用户名: 密码: 验证码:
BiVO_4纳米膜的制备、改性及可见光光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体光催化技术得到了快速的发展。在该领域的研究中,TiO_2因其光催化能力强,无毒,且简便易得,成本低廉,一直受到人们的高度关注。但由于其禁带宽度较宽,只能吸收波长较短的紫外光,太阳光的利用效率很低。因此,为了更好地利用太阳光,开发可见光响应的催化剂是非常必要的。单斜晶型BiVO_4是一种较好的可见光响应的催化剂。BiVO_4的价带是由Bi的6s和O的2p轨道杂化而形成的,价带位置较深,且这种杂化结构使得BiVO_4的价带比较分散,有利于光生空穴在价带上的迁移。这两点均对其参与光电催化氧化反应有利。
     本研究采用改进的金属有机物分解法(MOD)制备了BiVO_4纳米膜,将其应用于可见光光电催化降解环境污染物的研究中,并通过对其改性提高了其光电催化降解污染物的能力。本研究的具体内容包括以下几部分:
     (1)以导电玻璃(FTO)为基底,采用改进的MOD法制备了BiVO_4纳米膜。分别考察了锻烧温度以及镀膜次数对BiVO_4纳米膜的形貌、晶型、晶粒大小以及光电性能的影响,得出的最佳的制备条件为:锻烧温度为500℃和镀膜次数为四次(膜厚为0.66μm)。通过扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射(DRS)、拉曼光谱(Raman)和X射线衍射(XRD)对最佳条件下制备的BiVO_4纳米膜进行了系统的表征。分析表明,BiVO_4纳米膜是由粒径约为10 nm的单晶颗粒构成的,而这些单晶颗粒又聚集成为粒径为200~300 nm的团粒。BiVO_4纳米膜具有较好的可见光响应,其禁带宽度为2.43 eV。BiVO_4纳米膜的晶型为单斜晶型。光电特性测试显示,在外加偏压为1.2 V,入射光波波长为400nm的条件下,BiVO_4纳米膜的IPCE值为48.1%。其最高的光电转化效率为1.43%。在可见光下,BiVO_4纳米膜的光电催化降解苯酚的速率是其光催化降解苯酚的速率的27.1倍。外加偏压使光生电子迁移至外电路,进而提高了电子与空穴的分离效率,是导致其光电催化性能提高的主要原因。重复利用实验中,BiVO_4纳米膜显示出良好的光电催化稳定性。
     (2)以硝酸银为Ag源,通过光还原方法成功地将Ag颗粒担载在BiVO_4膜表面。通过TEM、XRD对样品进行了表征。分析表明,担载在BiVO_4膜表面的金属Ag颗粒的粒径约为10~20 nm。在1.0 V偏压的条件下,担载Ag的BiVO_4膜电极的光电流密度比BiVO_4膜电极的提高了约25%。担载Ag后,BiVO_4膜的光催化及光电催化降解苯酚的速率分别提高了61%和40.5%。对担载Ag后,BiVO_4膜的光催化及光电催化性能提高的机理进行了探讨。
     (3)通过改进的MOD工艺,在原料中加入Si源,在FTO基底上制备了掺Si的BiVO_4膜。通过SEM、XRD、X射线光电子能谱(XPS)、电子探针(EPMA)、电子顺磁光谱(ESR)、傅立叶红外光谱(FT-IR)和DRS对样品进行了表征。分析表明,Si被掺入BiVO_4的晶格中,Si~(4+)取代了晶格中的V~(5+)。掺Si不改变BiVO_4膜的晶型以及其吸光性能。但掺Si改变BiVO_4膜的形貌,使BiVO_4膜中生成了更多的氧缺陷,掺Si后的BiVO_4膜的晶粒尺寸明显变小,表面亲水性明显提高。在0.6 V偏压的条件下,掺Si的BiVO_4膜的光电流密度比BiVO_4膜的提高了约78%。光电催化降解苯酚的实验中,掺Si的BiVO_4膜光电催化降解苯酚的速率是BiVO_4膜的1.84倍。晶粒尺寸变小,氧缺陷的增加以及催化剂表面的亲水性的增强是提高光电催化降解苯酚性能的原因。
In recent years,great advancement has been achieved in the research of photocatalytic technique.TiO_2 has been drawn much attention due to its good chemical stability, non-toxicity,low cost,easy fabrication and good photoelectrochemical performance.But TiO_2 can not utilize solar energy.Thus,the exploration of the catalysts with visible light response is necessary in order to use solar energy.BiVO_4 with monoclinic type has intense visible light response.The valence band(VB) of BiVO_4 is composed of hybridized Bi 6s and O 2p orbitals.This hybridization makes the VB largely dispersed,which favors the mobility of photogenerated holes in the VB and is beneficial to the oxidation reaction.In addition,the holes of the BiVO_4 have strong oxidation ability due to its more positive position of the VB.
     BiVO_4 nano-film was fabricated by modified metalorganic decomposition(MOD) technique and the photocatalytic(PC) activity of these photocatalysts was evaluated.To enhance the PC performance of the BiVO_4 film,the modification of BiVO_4 film was done.In this dissertation,the following several parts of work have been done:
     (1) BiVO_4 film coated on F-doped SnO_2(FTO) glass was successfully fabricated by modified MOD technique.The effects of the calcination temperature and coating time on the morphology,crystalline type and photoelectrochemical(PEC) performance of the BiVO_4 film were investigated.The obtained optimum fabrication technical conditions were 500℃of calcination temperature and four of coating time.Scanning electron microscope(SEM) and transmission electron microscopy(TEM) images of the prepared BiVO_4 film under the optimum conditions showed that the film was composed of grains with 200-300 nm in size and the grains were composed of particles,which were about 10 nm in size.Diffused reflectance spectroscopy(DRS) revealed that the absorption performance of the BiVO_4 film was intense in visible light region and the band gap was 2.43 eV.The analysis of X-ray diffractometry(XRD) and Raman spectra identified to the monoclinic type BiVO_4.The PEC measurement showed that the IPCE was 48.1%with 1.2 V of applied potential and 400 nm of the light weavelength and the highest photoconversion efficiency was 1.43%.The removal rate of phenol in PEC process by the BiVO_4 film electrode under visible light(>400 nm) was 27.1 times that in PC process.The prominent enhancement was induced by the promoted separation of photogenerated electron-hole pairs.Furthermore,the BiVO_4 film electrode showed good stability in the PEC process.
     (2) Ag particles were deposited on BiVO_4 film by photoreduction technique.XRD analysis indicated that the chemical state of the Ag particles was metallic Ag.TEM observation confirmed that the sizes of the Ag particles were 10-20 nm.The investigation of the phenol degradation demonstrated that the PC degradation rate of the phenol on the Ag doped BiVO_4 film was enhanced by 1.61 times in PC process and by 42.7 times in PEC process compared with that of the BiVO_4 film.The transportation of the electrons from the BiVO_4 to Ag driven by the schottky barrier formed between Ag and BiVO_4 could increase the charge carrier separation,and consequently enhance the PC performance.The enhancement of the PC ability in PEC process could be attributed to the simultaneous movement of the photogenerated electrons to external circuit and the photogenerated holes to the Ag particles deposited on the BiVO_4 film.
