聚合物体异质结太阳能电池:给体材料的设计、合成及性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体异质结有机聚合物太阳能电池由于具有材料来源广泛、性质易于调节、重量轻、制备工艺简单、可大面积成膜、柔性等优点而成为人们近年来关注的热点。本论文围绕聚合物体异质结太阳能电池给体材料的设计、合成及相关性质开展研究,主要内容及结论如下:
     1.文献综述部分概括了有机聚合物体异质结太阳能电池的重要发展历史阶段、结构组成、性能的影响因素,以及近年来高性能聚合物体异质结太阳能电池材料等方面内容。
     2.在聚噻吩的侧链引入三苯胺基团,成功的获得了相对于聚3-己烷噻吩具有更低HOMO能级的一系列聚噻吩衍生物,并通过光伏器件性能表征证明了较低的HOMO能级可以有效提高聚噻吩的开路电压。同时通过调节聚合物主侧链的比例,可以有效增强聚合物的共轭性,从而改善光伏器件的Jsc和PCE。
     3.构筑桥连结构的给受体聚合物,通过改变不同给电子能力的桥连基团可以有效调节聚合物的ICT态吸收峰的强度,从而实现对该系列聚合物的紫外可见吸收光谱以及能级的调节,同时聚合物与PC61BM共混活性层也表现出不同程度的堆积效应和表面形貌,最终通过改变聚合物的桥连基团实现了对光物理性质的调节,从而使得聚合物的光伏性能得到明显改善。
     4.在给受体共聚物中,通过改变含有不同给电子能力和共平面性的共聚给体基团有效的调节了整个聚合物的ICT态强度以及共平面性,紫外可见吸收光谱结果表明随着聚合物ICT态强度增加其光谱的最大吸收峰逐渐红移,同时聚合物共平面性的提高也有效的增加了其薄膜状态下的???堆积效应,最终通过改变给受体共轭聚合物的共聚给体基团成功的实现了对聚合物的能级、表面形貌等光物理性质的调节,并且光伏性质也得到极大地提高。
     5.在以2-吡喃-4-亚基丙二氰为受体的给受体聚合物的主链中引入高共平面性和强给电子能力的不同噻吩单元个数的齐聚噻吩,获得了一系列带隙窄、吸收范围宽的聚合物。通过电化学测试发现随着齐聚噻吩单元个数的增加聚合物的HOMO能级逐渐升高,并且含有不同齐聚噻吩的共聚物与PC61BM的共混膜也表现出了不同程度的堆积效应,最终该系列聚合物均获得了较好的光伏器件性能。
     6.在聚合物中引入两种不同的吸电子基团,通过改变两种受体基团的不同比例,可以有效调节聚合物的共轭性、带隙、能级、分子间自组装、迁移率以及光伏性质。
As the storage of fossil type energy sources (i.e. coal, oil and natural gas) decreases and their detrimental long-term effects on the natural balance on our planet, it’s urgent to develop new energy supply for replacement. Exploiting and developing the solar energy as a substitute energy is an effective route. Comparing with the traditional organic solar cells, although the inorganic solar cells exhibit higher efficiency, the high cost for manufacture still limits them to be widely used. Due to low-cost, highly flexible properties of organic solar cell, they are playing more an more important role in the field of solar cell.
     In this thesis, we firstly discussed principle, structure, development condition of bulk-heterojunction polymers solar cells, then designed a serials donor polymers. We modulated the band gaps, energy levels, carrier mobility, surface morphology and photovoltaic properties of the synthesized polymers by changing the conjugated length and structures. The detail results of research were described as follows:
     1. We have synthesized a series copolymers with good solubility and thermal stability by GRIM copolymerization method. In order to low the HOMO level of the copolymers, the triphenylamine was introduced into the side chain of the polythiophene and obtained the high open circuit voltage (Voc). Meanwhile, the absorption spectrum and energy levels of the copolymers can ben controlled by increase the thiophene units on the main chain of the copolymers. When the ratio reached 1:4.8 between side chain and main chain, the band gap and absorption spectrum of the copolymer is lower and broader than P3HT. In addition, the polythiophene with alkoxylation triphenylamine showed a intramolecule energy transfer between side chain and main chain. All of them guarantee that the copolymers can absorb enough photons of the solar spectrum. For the photovoltaic cell of copolymers, with the increase of thiophene units, the PCE of copolymer devices gradually increased, owing to the reduce disorder degree of copolymerization, broader absorption, ??? stacking and aggregation.
