye using apricot stone active carbon. Adsorption Science & Technology,2007,25(5):327-341.
    [11]Coddington C C, Anderson T L, Accetta C R, et al., Adverse effects of methylene blue on human sperm motility, components of human reproductive tract fluids, and mouse embryo cleavage. Fertil Steril,1989,51(3):480-485.
    [12]Gutter B, Speck W T, Rosenkranz H S, A study of the photoinduced mutagenicity of methylene blue. Mutat Res,1977,44(2):177-182.
    [13]Rajeshwar K, Osugi M, Chanmanee W, et al., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2008,9(4):171-192.
    [14]Herrmann J-M, Fundamentals and misconceptions in photocatalysis. Journal of Photochemistry and Photobiology A:Chemistry,2010,216(2):85-93.
    [15]Friedmann D, Mendive C, Bahnemann D, TiO2 for water treatment:Parameters affecting the kinetics and mechanisms of photocatalysis. Applied Catalysis B: Environmental,2010,99(3):398-406.
    [16]Choi J, Park H, Hoffmann M R, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. The Journal of Physical Chemistry C,2009, 114(2):783-792.
    [17]Zhang H, Chen G, Bahnemann D W, Photoelectrocatalytic materials for environmental applications. J. Mater. Chem.,2009,19(29):5089-5121.
    [18]Park Y, Kang S-H, Choi W, Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Physical Chemistry Chemical Physics,2011,13(20):9425-9431.
    [19]Williams G, Seger B, Kamat P V, TiO2-graphene nanoassembled materials. UV-assisted photocatalytic reduction of graphene oxide. ACS nano,2008, 2(7):1487-1491.
    [20]Ratanatawanate C, Xiong C, Balkus K J, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS nano,2008,2(8):1682-1688.
    [21]Ratanatawanate C, Tao Y, Balkus Jr K J, Photocatalytic activity of PbS quantum dot/TiO2 nanotube assembled materials. The Journal of Physical Chemistry C, 2009,113(24):10755-10760.
    [22]Rao C N, Sood A K, Subrahmanyam K S, et al., Graphene:the new two-dimensional nanomaterial. Angew Chem Int Ed Engl,2009, 48(42):7752-7777.
    [23]Bolotin K I, Sikes K, Jiang Z, et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications,2008,146(9):351-355.
    [24]Kim K S, Zhao Y, Jang H, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457(7230):706-710.
    [25]Paek S-M, Yoo E, Honma I, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano letters,2008,9(1):72-75.
    [26]Zhang L W, Fu H B, Zhu Y F, Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon. Advanced Functional Materials,2008,18(15):2180-2189.
    [27]Kim J C, Choi J, Lee Y B, et al., Enhanced photocatalytic activity in assembled materials of TiO2 nanotubes and CdS nanoparticles. Chem Commun (Camb), 2006, (48):5024-5026.
    [28]Qianqian Z, Tang B, Guoxin H, High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts:preparation and characterization. J Hazard Mater,2011,198:78-86.
    [29]Wang Y, Shi R, Lin J, et al., Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Applied Catalysis B:Environmental,2010,100(1):179-183.
    [30]Hummers Jr W S, Offeman R E, Preparation of graphitic oxide. J Am Chem Soc, 1958,80(6):1339-1339.
    [31]Du G, Chen Q, Che R, et al., Preparation and structure analysis of titanium oxide nanotubes. Applied physics letters,2001,79(22):3702-3704.
    [32]Khan M A, Jung H T, Yang O B, Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes. JPhys Chem B,2006,110(13):6626-6630.
    [33]Zhang S, Peng L M, Chen Q, et al., Formation mechanism of H2Ti3O7 nanotubes. Phys Rev Lett,2003,91(25):256103.
    [34]Zhang S, Chen Q, Peng L-M, Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Physical Review B,2005,71(1):014104.
    [35]Chen Q, Du G H, Zhang S, et al., The structure of trititanate nanotubes. Acta Crystallogr B,2002,58(Pt 4):587-593.
    [36]Chen Q, Zhou W, Du G H, et al., Trititanate nanotubes made via a single alkali treatment. Adv Mater,2002,14(17):1208-1211.
    [37]Suzuki Y, Yoshikawa S, Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. Journal of materials research, 2004,19(04):982-985.
    [38]Morgado Jr E, Jardim P, Marmkovic B A, et al., Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes:a comparison study between nanostructured and bulk materials. Nanotechnology,2007, 18(49):495710.
    [39]Houas A, Lachheb H, Ksibi M, et al., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B:Environmental,2001, 31(2):145-157.