     (3) The silicon-doped BiVO_4 film was fabricated by modified MOD method.The effects of Si doped on the chemical structure,surface hydrophilicity,morphology,crystalline size and photoabsorbance property were investigated.Doping Si into the BiVO_4 film did not change its crystalline type and the photoabsorbance property.However,the crystalline size of the BiVO_4 decreased and greater amount of oxygen vacancies in the BiVO_4 formed by the substitution V by Si in the crystalline lattice.In addition,the BiVO_4 film became more hydrophilic by doping Si.The phenol elimination rate on the Si-doped BiVO_4 film electrode in the PEC process was 1.84 times as great as that on the BiVO_4 film electrode.The enhanced PEC performance was attributed to the decease of the crystalline size,the increased amount of the oxygen vacancy and the enhancement of the hydrophilic performance.
引文
[1]Tian Z R,Voigt J A,Liu J,et al.Large oriented arrays and continuous films of TiO_2-based nanotubes [J].Journal of American Chemical Society,2003,125(41):12384-12385.
    [2]Jung J H.Kobayashi H.Bommel K J C,et al.Creation of novel helical ribbon and double-layered nanotube TiO_2 structures using an organogel template [J].Chemistry of Materials.2002,14(4):1445-1447.
    [3]Park J H,Kim S,Bard A J,et al.Novel carbon-doped TiO_2 nanotube arrays with high aspect ratios for efficient solar water splitting [J].Nano Letters,2006,6(1):24-28.
    [4]Jang S R,Vittal R,Kim K J.Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO_2 solar cells [J].Langmuir,2004,20(22):9807-9810.
    [5]Navio J A,Marchena F J,Roncel M,et al.A laser flash photolysis study of the reduction of methyl viologen by conduction band electrons of TiO_2 and Fe-Ti oxide photocatalysts [J].Journal of Photochemistry and Photobiology A:Chemistry,1991,55 (3):319-322.
    [6]Gratzel M,Howe R F.Electron-paramagnetic resonance studies of doped TiO_2 colloids [J].The Journal of Physical Chemistry,1990,94 (7):2566-2572.
    [7]Schrauzer G N,Guth T D.Photocatalytic reactions.1.Photolysis of water and photoreduction of nitrogen on titanium dioxide [J].Journal of American Chemical Society,1977,99 (22):7189-7193.
    [8]Li L,Liu C Y,Liu Y.Study on activities of vanadium (IV/V)doped TiO_2(R)nanorods induced by UV and visible light [J].Materials Chemistry and Physics,2009,113 (2-3):551-557.
    [9]Palmisano L,Augugliaro V,Sclafani A,et al.Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation [J].The Journal of Physical Chemistry,1988,92 (23):6710-6713.
    [10]Yang Y,Wang H Y,Li X,et al.Electrospun mesoporous W6+-doped TiO_2 thin films for efficient [J].Materials Letters 2009,63(2):331-333.
    [11]Luo Z,Gao G H.Decrease in the photoactivity of TiO_2 pigment on doping with transition metals [J].Journal of Photochemistry and Photobiology A:Chemistry,1992,63(3):367-375.
    [12]Mu W,J.Herrmann M,Pichat P.Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO_2 [J].Catalysis Letters,1989,3(1):73-84.
    [13]Borgarello E,Kiwi J,Gratzel L,et al.Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles [J].Journal of American Chemical Society,1982,104(11):2996-3002.
    [14]Matsumoto Y,Kurimoto J,Shimizu T,et al.Photoelectrochemical properties of polycrystalline TiO_2doped with 3d transition metals [J].Journal of the Electrochemical Society,1981,128(5):1040-1044.
    [15]Takeuchi M,Yamashita H,Matsuoka M,et al.Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO_2 thin film photocatalyst [J].Catalysis Letters,2000,67(2-4):135-137.
    [16]Yamashita H,Ichihashi Y,Takeuchi M,et al.Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation [J].Journal of Synchrotron Radiation,1999,6(3):451-452.
    [17]Nakamura I,Negishi N,Kutsuna S,et al.Role of oxygen vacancy in the plasma-treated Ti0_2 photocatalyst with visible light activity for NO removal [J].Journal of Molecular Catalysis A:Chemical,2000,161(1-2):205-212.
    [18]Li J X,Xu J H,Dai W L,et al.Direct hydro-alcohol thermal synthesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity [J].Applied Catalysis B:Environmental,2009,85(3-4):162-170.
    [19]Zhao G,Kozuka H,Lin H,et al.Sol-gel preparation of Ti_(1-x)V_x0_2 solid solution film electrodes with conspicuous photoresponse in the visible region [J].Thin Solid Films,1999,339(1-2):123-128.
    [20]Wilke K,Breuer H D.The influence of transition metal doping on the physical and photocatalytic properties of titania [J].Journal of Photochemistry and Photobiology A:Chemistry,1999,121(1):49-53.
    [21]Martin S T,Morison C L,Hoffmann M R.Photochemical mechanism of size-quantized vanadium-doped Ti0_2 particles [J].The Journal of Physical Chemistry,1994,98(51):13695-13704.
    [22]Klosek S,Raftery D.Visible light driven V-doped Ti0_2 photocatalyst and its photooxidation of ethanol [J].The Journal of Physical Chemistry B,2001,105 (14):2815-2819.
    [23]Hoffmann M R,Martin S T,Choi W,et al.Environmental applications of semiconductor photocatalysis [J].Chemical Reviews,1995,95(1):69-96.
    [24]Mills A,Hunte S L.An overview of semiconductor photocatalysis [J].Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):1-35.
    [25]Jiang H B,Gao L.Enhancing the UV inducing hydrophilicity of Ti0_2 thin film by doping Fe ions [J].MateriaIs of Chemistry and Physics,2002,77(3):878-881.
    [26]Wang Y Q,Cheng H,Hao Y Z,et al.Preparation,characterization and photoelectrochemical behaviors of Fe(Ⅲ)-doped Ti0_2 nanoparticles [J].Journal of Materials Science,1999,34(15):3721-3729.
    [27]Jeon M S,Yoon W S,Joo H K,et al.Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst [J].Applied Surface Science,2000,165(2):209-216.
    [28]Traversa E,Vona M L D,Nunziante P,et al.Sol-gel preparation and characterization of Ag-Ti0_2 nanocomposite thin films [J].Journal of Sol-Gel Science and Technology,2000,19(1-3):733-736.
    [29]Moon J H,Takagi H,Fujishiro Y,et al.Preparation and characterization of the Sb-doped Ti0_2 photocatalysts [J].Journal of Materials Science,2001,36(4):949-955.
    [30]Stir M,Traykova T,Nicula R,et al.In situ high-pressure and high-temperature diffraction experiments on pure and Ag-doped Ti0_2 nanopowders [J].Nuclear Instruments and Methods in Physics Research B,2003,199:59-63.