     2. We have synthesized a series polymers with good solubility and thermal stability by Suzuki copolymerization method. Optical property and molecular orbital distribution calculations investigations unequivocally indicate that these new copolymers exhibit enhanced ICT bands in solid state by with electron-donating ability increasing of the bridged-D, which lead to an extension of their absorption spectral range. Meanwhile, the varied electron-donating ability increasing of the bridged-D can modulate the energy level, miscibility between polymers and PC61BM, ??? stacking of solid film and photovoltaic properties. The highest PCE value of 0.52% was obtained from the device based on PFPMP with a strongest electron-donating ability bridged-D, which was more than 12 times higher than that of the device based on PFTMT with a lowest electron-donating ability bridged-D (0.04%).
     3. We have synthesized a series D-A copolymers with high molecule, good solubility and thermal stability by Suzuki copolymerization method. Optical property investigations unequivocally indicate that these new copolymers exhibit enhanced ????stacking and ICT bands in solid state by changing the macromolecular architecture, which lead to an extension of their absorption spectral range. The copolymers obtained low optical band gap 1.76 eV. The HOMO and LUMO energy levels of resulting copolymers can be fine-tuned as demonstrated from the investigation of electrochemical study. The relatively low HOMO energy levels promised good air stability and high Voc for photovoltaic cells application. The highest PCE value of 0.99% was obtained from the device based on PDTTMT with a strongest electron-donating ability D*, which was more than 23 times higher than that of the device based on PFTMT (0.04%).
     4. We have synthesized a series oligothiophene-based polymers with good solubility and thermal stability. Optical property investigations unequivocally indicate that these new copolymers exhibit strong ????stacking and the long wavelength ICT absorption bands, which lead to an extension and broad absorption with the optical band gaps in the range of 1.72-1.76 eV. Both the electrochemical properties and molecular orbital distribution calculations revealed that the HOMO and LUMO energy levels of the resulting copolymers can be fine-tuned by increasing the conjugated length of comonomer OThn, and can also be used to adjust the open circuit voltage. Meanwhile, the morphology of the blend films containing copolymers and PC61BM can be controlled by varying the conjugated length of OThn. Hence, the Jsc and PCE can also be improved.
     5. We have synthesized a series copolymers containing two different electron accepting moiety (TVM and BT) by Stille copolymerization method, which showed high molecule, good solubility and thermal stability. Optical property investigations unequivocally indicate that these new copolymers exhibit strong ????stacking, the long wavelength ICT absorption bands and red-shift absorption spectrum with the increasing of BT moiety, which lead to an extension and broad absorption with the optical band gaps in the range of 1.70-1.84 eV. Meanwhile, the varied ratios between TVM and BT moieties can modulate the energy level, miscibility and self-assembly between polymers and PC61BM. The copolymer PM50 with copolymerization ratio of 50% showed the best photovoltaic performance, the active layer (PM50:PC61BM) showed Voc = 0.78V, Jsc= 5.47 mA/cm2, FF=0.40,PCE=1.67%, and the active layer (PM50:PC71BM) showed Voc = 0.82V, Jsc= 8.32 mA/cm2, FF= 0.42,PCE=2.89 %.
引文
[1] United Nations Environment Programme (UNEP), Global environment outlook (GEO year book 2006). http://www.unep.org/geo/yearbook/yb2006/
    [2] Intergovernmental Panel on Climate Changes (IPCC), Third assessmentreport-cli-mate changes 2001. http://www.meto.gov.uk
    [3] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. Journal of Applied Physics 1954, 25, 676-677.
    [4] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W., Solar cell efficiency tables (version 31). Progress in Photovoltaics 2008, 16, 61-67.
    [5] Shockley, W.; Queisser, H. J. Journal of Applied Physics 1961, 32, 510-519.
    [6] Green, M. A. University of New South Wales, Sydney, (1992).
    [7] Mihailetchi, V. D. University of Groningen. PhD Thesis 2005.
    [8] Hoppe, H.; Sariciftci, N. S., Organic solar cells: Journal of Materials Research 2004, 19, 1924-1945.
    [9] Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Advanced Functional Materials 2001, 11, 15-26.
    [10] Jorgensen, M.; Norrman, K.; Krebs, F. C. Solar Energy Materials and Solar Cells 2008, 92, 686-714.
    [11] Thompson, B. C.; Frechet, J. M. J. Angewandte Chemie-International Edition 2008, 47, 58-77.
    [12] Coakley, K. M.; McGehee, M. D. 2004, 16, 4533-4542.
    [13] Bundgaard, E.; Krebs, F. C. Solar Energy Materials and Solar Cells 2007, 91, 954-985.
    [14] Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. Advanced Functional Materials 2005, 15, 1617-1622.
    [15] Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nature Materials 2007, 6, 497-500.
    [16] Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222-225.
    [17] Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., Nature Materials 2005, 4, 864-868.
    [18] Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Nature photonics 2009, 3, 649-653.