    [40]配合物,陈德余,江银枝,过渡金属L-丙氨酸席夫碱配合物的合成及其抗·O2-性能.应用化学,1997,3:5-8.
    [41]牛云垠,张鸿云,吴庆安,et al.,邻甲氧基苯甲酰肼缩二茂铁甲醛及其配合物.郑州大学学报(自然科学版),1996,3.
    [42]张飞白.二氧化钛纳米管的制备及光催化降解亚甲基蓝的研究.天津:南开大学,2009.
    [43]Englert J M, Rohrl J, Schmidt C D, et al., Soluble Graphene:Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile.Adv Mater,2009,21(42):4265-4269.
    [44]Xu Y, Bai H, Lu G, et al., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc,2008, 130(18):5856-5857.
    [45]Xia F, Mueller T, Golizadeh-Mojarad R, et al., Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano letters,2009, 9(3):1039-1044.
    [46]翟茜茜.石墨烯/钛酸纳米管组装光催化剂的制备和性能研究.上海交通大学,2012.
    [47]Tang Y-B, Lee C-S, Xu J, et al., Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS nano,2010,4(6):3482-3488.
    [48]Bhatkhande D S, Pangarkar V G, Beenackers A A, Photocatalytic degradation for environmental applications-a review. Journal of Chemical Technology and Biotechnology,2001,77(1):102-116.
    [49]Sun Y, Pignatello J J, Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D. Environ Sci Technol,1995, 29(8):2065-2072.
    [50]吴琬.亚甲基蓝/光化学法辅助治疗慢性牙周炎的疗效评定.温州医学院,2011.
    [51]王晶博.组装型光催化剂H4SiW12O40/TiO2/cenospheres光催化降解亚甲基蓝与联苯胺的研究.江苏大学,2009.
    [1]Breit G, The quantum theory of dispersion. Nature,1924,114:310.
    [2]Raman C, A new radiation. Indian Journal of physics,1928,2:387-398.
    [3]Raman C V, Krishnan K, A new type of secondary radiation. Nature,1928, 121(3048):501-502.
    [4]Raman C V, A change of wave-length in light scattering. Nature,1928, 121(3051):619-619.
    [5]Ramdas L, The Raman Effect and the Spectrum of the Zodiacal & Lmacright. Nature,1928,122:57.
    [6]Jeanmaire D L, Van Duyne R P, Surface Raman spectroelectrochemistry:Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1977,84(1):1-20.
    [7]Albrecht M G, Creighton J A, Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc,1977,99(15):5215-5217.
    [8]Jones C L, Bantz K C, Haynes C L, Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Anal Bioanal Chem,2009,394(1):303-311.
    [9]Baia M, Danciu V, Cosoveanu V, et al., Porous nanoarchitectures based on TiO2 aerogels and Au particles as potential SERS sensor for monitoring of water quality. Vibrational Spectroscopy,2008,48(2):206-209.
    [10]Vo-Dinh T, Yan F, Wabuyele M, Surface-enhanced Raman scattering for biomedical diagnostics and molecular imaging. Surface-Enhanced Raman Scattering,2006:409-426.
    [11]Graham D, Goodacre R, Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy. Chem Soc Rev,2008,37(5):883-884.
    [12]Kneipp K, Wang Y, Kneipp H, et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters,1997, 78(9):1667-1670.
    [13]Nie S, Emory S R, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science,1997,275(5303):1102-1106.
    [14]Natan M J, Concluding Remarks Surface enhanced Raman scattering. Faraday Discussions,2006,132:321-328.
    [15]Le Ru E, Blackie E, Meyer M, et al., Surface enhanced Raman scattering enhancement factors:a comprehensive study. The Journal of Physical Chemistry C,2007,111(37):13794-13803.
    [16]Otto A, In Light scattering in solids IV. Electronic scattering, spin effects, SERS and morphic effects; M. Cardona, G. Guntherodt, Eds. Place published: Springer-Verlag:Berlin, Germany,1984, Vol.54.
    [17]Moskovits M, Surface-enhanced spectroscopy. Reviews of Modern Physics,1985, 57(3):783.
    [18]Doering W E, Nie S, Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Analytical chemistry,2003, 75(22):6171-6176.
    [19]Kneipp K, Kneipp H. Itzkan I, et al., Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev,1999,99(10):2957-2976.
    [20]Tian Z-Q, Ren B, Wu D-Y, Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures. The Journal of Physical Chemistry B.2002,106(37):9463-9483.
    [21]Baker G A, Moore D S, Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem, 2005,382(8):1751-1770.
    [22]Banholzer M J, Millstone J E, Qin L, et al., Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev,2008,37(5):885-897.