    [31]Herrmann J M,Disdier J,Pichat P.Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination [J].Chemical Physics Letters,1984,108(6):618-622.
    [32]Litter M I.Heterogeneous photocatalysis transition metal ions in photocatalytic systems [J],Applied Catalysis B:Environmental 1999,23(2-3):89-l 14.
    [33]Kim D H,Hong H S,Kim S J,et al.Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped Ti0_2 synthesized by mechanical alloying [J].Journal of Alloys and Compounds 2004,375:259-264.
    [34]Iketani K,Sun R-D,Toki M,et al.Sol-gel-derived V_xTi_(1-x)O_2 filmsand their photocatalytic activities under visible light irradiation [J].Materials Science and Engineering B,2004,108:187-193.
    [35]Choi W,Temin A,Hoffnlann M R.The role of metal ion dopants in Quantum-sized TiO_2:Comlation between photoreactivity and charge carried recombination dynamics [J].Journal of Physics and Chemistry.1994,98(5):13669-1367.
    [36]Fuerte A,Hernandez-Alonso M D,Mairs A J,et al.Visible light-activated nanosized doped-TiO_2 photocatalysts [J].Chemical Communications,2001,24:2718-2719.
    [37]Chen S,Paulose M,Ruan C,et al.Electrochemically synthesized CdS nanoparticle-modified TiO_2 nanotube-array photoelectrodes:preparation,characterization,and application to photoelectrochemical cell [J].Journal of Photochemistry and Photobiology A:Chemistry.2006,177(2-3):177-184.
    [38]AnPo M,Takeuchi M.The design and development of highly reactive titanium oxide photocatalysts operation under visible light irradiation [J].Journal of Catalysis,2003.216(1-2):505-516.
    [39]Sato S.Photocatalytic activity of NOx-doped TiO_2 in the visible light region [J].Chemical Physics Letters,1986,123(1-2):126-128.
    [40]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides [J].Science,2001,293(5528):269-280.
    [41]Kobayakawa K,murakami Y,Sato Y.Visible-light active N-doped TiO_2 prepared by heating of titanium hydroxideand urea [J].Journal of Photochemistry and Photobiology A:Chemistry,2004,170(2):177-179.
    [42]Tokudime H,Miyauchi M.N-doped TiO2 nanotube with visible light activity [J].Chemistry Letters,2004,33(9):1108-1109.
    [43]Morikawa T,Asahi R,Ohwaki T,et al.Band-gap narrowing of titanium dioxide by nitrogen doping [J].Japanese Journal of Applied Physics,2001,40:L561-L563.
    [44]Irie H,Watanabe Y,Hashimoto K.Nitrogen-concentration dependence on photocatalytic activity of TiO_(2-x)N_x powders [J].The Journal of Physical Chemistry,2003,107(23):5483-5486.
    [45]Gole J L,Stout J D,Burda C,et al.Highly Efficient Formation of Visible Light Tunable TiO_(2-x)N_x Photocatalysts and Their Transformation at the Nanoscale [J].The Journal of Physical Chemistry B,2004,108(4):1230-1240.
    [46]Ihara T,Miyoshi M,Iriyama Y,et al.Visible-light-active titanium oxide photocatalystrealized by an oxygen-deficient structure and by nitrogen doping [J].Applied Catalysis B:Environmental 2003,42:403-409.
    [47]XuCK,Killmeyer R,Gray M,et al.Photocatalytic effect of carbon-modified n-TiO_2 nanoparticles under visible light illumination [J].Applied Catalysis B:Environmental 2006,64:312-317.
    [48]Ohno T.Preparation of visible light active S-doped TiO_2 photocatalysts and their photocatalytic activities [J].Water Science and Technology,2004,49(4):159-163.
    [49]Umebayashi T,Umebayashi T,Yamaki T et al.Visible light induced degradation of methylene blue on S-doped TiO_2.Chemisty Letters,2003,32(4):330-331.
    [50]Ohno T,Mistsui T,Matsumura M.Preparation of S-doped TiO_2 photocatalyst under visible light [J].Chemisty Letters,2003,32(4):364-365.
    [51]Khan S U M,Alshahry M,InglerW B J R.Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2[J].Science,2002,297(27):2243-2245.
    [52]Irie H,Watanabe Y,Hashimoto K.Carbon-doped anatase TiO_2 powders as a visible-light sensitive photocatalyst[J].Chemisty Letters,2003,32(8):772-773.
    [53]Todorova N,Giannakopoulou T.Vaimakis T.Structure tailoring of fluorine-doped TiO_2nanostructured powders[J].Materials Science and Engineering B,2001,152:50-54.
    [54]Hattori A,Tada H.High photocatalytic activity of F-Doped TiO_2 film on glass[J].Journal of Sol-gel Science and Technology,2001,22(1-2):47-52.
    [55]Su Y L,Zhang X W,Han S,et al.F-B-codoping of anodized TiO_2 nanotubes using chemical vapor deposition[J].Electrochemistry Communications,2007,9:2291-2298.
    [56]Cong Y,Chen F,Zhang J L,et al.Carbon and nitrogen-codoped TiO_2 with high visible light photocatalytic activity[J].Chemistry Letters,2006,35(7):800-801.
    [57]Yu J G,Zhou M H,Cheng B,et al.Preparation,characterization and photocatalytic activity of in situ N,S-codoped TiO_2 powders[J].Journal of Molecular Catalysis A:Chemical,2006,246(1-2):176-184.
    [58]Chen X Q,Zhang X W,Su Y L,et al.Preparation of visible-light responsive P-F-codeped TiO_2nanotubes[J].Applied Surface Science,2008,254(20):6693-6696.
    [59]Xie Y,Zhao X J,Li Y Z,et al.CTAB-assisted synthesis of mesoporous F-N-codoped TiO_2 poders with high visible-light-driven catalytic activity and adsorption capacity[J].Journal of Solid State Chemistry,2008,181(8):1936-1942.
    [60]Meng N,Leung M K H,Leung D Y C,et al.A review and recent developments in photocatalytic water-splitting using TiO_2 for hydrogen production[J].Renewable and Sustainable Energy Reviews,2007,11(3):401-425.
    [61]Bessekhouad Y,Robert D,Weber J V.Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J].Journal of Photochemistry and Photobiology A:Chemistry.2004,163(3):569-580.
    [62]Brahimi R,Bessekhouad Y,Bouguelia A,et at.Visible light induced hydrogen evolution over the heterosystem Bi_2S_3/TiO_2[J].Catalysis Today,2007,122(1-2):62-65.
    [63]Kumar A,Jain A K.Photophysics and photochemistry of colloidal CdS-TiO_2 coupled semiconductors-photocatalytic oxidation of indole[J].Journal of Molecular Catalysis A:Chemical,2001,165(1-2):265-273.
    [64]Tada H,Hattori A,Tokihisa Y,et at.A patterned-TiO_2/SnO_2 bilayer type photocatalyst[J].The Journal of Physical Chemistry B,2000,104(17):4585-4587.