    [19] Xue, J. G.; Rand, B. P.; Uchida, S.; Forrest, S. R. Advanced Materials 2005, 17, 66-71.
    [20] Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nature photonics 2009, 3, 297-303.
    [21] Hastings, J. M.; Pouget, J. P.; Shirane, G.; Heeger, A. J.; Miro, N. D.;MacDiarmid, A. G. Phy.Rev.Let. 1977, 39, 1484-1487.
    [22] Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phy. Rev. Let. 1977, 39, 1098-1101.
    [23] Weinberger, B. R.; Ehrenfreund, E.; Pron, A.; Heeger, A. J.; MacDiarmid, A. G. J. Chem. Phy.1980, 72, 4749-4755.
    [24] Glenis, S.; Tourillon, G.; Garnier, F. Thin Solid Films 1986, 139, 221-31.
    [25] Glenis, S.; Tourillon, G.; Garnier, F. Thin Solid Films 1984, 122, 9-17.
    [26] Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
    [27] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474-1476.
    [28] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789-1791.
    [29] Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498-500.
    [30] Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Applied Physics Letters 2001, 78, 841-843.
    [31] Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Advanced Functional Materials 2003, 13, 85-88.
    [32] Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Journal of Physics-Condensed Matter 1994, 6, 1379-1394.
    [33] Yu, G.; Zhang, C.; Heeger, A. J. Applied Physics Letters 1994, 64, 1540-1542.
    [34] Liang, Y. Y.; Wu, Y.; Feng, D. Q.; Tsai, S. T.; Son, H. J.; Li, G.; Yu, L. P. J. A. Chem. Soc. 2009, 131, 56-57.
    [35] Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P. Advanced Materials 2010, 22, 1-4.
    [36] Alam, M. M.; Jenekhe, S. A. Chemistry of Materials 2004, 16, 4647-4656.
    [37] Kietzke, T.; Egbe, D. A. M.; Horhold, H. H.; Neher, D. Macromolecules 2006, 39, 4018-4022.
    [38] .Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Applied Physics Letters 1996, 68, 3120-3122.
    [39] Gregg, B. A.; Hanna, M. C. Journal of Applied Physics 2003, 93, 3605-3614.
    [40] Gregg, B. A., Excitonic solar cells. Journal of Physical Chemistry B 2003, 107, 4688-4698.
    [41] Schweitzer, B.; Bassler, H., Excitons in conjugated polymers. Synthetic Metals2000, 109, 1-6.
    [42] Barth, S.; Bassler, H. Physical Review Letters 1997, 79, 4445-4448.
    [43] Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Harth, E.; Gugel, A.; Mullen, K. Physical Review B 1999, 59, 15346-15351.
    [44] Stubinger, T.; Brutting, W. Journal of Applied Physics 2001, 90, 3632-3641.
    [45] Svensson, M.; Zhang, F.; Veenstra, S. C.; W. Verhees, J. H.; Hummelen, J. C.; Kroon, J. M.; Ingan?s, O.; Andersson, M. R. Adv. Mater., 2003, 15, 988-991.
    [46] Ingan?s, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R. Appl. Phys. A, 2004, 79, 31-35.
    [47] Zhang, F.; Jespersen, K. G.; Bj?rstr?m, C.; Svensson, M.; Andersson, M. R.; Sundstr?m, V. K.; Magnusson, E.; Moons, A.Y.; Ingan?s, O. Adv. Funct. Mater., 2006, 16, 667-674.
    [48] Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. Am. Chem. Soc., 2008, 130, 12828–12833.
    [49] Duren, J. K. J.van; Yang, X.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sievel, A. B.; Hummelen, J. C.; Janssen, R. A. J. Adv. Funct. Mater., 2004, 14, 425-434.
    [50] Hoppe, H.; Glatzel, T.; Niggemann, M.; Schwinger, W.; Schaeffler, F.; Hinsch, A.; Lux-Steiner, M. Ch.; Sariciftci, N. S. Thin Solid Films, 2006, 511-512, 587-592.
    [51] Nunzi, J. M. C. R. Physique, 2002, 3, 523-542.
    [52] Halls, J. J. M.; Friend, R. H. Synth. Met., 1997, 85, 1307-1308.
    [53] Markov, D. E.; Tanase, C.; Blom, P. W. M.; Wildeman, J. Phys. Rev. B, 2005, 72, 045217.
    [54] Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Appl. Phys. Lett., 2006, 88, 052104.
    [55] Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Appl. Phys. Lett., 2006, 88, 093511-3.
    [56] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater., 2006, 18, 6,789-794.
    [57] Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater., 2009, 21, 1323-1338.
    [58] Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev., 2004, 104, 4971-5004.
    [59] Li, Y. W.; Xue, L. L.; Li, H.; Li, Z. F.; Xu, B.; Wen, S. P.; Tian, W. J.Macromolecules, 2009, 42, 4491-4499.