    [23]Cai Z, Tian C, Wang L, et al., One-pot synthesis of silver particle aggregation as highly active SERS substrate. Journal of Raman Spectroscopy,2011, 42(1):5-11.
    [24]Ferrari A C, Meyer J C, Scardaci V, et al., Raman spectrum of graphene and graphene layers. Phys Rev Lett,2006,97(18):187401.
    [25]Goldberger J, Sirbuly D J, Law M, et al., ZnO nanowire transistors. J Phys Chem B,2005,109(1):9-14.
    [26]Li Q, Liang Y, Wan Q, et al., Oxygen sensing characteristics of individual ZnO nanowire transistors. Applied physics letters,2004,85(26):6389-6391.
    [27]Malard L, Nilsson J, Elias D, et al., Probing the electronic structure of bilayer graphene by Raman scattering. Physical Review B,2007,76(20):201401.
    [28]Huang M H, Mao S, Feick H, et al., Room-temperature ultraviolet nanowire nanolasers. Science,2001,292(5523):1897-1899.
    [29]Xu C, Wang X. Zhu J. Graphene-metal particle nanoassembled materials. The Journal of Physical Chemistry C,2008,112(50):19841-19845.
    [30]Li Y, Tang L, Li J, Preparation and electrochemical performance for methanol oxidation of pt/graphene nanoassembled materials. Electrochemistry Communications,2009,11(4):846-849.
    [31]Wang G, Wang B, Wang X, et al., Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry,2009,19(44):8378-8384.
    [32]Hassan H M, Abdelsayed V, Abd El Rahman S K, et al., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem.,2009,19(23):3832-3837.
    [33]Li J, Liu C y, Ag/graphene heterostructures:synthesis, characterization and optical properties. European Journal of Inorganic Chemistry,2010, 2010(8):1244-1248.
    [34]温祝亮,杨苏东,宋启军,et al,石墨烯负载高活性Pd催化剂对乙醇的电催化氧化.物理化学学报,2010,26(6):1570-1157.
    [35]Pasricha R, Gupta S, Srivastava A K, A facile and novel synthesis of Ag-graphene-based nanoassembled materials. Small,2009,5(20):2253-2259.
    [36]Ling X, Xie L, Fang Y, et al., Can graphene be used as a substrate for Raman enhancement? Nano letters,2009,10(2):553-561.
    [37]Lee P, Meisel D, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry,1982,86(17):3391-3395.
    [38]Creighton J A, Blatchford C G, Albrecht M G, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics,1979,75:790-798.
    [39]Shin H J, Kim K K, Benayad A, et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials,2009,19(12):1987-1992.
    [40]Zhang Z, Chen H, Xing C, et al., Sodium citrate:A universal reducing agent for reduction/decoration of graphene oxide with au nanoparticles. Nano Research, 2011,4(6):599-611.
    [41]Haiss W, Thanh N T, Aveyard J, et al., Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem,2007,79(11):4215-4221.
    [42]Monticone S, Tufeu R, Kanaev A, Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. The Journal of Physical Chemistry B,1998,102(16):2854-2862.
    [43]王金文.电化学体系中表面增强拉曼散射研究.硕士,首都师范大学,北京,2006.
    [44]林婵.金属纳米/石墨烯/TiO2在表面增强拉曼光谱中的应用.湖南大学,长沙,2012.
    [45]Du J, Zhang J, Liu Z, et al., Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route. Langmuir,2006,22(3):1307-1312.
    [46]Guo S, Dong S, Wang E, Rectangular Silver Nanorods:Controlled Preparation, Liquid-Liquid Interface Assembly, and Application in Surface-Enhanced Raman Scattering. Crystal Growth and Design,2008,9(1):372-377.
    [47]Akita T, Tanaka K, Kohyama M, et al., HAADF-STEM observation of Au nanoparticles on TiO2. Surface and Interface Analysis,2008,40(13):1760-1763.
    [48]郭小玉.纳米粒子的制备及其在表面增强拉曼光谱(SERS)上的应用研究.硕士,上海师范大学,上海,2012.
    [1]Goldberger J, Sirbuly D J, Law M, et al., ZnO nanowire transistors. J Phys Chem B,2005,109(1):9-14.
    [2]Li Q, Liang Y, Wan Q, et al., Oxygen sensing characteristics of individual ZnO nanowire transistors. Applied physics letters,2004,85(26):6389-6391.
    [3]Huang M H, Mao S, Feick H, et al., Room-temperature ultraviolet nanowire nanolasers. Science,2001,292(5523):1897-1899.
    [4]Boemare C, Monteiro T, Soares M, et al., Photoluminescence studies in ZnO samples. Physica B:Condensed Matter,2001,308:985-988.