    [65]Lo S C,Lin C F,Wu C H,et at.Capability of coupled CdSe/TiO_2 for photocatalytic degradation of 4-chlorophenol[J].Journal of Hazard Materials,2004,114(1-3):183-190.
    [66]Pilkenton S,Raftery D.Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO_2-SnO_2 photocatalysts[J].Solid State Nuclear Magnetic Resonance.2003,24(4):236-253.
    [67]Marci G,Augugliaro V,Lopez-Munoz M J,et at.Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO_2 systems.2.surface,bulk characterization,and 4-nitrophenol photodegradation in liquid-solid regime[J].The Journal of Physical Chemistry B,2001,105(5):1033-1040.
    [68]Shifu C,Wei Z,Wei L,et al.Preparation,characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO_2[J].Applied Surface Science,2008,255(5):2478-2484.
    [69]Lin C F,Wu C H,Onn Z N.Degradation of 4-chlorophenol in TiO_2,WO_3,SnO_2,TiO_3/WO_3 and TiO_2/SnO_2 systems[J].Journal of Hazardous Materials,2008,154(1-3):1033-1039.
    [70]李芳柏,古国榜,黎永津.WO_3/TiO_2复合半导体的光催化性能研究[J].环境科学,1999,20(4):75-78.
    [71]Pala B,Sharonb M,Nogami G.Preparation and characterization of TiO_2/Fe_2O_3 binarymixed oxides and its photocatalytic properties[J].Materials Chemistry and Physics,1999,59(3):254-261.
    [72]Vaezi M R.Two-step solochemical synthesis of ZnO/TiO_2 nano-composite materials[J].Journal of materials processing technology,2008,205:332-337.
    [73]Yamashita H,-Harada M,-Misaka J,et al.Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts:Fe ion-implanted TiO_2[J].Catalysis Today,2003,84(3-4):191-196.
    [74]Wang P,Zakeeruddin S M,Moser E,et al.A stable quasi-solid state dye sensitized solar cell with an ampbiphilic ruthenium sensitizer and polymer gel electrolyte[J].Nature Materials,2003,2(6):402-407.
    [75]邱炜、陈爱平、刘威等.二氧化钛光催化剂的光敏化研究进展[J].现代化工,2004,24(1):43-46.
    [76]Hara K,Miyamoto K,Abe Y,et al.Electron Transport in Coumarin-Dye-Sensitized Nanocrystalline TiO_2 Electrodes[J].The journal of Physical Chemistry B,2005,109(50):23776-23778.
    [77]Sauve G,Cass M E,Coia G,et al.Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes[J].The Journal of Physical Chemistry B,2000,104(29):6821-6836.
    [78]Bae E,Choi W.Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO_2 under visible fight[J].Environmental Science & Technology,2003,37(1):147-152.
    [79]Oster G K,Oster G,Prati G.Dye-sensitized photopolymerization of acrylamidel[J].Journal of American Chemical Society,1957,79(3):595-598.
    [80]唐培松,王民权,王智宇等.半导体TiO_2光催化剂及其有机光敏化研究进展[J].材料导报,17,(10):33-36.
    [81]Chen T,Zhou Z L,Wang Y D.Effects of calcining temperature on the phase structure and the formaldehyde gas sensing properties of CdO-mixed In_2O_3[J].Sensors and Actuators B:Chemical,2008,135(1):219-223.
    [82]Son J Y,Kim B G,Kim C H,et al.Writing polarization bits on the multiferroic BiMnO_3 thin film using Kelvin probe force microscope[J].Applied Physics Letters,2004,84(24):4971-4973.
    [83]Zou Z G,Ye J H,Sayama K,et al.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J].Nature,114(2001):625-627.
    [84]Tian M K,Shang W F,Yuan J,et al.K_4Ce_2M_(10)O_(30)(M = Ta,Nb) as visible light-driven photocatalysts for hydrogen evolution from water decomposition[J].Applied Catalysis A:General,2006,309(1):76-84.
    [85]Lin X P,Huang F Q,Wang W D,et al.A novel photocatalyst BiSbO_4 for degradation of methylene blue[J].Applied Catalysis A:General,2006,307(2):257-262.
    [86]Hur S G,Kim T W,Hwang Set at.Influences of A- and B-site cations on the physicochemicalproperties of perovskite-structured A(In_(1/3)Nb_(1/3)B_(1/3))O_3(A = St,Ba;B= Sn,Pb)photocatalysts[J].Journal of Photochemistry and Photobiology A:Chemistry,2006,183(1-2):176-181.
    [87]Zou Z G,Ye J H,Sayama K.Photocatalytic and photophysical properties of a novel series of solid photocatalysts,BiTa_(1-x)Nb_xO_4(0≤x≤1)[J].Chemical Physics Letters,2001,343(3-4):303-308.
    [88]Tang J W,Zou Z G,Ye J H.Decomposition of acetaldehyde on a Bi-based semiconductor[J].Research on Chemical Intermediates,2005,31(4-6):499-503.
    [89]Ye J H,Zou Z G Oshikiri M,et at.A novel hydrogen-evolving photocatalyst InVO_4 activeunder visible light irradiation[J].Chemical Physics Letters,2002,356(3-4):221-226.
    [90]Yin J,Zou Z G,Ye J H.Photophysical and photocatalytic properties of new photocatalysts MCrO_4(M =St,Ba)[J].Chemical Physics Letters,2003,378(1-2):24-28.
    [91]Uno M,Kosuga A,Okui M,et at.Photoelectrochemical study of lanthanide zirconium oxides,Ln_2Zr_2O_7(Ln = La,Ce,Nd and Sm)[J].Journal of Alloys and Compounds,2006,420(1-2):291-297.
    [92]Uno M,Kosuga A,Okui M,et at.Photoelectrochemical study of lanthanide titanium oxides,Ln_2Ti_2O_7(Ln = La,Sm,and Gd)[J].Journal of Alloys and Compounds,2005,400(1-2):270-275.
    [93]Ye J H,Zou Z G and Matsushita A.A novel series of water splitting photocatalysts NiM_2O_6(M = Nb;Ta) active under visible light[J].International Journal of Hydrogen Energy,2003,28(6):651-655.
    [94]Shimodaira Y,Kato H,Kobayashi H,et al.Photophysical properties and photocatalytic activities of Bismuth Molybdates under visible light irradiation[J].The Journal of Physical Chemistry B,2006,110:17790-17797.
    [95]Zhao X,Xu T G,Yao W G,et al.Photoelectrocatalytic degradation of 4-chlorophenol at Bi_2WO_6nanoflake film electrode under visible light irradiation[J].Applied Catalysis B:Environmental,2007,72(1-2):92-97.
    [96]Zhang S C,Zhang C,Man Y,et al.Visible-fight-driven photocatalyst of Bi_2WO_6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties[J].Journal of Solid State Chemistry,2006,179:62-69.
    [97]Zhu S B,Xu T G,Fu H B,et al.Synergetic effect of Bi_2WO_6,photocatalyst with C_(60) and enhanced photoactivity under visible irradiation[J].Environmental Science and Technology,2007,41:6234-6239.