    [60] Zhang, C.; Choi, S.; Haliburton, J.; Cleveland, T.; Li, R.; Sun, S.; Ledbetter, A.; Bonner, C. E. Macromolecules, 2006, 39, 4317-4326.
    [61] Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T. Journal of Applied Physics 2003, 94, 6849-6854.
    [62] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474-1476.
    [63] Zerza, G.; Brabec, C. J.; Cerullo, G.; De Silvestri, S.; Sariciftci, N. S., Synthetic Metals 2001, 119, 637-638.
    [64] Mihailetchi, V. D.; van Duren, J. K. J.; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk, M. M. Advanced Functional Materials 2003, 13, 43-46.
    [65] Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J. Angewandte Chemie-International Edition 2003, 42, 3371-3375.
    [66] Kooistra, F. B.; Mihailetchi, V. D.; Popescu, L. M.; Kronholm, D.; Blom, P. W. M.; Hummelen, J. C. Chemistry of Materials 2006, 18, 3068-3073.
    [67] Lenes, M.; Wetzelaer, G. A. H.; Kooistra, F. B.; Veenstra, S. C.; Hummelen, J. C.; Blom, P. W. M. Advanced Materials 2008, 20, 2116-2119.
    [68] He, Y. J.; Chen, H. Y.; Hou, J. H.; Li, Y. F. J. AM. J. Am. Chem. Soc. 2010, 132, 1377-1382.
    [69] Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246-7247.
    [70] Shrotriya, V.; Wu, E. H.-E.; Li, G.; Yao, Y.; Yang, Y. Appl. Phys. Lett. 2006, 88, 064104.
    [71] Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hunnelen, J. C. Appl. Phys. Lett. 2001, 78, 841-843.
    [72] Tajima, K.; Suzuki, Y.; Hashimoto, K. J. Phys. Chem. C 2008, 112, 8507-8510.
    [73] Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477-487.
    [74] Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737-1750.
    [75] Campbell, A. J.; Bradley, D. D. C.; Antoniadis, H. Appl. Phys. Lett. 2001, 79, 2133-2135.
    [76] Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.; Sweelssen, J.; Koetse,M. M. Appl. Phys. Lett. 2007, 90, 143506-143508.
    [77] Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Ingan?s, O. Adv. Funct. Mater. 2005, 15, 745-750.
    [78] Zhang, F.; Mammo, W.; Andersson, L. M.; Admassie, S.; Andersson, M. R.; Ingan?s, O. Adv. Mater. 2006, 18, 2169-2173.
    [79] Solomeshch, O.; Yu, Y.-J.; Medvedev, V.; Razin, A.; Blumer-Ganon, B.; Eichen, Y.; Jin, J.-I.; Tessler, N. Synth. Met. 2007, 157, 841-845.
    [80] Ohmori, Y.; Kajii, H.; Sawatani, T.; Ueta, H.; Yoshino, K. Thin Solid Films 2001, 393, 407-411.
    [81] Drolet, N.; Morin, J.-F.; Leclerc, N.; Wakim, S.; Tao, Y.; Leclerc, M. Adv. Funct. Mater. 2005, 15, 1671-1682.
    [82] Wakim, S.; Aich, B.-R.; Tao, Y.; Leclerc, M. Polym. Rev. 2008, 48, 432-462.
    [83] Iraqi, A.; Wataru, I. Chem. Mater. 2004, 16, 442-448.
    [84] Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295-2300.
    [85] Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletête, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732-742.
    [86] Qin, R. P.; Li, W. W.; Li, C. H.; Du, C.; Veit, C.; Schleiermacher, H. F.; Andersson, M.; Bo, Z. S.; Liu, Z. P.; Ingan?s, O.; Wuerfel, U.; Zhang, F. L. J. Am. Chem. Soc. 2007, 131, 14612-14613.
    [87] Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. Adv. Funct. Mater. 2006, 16, 1694-1704.
    [88] Li, Y.; Wu, Y.; Ong, B. S. Macromolecules 2006, 39, 6521.
    [89] Boudreault, P.-L. T.; Wakim, S.; Blouin, N.; Simard, M.; Tessier, C.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2007, 129, 9125-9136.
    [90] Lu, J.; Liang, F.; Drolet, N.; Ding, J.; Tao, Y.; Movileanu, R. Chem. Commun. 2008, 5315-5317.
    [91] Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617-1622.
    [92] Hou, J.; Tan, Z.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2006, 128, 4911-4916.
    [93] Li, Y.; Zou, Y. Adv. Mater. 2008, 20, 2952-2958.