    [5]Wang Z L, Zinc oxide nanostructures:growth, properties and applications. Journal of Physics:Condensed Matter,2004,16(25):R829.
    [6]王新胜,杨天鹏,刘维峰,et al.,P型ZnO掺杂及其发光器件研究进展与展望.材料导报,2006,20(1):104-108.
    [7]Cao H, Zhao Y, Ong H, et al., Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Applied physics letters,1998, 73(25):3656-3658.
    [8]王玉新.功能性纳米ZnO的调控制备,表征及其光催化性能研究.大连理工大学,大连,2008.
    [9]Zhu Y, Elim H I, Foo Y L, et al., Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv Mater,2006, 18(5):587-592.
    [10]Jiang L, Gao L, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Materials Chemistry and Physics,2005,91(2):313-316.
    [11]Du J, Lai X, Yang N, et al., Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films:Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS nano,2010, 5(1):590-596.
    [12]Kim H, Sigmund W, Zinc oxide nanowires on carbon nanotubes. Applied physics letters,2002,81(11):2085-2087.
    [13]Sun J, Gao L, Iwasa M, Noncovalent attachment of oxide nanoparticles onto carbon nanotubes using water-in-oil microemulsions. Chem Commun (Camb), 2004, (7):832-833.
    [14]Liu J, Li X, Dai L, Water-Assisted Growth of Aligned Carbon Nanotube-ZnO Heterojunction Arrays. Adv Mater,2006,18(13):1740-1744.
    [15]Dutta M, Basak D, Multiwalled carbon nanotubes/ZnO nanowires composite structure with enhanced ultraviolet emission and faster ultraviolet response. Chemical physics letters,2009,480(4):253-257.
    [16]Zhang N, Sun J, Jiang D, et al., Anchoring zinc oxide quantum dots on functionalized multi-walled carbon nanotubes by covalent coupling. Carbon, 2009,47(5):1214-1219.
    [17]Yin Z, Wu S, Zhou X, et al., Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small,2009, 6(2):307-312.
    [18]Chen Y L, Hu Z A, Chang Y Q, et al., Zinc oxide/reduced graphene oxide assembled materials and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. The Journal of Physical Chemistry C,2011,115(5):2563-2571.
    [19]武志富,李素娟,氢氧化锌和氧化锌的红外光谱特征.光谱实验室,2012,29(004):2172-2175.
    [20]Sakai N, Ebina Y, Takada K, et al., Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. JAm Chem Soc,2004,126(18):5851-5858.
    [21]Cao A, Liu Z, Chu S, et al., A Facile One-step Method to Produce Graphene-CdS Quantum Do+ Nanoassembled materials as Promising Optoelectronic Materials. Adv Mater,2010,22(1):103-106.
    [22]Guo C X, Yang H B, Sheng Z M, et al., Layered graphene/quantum dots for photovoltaic devices. Angew Chem IntEd Engl,2010,49(17):3014-3017.
    [23]Wang P, Jiang T, Zhu C, et al., One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanoassembled materials and their interesting photovoltaic properties. Nano Research,2010,3(11):794-799.
    [24]Shang M, Wang W, Xu H, New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG. Crystal Growth and Design,2008,9(2):991-996.
    [25]Wu T, Liu G, Zhao J, et al., Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. The Journal of Physical Chemistry B, 1998,102(30):5845-5851.
    [26]Zhuang J, Dai W, Tian Q, et al., Photocatalytic degradation of RhB over TiO2 bilayer films:effect of defects and their location. Langmuir,2010, 26(12):9686-9694.
    [27]Liu G, Li X, Zhao J, et al., Photooxidation pathway of sulforhodamine-B. dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environmental science & technology,2000,34(18):3982-3990.
    [28]张景春.水溶性碳量子点荧光探针的制备及其性质研究.上海大学,2011.
    [29]Yu K, Yang S, He H, et al., Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3:pathways and mechanism. JPhys Chem A,2009, 113(37):10024-10032.
    [30]Zhao J, Wu T, Wu K, et al., Photoassisted degradation of dye pollutants.3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:Evidence for the need of substrate adsorption on TiO2 particles. Environmental science & technology,1998, 32(16):2394-2400.
    [31]Zhang W, Li Y, Wang C, et al., Kinetics of heterogeneous photocatalytic degradation of rhodamine B by TiO2-coated activated carbon:Roles of TiO2 content and light intensity. Desalination,2011,266(1):40-45.
    [32]Pang Y L, Bhatia S, Abdullah A Z, Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution. Separation and Purification Technology,2011,77(3):331-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700