    [98]Kudo A,Omori K,Kato H.A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO_4 powder from layered vanadates at roomtemperature and its photocatalytic and photophysical properties[J].Journal of the American Chemical Society,1999,121(49):11459-11467.
    [99]Tokunaga S,Kato H,Kudo A.Selective preparation of monoclinic and tetragonal BiVO_4 with scheelite structure and their photocatalytic properties[J].Chemistry of Materials,2001,13:4624-4628.
    [100]Long M C,Cai W M,Cai J,et al.Efficient photocatalytic degradation of phenol over Co_3O_4/BiVO_4composite under visible light irradiation[J].The Journal of Physical Chemistry B,2006,110:20211-20216.
    [101]Zhou L.Wang W Z,Liu S W,et al.A sonochemical route to visible-light-driven high-activity BiVO_4photocatalytst[J].Journal of Molecular Catalysis A:Chemical,2006,252:120-124.
    [102]Kohtani S,Tomohiro M,Tokumura K,et al.Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO_4 photocatalysts[J].Applied Catalysis B:Environmental,2005,58:265-272.
    [103]Kako T,Zou Z G,Ye J H.Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation[J].Research on Chemical Intermediates,2005,31(4-6):359-364.
    [104]Wang D,Zou Z G,Ye J H.Photocatalytic O_2 evolution with the visible-light-driven photocatalysts M_3V_2O_8(M = Mg,Zn)[J].Research on Chemical Intermediates,2005,31(4-6):433-439.
    [105]Zou Z G,Ye J H,Arakawa H.Preparation,structural and optical properties of a new class of compounds,Bi_2MNbO_7(M=Al,Ga,In)[J].Materials Science and Engineering B,2001,79(1):83-85.
    [106]Yin J,Zou Z G and Ye J H.Photophysical and hotocatalytic properties of the visible-light-driven photocatalysts Bain_(0.5)Nb_(0.5)O_3,BaCo_(1/3)Nb_(2/3)O_3 and BaNi_(1/3)Nb_(2/3)O_3[J].Research on Chemical Intermediates,2005,31(4-6):463-475.
    [107]Tang J W,Zou Z G,Ye J H.Decomposition of acetaldehyde on a Bi-based semiconductor[J].Research on Chemical Intermediates,2005,31(4-6):499-503.
    [108]Zou Z G,Ye J H,Arakawa H.Structural properties of InNbO_4 and InTaO_4:correlation with photocatalytic and photophysical properties[J].Chemical Physics Letters,2000,332(3-4):271-277.
    [109]王秉济,李梅君.溶胶-凝胶法合成 LaCr_(1-x)FexO_3 超细粉末[J].中国稀土学报,1997,15(1):74-76.
    [110]Yan X R,Wang J Z,Wang J P,et al.The preparation of perovskite type strontium titanate by sol-gel process[J].Transactions of Tianjin University,1995,1(2):139-144.
    [111]Hwang D W,Kim H G,Lee J S,et al.Photocatalytic hydrogen production from water over M-doped La_2Ti_2O_7(M = Cr,Fe) under Visible Light Irradiation(> 420 nm)[J].The Journal of Physical Chemistry B,2005,109(6),2093-2102.
    [112]Yang X F,Dong X T,Wang J X.Glycine-assisted hydrothermal synthesis of YPO_4:Eu~(3+) nanobundles [J].Materials Letters,2009,63(6-7):629-631.
    [113]Larranaga A,Mesa J L,Lezama L.Mild hydrothermal synthesis of Cu(SeO_3).2H_2O:structural characterization,thermal,spectroscopic and magnetic studies[J].Spectrochimica Acta Part A,2009,72(2):356-360.
    [114]Chen C L,Jiao X L,Chen D R,et al.Effects of precursors on hydrothermally synthesized SrTiO_3powders[J].Materials Research Bulletin,2001,36(12):2119-2126.
    [115]Chen D R,Xu R R.Solvothermal synthesis and characterization of PbTiO_3 powders[J].Journal of Materials Chemistry,1998,8(4):965-968.
    [116]Cho S B,Noh J S,Lencka M M,et al.Low temperature hydro thermal synthesis and formation mechanisms of lead titanate(PbTiO_3) particles using tetramethylammonium hydroxide:thermodynamic modelling and experimental verification[J].Journal of the European Ceramic Society,2003,23(13):2323-2335.
    [117]Wright C S,Walton R I,Thompsett D,et al.Investigation of hydrothermal routes to mixed metal cerium titanium oxides and metal oxidation state assignment using XANES[J].Inorganic Chemistry,2004,43(6):2189-2196.
    [118]Zheng W J,Pang W Q,Meng G Y.Hydrothermal synthesis of SrZrO_(3-a)(M=Al,Ga,In,x=0.20)series oxides[J].Solid State Ionics,1998,108(1-4):37-41.
    [119]Kutty T R,Vivekanandan R,Philip S.Precipitation of ultrafine powders of zirconia polymorphs and their conversion to MZrO_3(M=Ba,Sr,Ca) by the hydrothermal method[J].Journal of Materials Science,1990,25(8):3649-3658.
    [120]Goh G K,Lange F F,Haile SM,et al.Hydrothermal synthesis of KNbO_3 and NaNbO_3 powders[J].Journal of Materials Research,2003,18(2):338-345.
    [121]He Y,Zhu Y F,Wu N Z.Synthesis of nanosized NaTaO_3 in low temperature and its photocatalytic performance[J].Journal of Solid State Chemistry,2004,177(11):3868-3872.
    [122]He Y,Zhu Y F,Wu N Z.Mixed solvents:a key in solvothermal synthesis of KTaO_3[J].Journal of Solid State Chemistry,2004,177(9):2985-2990.
    [123]郑文君,孟宪平,周凤岐,等.BaZrO3基质电解质的水热合成与表征[J].高等学校化学学报,1996,17(11):1666-1669
    [124]Mao Y B,Banerjeea S,Wong S S.Hydrothermal synthesis of perovskite nanotubes[J].Chemical Commucations,2003,(3):408-409.
    [125]Hernandez B A,Chang K,Fisher E R,et al.Sol-gel template synthesis and characterization of BaTiO_3 and PbTiO_3 nanotubes[J].Chemistry of Materials,2002,14(2):480-482.
    [126]Lou Y,Szafraniak I,Zakharov N D.Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate[J].Applied Physics Letters,2003,83(3):440-443.
    [127]Steinhart M,Wehrspohn R B,Ulrich G S,et al.Wendorff nanotubes by template wetting:A modular Assembly system[J].Angewandte Chemie International Edition,2004,43(11):1334-1344.
    [128]Levy P,Leyva A G,Troiani H E,et al.Nanotubes of rare-earth manganese oxide[J].Applied Physics Letters,2003,83(25):5247-5249.
    [129]Zhang X Y,Lai C W,Zhao X,et al.Synthesis and ferroelectric properties of multiferroic BiFeO_3nanotube arrays[J].Applied Physics Letters,2005,87(14):143102-143104.