    [94] Chang, Y.-T.; Hsu, S.-L.; Chen, G.-Y.; Su, M.-H.; Singh, T. A.; Diau, E. W.-G.; Wei, K.-H. Adv. Funct. Mater. 2008, 18, 2356-2365.
    [95] Liang, Y.; Xiao, S.; Feng, D.; Yu, L. J. Phys. Chem. C 2008, 112, 7866-7871.
    [96] He, Y.; Wu, W.; Zhao, G.; Liu, Y.; Li, Y. Macromolecules 2008, 41, 9760-9766.
    [97] Mühlbacher, D.; Scharber, M.; Zhengguo, M. M.; Zhu, M. M. Z.; Waller, D.; Gaudiana, R.; Brabec, C. Adv. Mater. 2006, 18, 2884-2889.
    [98] Moulé, A. J.; Tsami, A.; Bünnagel, T. W.; Forster, M.; Kronenberg, Meerholz, K.; Scherf, U. Chem. Mater. 2008, 20, 4045-4050.
    [99] Liao, L.; Dai, L.; Smith, A.; Durstock, M.; Lu, J.; Ding, J.; Tao, Y. Macromolecules 2007, 40, 9406-9412.
    [100] Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Mu¨hlbacher, D.; Scharber, M.; Brabec, C. Macromolecules 2007, 40, 1981-1986.
    [101] Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K. Macromolecules 2008, 41, 8302-8305.
    [102] Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. Am.Chem. Soc. 2008, 130, 12828-12833.
    [103] Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. Adv. Funct. Mater. 2001, 11, 255-262.
    [104] Wienk, M. M.; Turbiez, M.; Gilot, J.; Janseen, R. A. J. Adv. Mater. 2008, 20, 2556-2560.
    [105] Peng, Q.; Park, K.; Lin, T.; Durstock, M.; Dai, L. J. Phys. Chem. B 2008, 112, 2801-2808.
    [1] Heeger, A. J. Angew. Chem., Int. Ed. 2001, 40, 2591-2611.
    [2] Liao, L.; Cirpan, A.; Chu, Q.; Karase, F. E.; Pang, Y. J. Polymer Science Part A: Polym. Chem. 2007, 45, 2048-2058.
    [3] Zhang, X. ; Jenekhe, S. A. Macromolecules, 2000, 33, 2069-2082.
    [4] Kulkarni, A. P.; Zhu, Y.; Jenekhe, S. A. Macromolecules, 2005, 38, 1553-1563.
    [5] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789-1791.
    [6] Zhou, E. J.; Tan, Z. A.; He, Y. J.; Yang, C. H.; Li, Y. F. J. Polymer Science Part A: Polym. Chem. 2007, 45, 629-638.
    [7] Coakley, K. M.; McGehee, M. D. Conjugated Polymer Photovoltaic Cells, Chem. Mater. 2004, 16, 4533-4542
    [8] Dang, T. T. M.; Park, S.-J.; Park, J.-W.; Chung, D.-S.; Park, C. E.; Kim, Y.-H.; Kwon, S.-K. J. Polymer Science Part A: Polym. Chem. 2007, 45, 5277-5284.
    [9] Lim, E.; Kim, Y. M.; Lee, J.-I.; Jung, B.-J.; Cho, N. S.; Lee, J.; Do, L.-M.; Shim, H.-K. J. Polymer Science Part A: Polym. Chem. 2006, 44, 4709-4721.
    [10] Shin, W. S.; Kim, S. C.; Lee, S.-J.; Jeon, H.-S.; Kim, M.-K.; Naidu, B. V. K.; Jin, S.-H.; Lee, J.-K.; Lee, J. W.; Gal, Y.-S. J. Polymer Science Part A: Polym. Chem. 2007, 45, 1394-1402.
    [11] Reyes-Reyes, M.; Kim, K.; Carroll, D. L. Appl. Phys. Lett. 2005, 87, 83506.
    [12] Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K. W.; Gong, M. X.; Heeger, A. J. Adv. Mater. 2006, 18, 572-576.
    [13] Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617-1622.
    [14] Loewe, R. S.; McCullough, R. D.; Polym. Prepr. 1999, 40, 852-853.
    [15] Sheina, E. E.; Khersonsky, S. M.; Jones, E. G.; McCullough, R. D. Chem. Mater. 2005, 17, 3317-3319.
    [16] Shi, C. J.; Yao, Y.; Yang, Y.; Pei, Q. B. J. Am. Chem. Soc. 2006, 128, 8980-8986.
    [17] Yang, Z.; Hu, B.; Karasz, F. E. Macromolecules 1995, 28, 6151-6154.
    [18] Barberis, V. P. ; Mikroyannidis, J. A. J. Polymer Science Part A: Polym. Chem. 2006, 44, 3556-3566.