    [130]Zhao L L,Steinhart M,Yosef M.Large-scale template-assisted growth of LiNbO_3 one-dimensional nanostructures for nano-sensors[J].Sensors and Actuators B:Chemical,2005,2005,109(1):86-90.
    [131]Steinhart M,Wchrspohn R B,Gosele U,et al.Nanotubes by template wetting:a modular assembly system[J].Angewandte Chemie International Edition,2004,43:1334-1344.
    [132]Ma X Y,Zhang H,Xu J,et al.Synthesis of La_(1-x)Ca_xMnO_3 nanowires by a sol-gel process[J].Chemical Physics Letters,2002,363(5-6):579-582.
    [133]Yang Z,Huang Y,Dong B,et al.Densely packed single-crystal Bi_2Fe_4O_9 nanowires fabricated from a template-induced sol-gel route[J].Journal of Solid State Chemistry,2006,179(11):3324-3329.
    [134]Lin K L,Chang J,Lu J X,et al.Synthesis of wollastonite nanowires via hydrothermal microemulsion methods[J].Materials Letters,2006,60(24):3007-3010.
    [135]吴欢文,张宁,钟金莲等.p-n 复合半导体光催化剂研究进展[J].化工进展,2006,26(12):1669-1673.
    [136]曹茂盛,关长斌,徐甲强等.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社.2001,6-13.
    [137]Hong A P,Bahnemann D W,Hoffmann M R.Cobalt(Ⅱ)tetra sulfophthalo-cyanine on titanium dioxide:A new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions[J].The Journal of Physical Chemistry,1987,91(8):2109-2117.
    [138]Ranjit K T,Willner I,Bossmann S B,et al.Iron(Ⅲ)phthalocyanine-modified titanium dioxide:a novel photocatalyst for the enhanced photodegradation of organic pollutants[J].The Journal of Physical Chemistry B,1998,102(47):9397-9403.
    [139]Moser J,Punchihewa S,Pierre P,et al.Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates[J].Langmuir,1991,7(12):3012-3018.
    [140]Fu X Z,Zeltner W A.,Anderson M A.The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts[J].Applied Catalysis B:Environmental,1995,6(3):209-224
    [141]Fu H B,Zhang S C,Xu T G,et al.Photocatalytic degradation of RhB by fluorinated Bi_2WO_6 and distributions of the intermediate products[J].Environmental Science & Technology,2008,42(6):2085-2091.
    [142]Alemany L J,Luca Lietti,Ferlazzo N.Reactivity and physicochemical characterization of V_2O_5-WO_3/TiO_2 de nox catalysts[J].Journal of Catalysis,1995,155:117-130.
    [143]Papp J,Soled S,Dwight K,et al.Surface acidity and photocatalytic activity of TiO_2,WO_3/TiO_2,and MoO_3/TiO_2 photocatalysts[J].Chemistry of Materials,1994,6(4):496-500.
    [144]Oosawa Y,Gratzel M.Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO_2 suspensions.Journal of the Chemical Society[J].Faraday Transactions,1988,84(1):197-205.
    [145]苏文悦,付贤智,魏可镁.SO_4~(2-)表面修饰的TiO_2结构及其光催化性能的影响[J].物理化中学报,2001,17(1):28-31.
    [146]Linsebigler A L,Lu G Q,Yates J T.Photocatalysis on TiO_2 surfaces:principles,mechanisms and selected results[J].Chemical Reviews,1995,95:735-758.
    [147]Hidaka H,Ajisaka K,Horikoshi S,et al.Comparative assessment of the efficiency of TiO_2/OTE thin film electrodes fabricated by three deposition methods photoelectrochemical degradation of the DBS anionic surfactant[J].Journal of Photochemistry and Photobiology A:Chemistry,2001,138(2):185-192.
    [148]Hickey S G,Riley D J.Photoelectrochemical studies of CdS nanoparticle-modified electrodes[J].The Journal of Physical Chemistry B,1999,103(22):4599-4602.
    [149]Zanoni M V B,Sene J J,Anderson M A.Photoelectrocatalytie degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes[J].Journal of Photochemistry and Photobioiogy A:Chemistry,2003,157(1):55-63.
    [150]Santato C,Ulmann M,Augustynski J.Photoelectrochemical properties of nanostructured tungsten trioxide films[J].The Journal of Physical Chemistry B,2001,105(5):936-940.
    [151]蒋展鹏,王海燕,杨宏伟.电助光催化技术研究进展[J].2005,17(4):622-630.
    [152]An T C,Xiong Y,Li G Y,et al.Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor[J].Journal of Photochemistry and Photobiology A:Chemistry,2002,152(1-3):155-165.
    [153]吴合进,吴鸣,谢茂松等.增强型电场协助光催化降解有机污染物[J].催化学报,2000,21(5):399-403.
    [154]鞠剑峰.纳米TiO_2光电催化技术研究进展[J].精细石油化工进展,2008,9(2):25-29.
    [155]Vinodgopal K,Kamat P V.Electro-chemically assisted photocatalysis using nanocrystalline semiconductor thin films[J].Solar Energy Material and Solar Cells,1995,38(1 - 4):401-410.
    [156]Vinodgopal K,Kamat P V.Enhanced rates of photocatalytic degradation of azo dye using SnO_2/TiO_2coupled semiconductor thin films[J].Environmental Science and Technology,1995,29(3):841-845
    [157]Waldner G,Pourmodjib M,Bauer R,et al.Photoelect rocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide elect rodes[J].Chemosphere,2003,50:989-998.
    [158]J ung H C,Kim K S,Yoon D H,et al.The stability of PEC electrodes(TiO_2 anode and Pt cathode)and cell for H_2 production[J].International Journal of Hydrogen Energy,1991,166:379-386.
    [159]Rao N N,Dube S.Photoelectrochemical generation of hydrogen using organic pullutants in water as sacrificial electron donors[J].International Journal of Hydrogen Energy,1996,21(2):95-98.
    [160]Hoffman M R,Manin S T,Choi W,et al.Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95(1):69-96.
    [161]He Z,SunC,Yang S G,et at.Photocatalytic degradation of rhodamine B by Bi_2WO_6 with electron accepting agent under microwave irradiation:Mechanism and pathway[J].Journal of Hazardous Materials,2009,162(2-3):1477-1486.
    [162]Fujishima A,Rao T N,Tryk D A.Titanium dioxide photocatalysis[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [163]Hu X X,Hu C,Qu J H.Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi_2O_4 under visible light irradiation[J].Applied Catalysis B:Environmental,2006,69(1-2):18-24.
    [164]Zhang S C,Zhang C,Man Y,et al.Visible-light-driven photocatalyst of Bi_2WO_6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties[J].Journal of Solid State Chemistry,2006,179(1):62-69.
    [165]Chen C,Wang Q,Lei P X,et al.Photodegradation of dye pollutants catalyzed by porous K_3PW_(12)O_(40)under visible irradiation[J].Environmental Science & Technology,2006,40(12):3965-3970.
    [166]Fu H B,Pan C S,Yao W Q,et al.Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi_2WO_6[J].The Journal of Physical Chemistry B,2005,109(47):22432-22439.
    [167]Lin X P,Huang F Q,Wang W D,et at.A novel photocatalyst BiSbO_4 for degradation of methylene blue[J].Applied Catalysis A:General,2006,307:257-262.
    [168]Tang J W,Zou Z G,Ye J H,et al.Photocatalytic degradation of methylene blue on CaIn_2O_4 under visible light irradiation[J].Chemical Physics Letters,2003,382(1-2):175-179.
    [169]Li X Z,Li F B,Yang C L,et al.Photocatalytic activity of WO_x-TiO_2 under visible light irradiation [J].Journal of Photochemistry and PhotobiologyA:Chemistry,2001,141:209-217
    [170]Yamashita H,Harada M,Misaka J,et al.Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts:Fe ion-implanted TiO_2[J].Catalysis Today,2003,84(3):191-196.
    [171]Davydov L,Reddy E P,France P,et al.Transition-metal-substituted titania-loaded MCM-41 as photo-catalysts for the degradation of aqueous organics in visible light[J].Journal of Catalysis,2001,203:157-167.
    [172]李祥忠,赵进才.可见光诱导的TiO_2界面光化学过程[J].感光科学与光化学,2002,20(4):316-316.
    [173]Yamashita H,Harada M,Misaka J,et al.Application of ion beams for preparation of TiO2 thin film photocatalystsoperatable under visible light irradiation:Ion-assisted deposition and metal ion-imp lantation[J].Nuclear Instrumentsand Methods in Physics Research B,2003,206:889-892.
    [174]Iwasaki M,Hara M,Kawada H,et al.Cobalt Ion-doped TiO_2 photocatalyst response to visible light [J].Journal of Colloid and Interface Science,2000,224:202-204.
    [175]Hu X X,Hu C,Qu J H.Preparation and visible-light activity of silver vanadate for the degradation of pollutants[J].Materials Research Bulletin,2008,43:2986-2997.
    [176]Zhang D D,Qiu R L,Song L,et al.Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO_2 under visible light irradiation[J].Journal of Hazardous Materials,2009,163(2-3):843-847.
    [177]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
    [178]许家胜,薛冬峰.利用可见光催化分解水制氢的研究进展[J].材料导报,2006,20(10):1-4.
    [179]Kudo A.Development of photocatalyst materials for watersplitting[J].International Journal of Hydrogen Energy,2006,31:197-201.
    [180]Tsuji I,Kato H,Kobayashi H,et al.Photocatalytic H_2 evolution reaction from aqueous solutions over band structure-controlled(AgIn)_XZn_(2(1-X))S_2 solid solution photocatalysts with visible-light response and their surface nanostructures[J].Journal of American chemical society,2004,126:13406-13413.
    [181]Konta R,Ishii T,Kato H,et al.Photocatalytic activities of noble metal ion doped SrTiO_3 under visible light irradiation[J].The Journal of Physical Chemistry B,2004,108:8992-8995.
    [182]Macdiarmid A G,Park Y W,Heeger A J,et al.Electrical transport in doped polyacetylene[J].The Journal of Physical Chemistry,1980,73(2):946-949.
    [183]宋晓.D-p-A型有机染料的设计合成及其在染料敏化太阳能电池和金属离子识别中的应用[D].北京:中国科学院理化技术研究所,2005.
    [184]Hagfeldt A,Graetzel M.Light-induced redox reactions in nanocrystalline systems[J].Chemicla Reviews(Washington,D.C.),1995,95:49-68.
    [185]Desilvestro J,Gratzel M,Kaven L,et al.Highly efficient sensitization of titanium dioxide[J].Journal of American chemical society,1985,107(10):2988-2990.
    [186]O'Regan B,Graetzel M.A low-cost,high-efficiency solar cell based on dyesensitized colloidal titanium dioxide films[J].Nature(London,United Kingdom),1991,353:737-740.
    [187]Vogel R,Hoyer P,Weller H.Quantum-sized PbS,CdS,Ag_2S,Sb_2S_3 and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J].The Journal of Physical Chemistry,1994,98(12):3183-3188.
    [188]Dai H,Zhu H,Lu Z.Dye-sensitized anatase titanium dioxide nanocrystalline with(001) preferred orientation induced by Langmuir-Blodgett monolayer[J].Chemical Physics Letters,2002,363(5-6):509-514.
    [189]Wu J,Lin J,Ying S,et al.Synthesis and photocatalytic properties of layered HNbWO_6/(Pt,Cd_(0.8)Zn_(0.2)S) nanocomposites[J].Journal of Materials Chemistry,2001,11(12):3343-3347.
    [190]Uramoto H,Osaki T,Inoue M,et al.Synthesis and photocatalytic properties of HNbWO_6/TiO_2 and HNbWO_6/Fe_2O_3 nanocomposites[J].Journal of Photochemistry and Photobiology A:Chemistry,1999,128(1):129-133.
    [191]Sun W-T,Yu Y,Pan H-Y et al.CdS quantum dots sensitized TiO_2 nanotube-array photoelectrodes[J].Journal of the American Ceramic Society,2008,130(4):1124-1125.
    [192]Oshikiri M,Boero M,Ye J H,et at.Electronic structures of promising photocatalysts InMO_4(M=V,Nb,Ta) and BiVO_4 for water decomposition in the visible wavelength region[J].The Journal of Physcial Chemistry,2002,117:7313-7318.
    [193]Fu W T.Crystal chemistry of bismuthate-based superconductors:the origin of(local) charge disproportionation[J].Physica.C 1995,250:67-74.
    [194]Zhang L,Chen D R,Jiao X L Monoclinic structured BiVO_4 nanosheets:Hydrothermal preparation,formation mechanism,and coloristic and photocatalytic properties[J].The Journal of Physical Chemistry B,2006,110:2668-2673.
    [195]Li X Z,Liu H L,Yue P T.Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO_2 mesh electrode[J].Environmental Science & Technology,2000,34:4401-4406.
    [196]Gattrell M,Kirk D W.The electrochemical oxidation of aqueous phenol at a glassy carbon electrode [J].Canadian Journal of Civil Engineering,1990,68:997-1003.
    [197]Keith L H,Telliard W A.Priority pollutants:I-a perspective view[J].Environmental Science &Technology,1979,13(4):416-423.
    [198]Hannaford A M,Kuek C.Aerobic batch degradation of phenol using immobilized Pseudomonas putida[J].Journal of Industrial Microbiology and Biotechnology,1999;22(2):121-126.
    [199]Nuhoglu A,Yalcin B.Modeling of phenol removal in a batch reactor[J].Process Biochemisty,2005,40:1233-1239.
    [200]鲁娜.非金属元素掺杂及分子印迹聚合物修饰TiO_2纳米管阵列电极光电催化性能研究[D].大连:大连理工大学,2008.
    [201]Zhnang H F,Lin C J,Lai Y K,et al.Some critical structure factors of tita-nium oxide nanotube array in its photocatalytic activity[J].Environmental Science & Technology,2007,41:4735-4740.