    [19] Xia, H. J.; He, J. T.; Peng, P.; Zhou, Y. H.; Li, Y. W.; Tian, W. J. Tetrahedron Letters 2007, 48, 5877-5881.
    [20] Loewe, R. S.; Ewbank, P. C.; Liu, J. S.; Zhai, L.; McCullough, R. D. Macromolecules 2001, 34, 4324-4333.
    [21] Sheina, E. E.; Liu, J. S.; Iovu, M. C.; Laird, D. W. McCullough, R. D. Macromolecules 2004, 37, 3526-3528.
    [22] Hou, J. H.; Tan, Z. A.; He, Y. J.; Yang, C. H.; Li, Y. F.; Macromolecules 2006, 39, 4657-4662.
    [23] Wan, J. H.; Feng, J. C.; Wen, G. A.; Wei, W.; Fan, Q. L.; Wang, C. M.; Wang, H. Y.; Zhu, R.; Yuan, X. D.; Huang, C. H.; Huang, W. J. Org. Chem. 2006, 71, 2565-2571.
    [24] Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Arbizzani, G.; Bongini,A. Mastragostino, M. Chem. Mater. 1999, 11, 2533-2541.
    [25] Shi, C. J.; Yao, Y.; Yang, Y.; Pei, Q. B.; J. Am. Chem. Soc. 2006, 128, 8980-8986.
    [26] Hou, J. H.; Tan, Z. A.; Yan, Y.; He,Y. J.; Yang, C. H.; Li, Y. F. J. Am. Chem. Soc2006, 128, 4911-4916.
    [27] Tang, W. H.; Kietzke, T.; Vemulamada, P.; Chen, Z. K. J. Polymer Science Part A: Polym. Chem. 2007, 45, 5266-5276.
    [28] Hou, J. H.; Huo, L. J.; He, C.; Yang, C. H.; Li, Y. F. Macromolecules 2006, 39, 594-603.
    [29] Schilinsky, P.; Asawapirom, U.; Scherf, U.; Biele, M.; Brabec, C. J. Chem. Mater. 2005, 17, 2175-2180.
    [30] Hiorns, R. C.; de Bettignies, R.; Leroy, J.; Bailly, S.; Firon, M.; Sentein, C.; Khoukh, A.; Preud’homme, H.; Dagron-Lartigau, C. Adv. Funct. Mater. 2006, 16, 2263-2273.
    [31] Zhou, E. J.; He, C.; Tan, Z. A.; Yang, C. H.; Li, Y. F. J. Polymer Science Part A: Polym. Chem. 2006, 44, 4916-4922.
    [1] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789-1791.
    [2] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789-794.
    [3] Wienk, M. M.; Kroon, J. M.; Verhees, WJ. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J. Angew. Chem. Int. Ed. 2003, 42, 3371-3375.
    [4] Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841-843.
    [5] Van Mullekom, H. A. M.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W., Mater. Sci. Eng. R. 2001, 32, 1-40.
    [6] Tsai, F. C.; Chang, C. C.; Liu, C. L.; Chen, W. C.; Jenekhe, S. A.; Macromolecules 2005, 38, 1958-1966.
    [7] Brabec, C. J.; Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J. Adv. Funct. Mater. 2002, 12, 709-712
    [8] Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Ingan?s, O.; Andersson, M. R. Adv. Mater. 2003, 15, 988-991.
    [9] Zhou, Q. M.; Hou, Q.; Zheng, L. P.; Deng, X. Y.; Yu, G.; Cao, Y. Appl. Phys. Lett. 2004, 84, 1653-1655.
    [10] Xia, Y. J.; Deng, X. J.; Wang, L.; Li, X. Z.; Zhu, X. H.; Cao, Y. Macromol. Rapid Commun. 2006, 27, 1260-1264.
    [11] Zhan, X. W.; Tan, Z. A.; Domercq, B.; An, Z. S.; Zhang, X.; Barlow, S.; Li, Y. F.; Zhu, D. B.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246-7247.
    [12] Lee, S. K.; Cho, N. S.; Kwak, J. H.; Lim, K. S.; Shim, H. K.; Hwang, D. H.; Brabec, C. J. Thin Solid Films 2006, 511, 157-162.
    [13] Thompson, B. C.; Kim, Y. G.; McCarley, T. D.; Reynolds, J. R. J. Am. Chem. Soc. 2006, 128, 12714-12725.
    [14] Zhang, F. L.; Mammo, W.; Andersson, L. M.; Admassie, S.; Andersson, M. R.; Ingan?s, O. Adv. Mater. 2006, 18, 2169-2173.
    [15] Wienk, M. M.; Turbiez, M. G. R.; Struijk, M. P.; Fonrodona, M.; Janssen, R. A. J., Appl. Phys. Lett. 2006, 88, 153511-3.
    [16] Koeckelberghs, G.; De Cremer, L.; Persoons, A.; Verbiest, T. Macromolecules 2007, 40, 4173-4181.
    [17] Woods, L. L.; J. Am. Chem. Soc. 1958, 80, 1440-1442.
    [18] Maruyama, S.; Kawanishi, Y., J. Mater. Chem. 2002, 12, 2245-2249.
    [19] Alam, M. M.; Jenekhe, S. A., Chem. Mater. 2002, 14, 4775-4780.
    [20] Wu, P. T. ; Kim, F. S. ; Champion, R. D. ; Jenekhe, S. A., Macromolecules 2008, 4, 7021-7028.
    [21] Li Y. W. ; Xue, L. L. ; Xia, H. J. ; Xu, B. ; Wen, S. P. ; Tian, W. J., J. Polymer Science Part A:Polym. Chem. 2008, 46, 3970-3984.
    [22] Hou, J.; Tan, Z.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2006, 128, 4911-4916
    [1] Anuragudom, P.; Newaz, S. S.; Phanichphant, S.; Lee, T. R. Macromolecules 2006, 39, 3494-3499
    [2] Kagan, J.; Arora, S. K. J. Org. Chem. 1983, 48, 4317-4320.
    [3] Alam, M. M.; Jenekhe, S. A., Chem. Mater. 2002, 14, 4775-4780.
    [4] Campos, L. M.; Tontcheva, A.; Günes, S.; Sonmez, G.; Neugebauer, H.; Sariciftci, N. S.; Wudl, F. Chem. Mater. 2005, 17, 4031-4033.
    [5] Svensson, M.; Zhang, F.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Ingan?s, O.; Andersson, M. R. Adv. Mater. 2003, 15, 988-991.
    [6] Admassie, S.; Ingan?s, O.; Mammo, W.; Perzon, E.; Andersson, M. R. Synth. Met. 2006, 156, 614-623.
    [7] Li, Y. W.; Xue, L. L.; Xia, H. J.; Xu, B.; Wen, S. P.; Tian, W. J. J. Polymer Science Part A: Polym. Chem. 2008, 46, 3970-3984.
    [8] Zhu, Y.; Babel, A.; Jenekhe, S. A. Macromolecules 2005, 38, 7983-7991.
    [9] Apperloo, J. J.; Janssen, R. A. J.; Malenfant, P. R. L.; Frechet, J. M. J. Macromolecules 2000, 33, 7038-7043.
    [10] Devi, L. S.; Al-Suti, M. K.; Zhang, N.; Teat, S. J.; Male, L.; Sparkes, H. A.; Raithby, P. R.; Khan, M. S.; K?hler, A. Macromolecules 2009, 42, 1131-1141.
    [11] Chen, T. A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233-244.
    [12] Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749-1754.
    [13] Campos, L. M.; Tontcheva, A.; Günes, S.; Sonmez, G.; Neugebauer, H.; Sariciftci, N. S.; Wudl, F. Chem. Mater. 2005, 17, 4031-4033.
    [14] Svensson, M.; Zhang, F.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Ingan?s, O.; Andersson, M. R. Adv. Mater. 2003, 15, 988-991.
    [15] Wu, P. T.; Kim, F. S.; Champion, R. D.; Jenekhe, S. A. Macromolecules 2008, 41, 7021-7028.
    [16] Sophie,R.; Antonio, C.; Philippe, L.; Olivier, A.; Pierre, F.; Jean, R. J. Am. Chem. Soc. 2006, 128, 3459-3466.
    [17] Leeuw, D. M. D.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F. Synth. Met. 1997, 87, 53-59.
    [18] Li, Y. W.; Xue, L. L.; Li, H.; Li, Z. F.; Xu, B.; Wen, S. P.; Tian, W. J.Macromolecules, 2009, 42, 4491-4499.
    [19] Thompson, B. C.; Kim, Y. G.; Reynolds, J. R.; Macromolecules 2005, 38, 5359-5362.
    [20] Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S. Appl. Phys. Lett. 2001, 78, 841-843.
    [21] Yang, F.; Shtein, M.; Forrest, S. R. J. Appl. Phys. 2005, 98, 014906/1-10.
    [22] Hoppe, H. ; Sariciftci, N. S. J. Mater. Chem. 2006, 16, 45-61.
    [23] Wu, P. T.; Kim, F. S.; Champion, R. D.; Jenekhe, S. A. Macromolecules 2008, 41, 7021.
    [1] Li, Y. W.; Xue, L. L.; Li, H.; Li, Z. F.; Xu, B.; Wen, S. P.; Tian, W. J. Macromolecules, 2009, 42, 4491-4499.
    [2] Uhrich, C.; Schueppel, R.; Petrich, A.; Pfeiffer, M.; Leo, K.; Brier, E.; Kilickiran, P.; Baeuerle, P. Adv. Funct. Mater. 2007, 17, 2991-2999.
    [3] Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Fre′chet, J. M. J. J. Am. Chem. Soc. 2008, 130, 16324-16329.
    [4] Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295-2300.
    [5] Tsami, A.; Bunnagel, T. W.; Farrell, T.; Scharber, M.; Choulis, S. A.; Brabec, C. J.; Scherf, U. J. Mater. Chem. 2007, 17, 1353-1355.
    [6] Liang, Y. Y. ; Wu, Y. ; Feng, D. Q. ; Tsai, S. T. ; Son, H. J. ; Li, G. ; Yu, L. P. J. Am. Chem. Soc. 2009, 131, 56-57.
    [7] Chen, T. A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233-244.
    [8] Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749-1754.
    [9] Yue, W.; Zhao, Y.; Tian, H. K.; Song, D.; Xie, Z. Y.; Yan, D. H.; Geng, Y. H.; Wang, F. S. Macromolecules, 2009, 42, 6510-6518.
    [10] Leeuw DMD, Simenon MMJ, Brown AR, Einerhand REF. Synth. Met. 1997, 87, 53-59.
    [11] Thompson BC, Kim YG, Reynolds JR. Macromolecules 2005, 38, 5359-5362.
    [12] Arkhipov, V. I.; Bassler, H. Phys. Stat. Sol. 2004, 201, 1152-1187.
    [13] Meskers, S. C. J.; Hubner, J.; Oestreich, M.; Bassler, H. J. Phys. Chem. B 2001, 105, 9139-9149.
    [14] Peng, Q.; Park, K.; Lin, T.; Durstock, M.; Dai, L. J. Phys. Chem. B 2008, 112,2801-2808.
    [15] Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nature photonics 2009, 3, 297-303.
    [16] Yang, F.; Shtein, M.; Forrest, S. R. J. Appl. Phys. 2005, 98, 014906/1-10.
    [17] Hoppe, H. ; Sariciftci, N. S. J. Mater. Chem. 2006, 16, 45-61.
    [18] Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551-554.
    [19] Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S. Appl. Phys. Lett. 2001, 78, 841-843.
    [20] Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749-1754.
    [1] Hiraishi, K.; Yamamoto, T. Synth. Met. 2002, 130, 139.
    [2] Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. J. Am. Chem. Soc. 2007, 129, 4112-4113.
    [3] Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Nature photonics 2009, 3, 649-653.
    [4] Liang, Y. Y.; Wu, Y.; Feng, D. Q.; Tsai, S. T.; Son, H. J.; Li, G.; Yu, L. P. J. A. Chem. Soc. 2009, 131, 56-57.
    [5] Chen, C. H.; Hsieh, C. H.; Dubosc, M.; Chen, Y. J.; Hsu, C. S. Macromolecules 2010, 43, 697–708.
    [6] Wang, E. G.; Wang, M.; Wang, L.; Duan, C. H.; Zhang, J.; Cai, W. Z.; He, C.; Wu, H. B.; Cao, Y. Macromolecules 2009, 42, 4410–4415.
    [7] Chen, X. W.; Y.; Schulz, G. L.; Han, X.; Zhou, Z. Y.; Holdcroft, S. J. Phys. Chem. C. 2009, 113, 8505–8512.
    [8] Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. Am. Chem. Soc., 2008, 130, 12828–12833.
    [9] Liang, Y. Y.; Feng, D. Q.; Guo, J. C.; Szarko, J. M.; Ray, C.; Chen, L. X.; Yu, L. P. Macromolecules 2009, 42, 1091–1098.
    [10] Chen, T. A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233-244.
    [11] Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749-1754.
    [12] Leeuw DMD, Simenon MMJ, Brown AR, Einerhand REF. Synth. Met. 1997, 87, 53-59.
    [13] Thompson BC, Kim YG, Reynolds JR. Macromolecules 2005, 38, 5359-5362.
    [14] Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletête, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732-742.
    [15] Hou, J. H.; Chen, T. L.; Zhang, S. Q.; Chen, H. Y.; Yang, Y. J. Phys. Chem. C 2009, 113, 1601–1605
    [16] Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nature photonics 2009, 3, 297-303.
    [17] Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2006, 16, 45-61.
    [18] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789-1791.
    [19] Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749-1754.
    [20] Nunzi, J. M. C. R. Physique, 2002, 3, 523-542.
    [21] Halls, J. J. M.; Friend, R. H. Synth. Met., 1997, 85, 1307-1308.
    [22] Markov, D. E.; Tanase, C.; Blom, P. W. M.; Wildeman, J. Phys. Rev. B, 2005, 72, 045217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700