    [202]Chang H T,Wu N,Zhu F Q.A kinetic model of photocatalytic degradationof organic contaminants in a thin-film TiO_2 catalyst[J].Water Research,2000,34:407-416.
    [203]Zhang C,Zhu Y F.Synthesis of square Bi_2WO_6 nanoplates as high-activity visible-light-driven photocatalysts[J].Chemistry of Materials,2005,17:3537-3545.
    [204]Kudo A,Tsuji I,Kato H.AgInZn_7S_9 solid solution photocatalyst for H_2 evolution from aqueous solutions under visible light irradiation[J].Chemical Communications,2002,1958-1959.
    [205]Butler M A.Photoelectrolysis and physical properties of the semiconducting electrode WO_3[J].Journal of Applied Physics,1997,48:1915-1920.
    [206]Sayama K,Nomura S,Zou Z G,et al.Photoelectrochemicaldecomposition of water on nanocrystalline BiVO_4 film electrodes under visible light[J].Chemical Communications,2003,29O8-2909.
    [207]Neves M C,Trindade T.Chemical bath deposition of BiVO_4[J].Thin Solid Films,2002,406(1):93-97.
    [208]Sayama K,Nomura A,Arai T,et al.Photoelectrochemical decom-position of water into H_2 and O_2 on porous BiVO_4 thin-film electrodes under visible light and significant effect of Ag ion treatment [J].The Journal of Physical Chemistry B,2006,110:11352-11360.
    [209]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238(5358):37-38.
    [210]Akikusa J,Khan S U M.Stability and photoresponse of nanocrystelline n-TiO2 and n-TiO_2/Mn_2O_3 thin film electrodes during water splitting reactions [J].Journal of the Electrochemical Society,1998,145(1):89-93.
    [211]Khan S U M,Akikusa J.Photoelectrochemical splitting of water at nanocrystalline n-Fe_2O_3 thin-film electrodes [J].Journal of Physical Chemistry B,1999,103(34):7184-7189.
    [212]Akikusa J,Khan S U M.Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/n-TiO_2 cells [J].International Journal of Hydrogen Energy,2002,27(9):863-870.
    [213]Mantana M,Pramoch R,Sumaeth C,et al.Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products [J].Chemical Engineering Journal,2004,97(2-3):241-248.
    [214]Sun B,Vorontsov A V,Smimiotis P G.Role of platinum deposited on TiO_2 in phenol photocatalytic oxidation [J].Langmuir.2003,19:3151-3156.
    [215]Kohtani S,Hiro J,Yamamoto N,et al.Adsorptive and photocatalytic properties of Ag-loaded BiVO_4 on the degradation of 4-n-alkylphenols under visible light irradiation [J].Catalysis Communications,2005,6(3):185-189.
    [216]Ge L.Novel Pd/BiVO_4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation [J].Materials Chemistry and Physics,2008,107(2-3):465-470.
    [217]Subramanian V,Wolf E,Kamat P V.Semiconductor-metal composite nanostructures.To what extent do metal nanoparticles improve the photocatalytic activity of TiO_2 films? [J].The Journal of Physical Chemistry B,2001,105(46):11439-11446.
    [218]Watanabe A,Kozuka H.Photoanodic properties of sol-gel-derived Fe_2O_3 thin films containing dispersed gold and silver particles [J].The Journal of Physical Chemistry B,2003,107(6):12713-12720.
    [219]Zhao G L,Kozuka H,Yoko T.Sol-gel preparation and photoelectrochemical properties of TiO_2 films containing Au and Ag metal particles [J].Thin Solid Films,1996,277(1-2):147-154.
    [220]Chandrasekharan N,Kamat P V.Improving the photoelectrochemical performance of nanostructured TiO_2 films adsorption of gold nanoparticles.The Journal of Physical Chemistry,B,2000,104:10851-10857.
    [221]Chen H,Chen S,Quan X,et al.Fabrication of TiO_2-Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution [J].The Journal of Physical Chemistry C,2008,112(25):9285-9290.
    [222]Nakato Y,Shioji M,Tsubomura H.Photoeffects on the potentials of thin metal films on a n-TiO_2 crystal wafer [J].The mechanism of semiconductor photocatalysts.Chemical Physics Letters,1982,90(6):453-456.
    [223]Vinodgopal K,Bedja I,Kamat P V.Nanostructured semiconductor films for photocatalysis.Photoelectrochemical behavior of SnO_2/TiO_2 composite systems and its role in photocatalytic degradation of a textile azo dye [J].Chemistry of Materials,1996,8(8):2180-2187.
    [224]Oosawa,Y.;Gratzel,M.Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO_2 suspensions[J].Journal of the Chemical Society.Faraday Transactions,1988,84(1):197-205.
    [225]Kobayakawa K,Nakazawa Y,Ikeda M,et al.Influence of the density of surface hydroxyl group on TiO_2 photocatalytic activities[J].Berichte der Bunsengesellschaft fur Physikalische Chemie,1990,94(12):1439-1443.
    [226]Jin R B,Wu Z B,Liu Y,et al.Photocatalytic reduction of NO with HH_3 using Si-doped TiO_2prepared by hydrothermal method[J].Journal of Hazardous Materials,2009,161(1):42-48.
    [227]Oh S M,Kim S S,Lee J E,et al.Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma[J].Thin Solid Films,2003,435(1-2):252-258.
    [228]Cesar I,Kay A,Martinez J A G,et al.Translucent thin film Fe_2O_3 photoanodes for efficient water splitting by sunlight:nanostructure-directing effect of Si-doping[J].Journal of the American Chemical Society,2006,128(14):4582-4583.
    [229]Kanat R,Singh K,Pandey O P.Synthesis and characterization of bismuth vanadate electrolyte material[J].International Journal of Hydrogen Energy,2008,33(1):455-462.
    [230]Yaremchenko A A,Avdeev M,Kharton V V,et al.Marques,Structure and electronic conductivity of Bi_(2-x)La_xV_(0.9)Cu_(0.1)O_(5.5-d)[J].Materials Chemistry and Physics,2003,77(2):552-558.
    [231]Merino N A,Barbero B P,Grange P,et al.La_(1-x)Ca_xCoO_3 perovskite-type oxides:preparation,characterisation,stability,and catalytic potentiality for the total oxidation of propane[J].Journal of Catalysis,2005,231(1):232-244.
    [232]王华.基于碳纳米墙的半导体复合材料制备、表征及其光催化性能研究[D].大连:大连理工大学,2008
    [233]Hu C,Wang Y Z,Tang H X.Preparation and characterization of surface bond-conjugated TiO_2/SiO_2and photocatalysis for azo dyes[J].Applied Catalysis B:Environmental,2001,30(3-4):277-285.
    [234]Nimat R K,Betty C A,Pawar S H.Spray pyrolytic deposition of solid electrolyte Bi_2V_(0.9)Cu_(0.1)O_(5.35)films[J].Applied Surface Science,2006,253(5):2702-2707.
    [235]Ozaki H,Iwamoto S,Inoue M.Effects of amount of Si addition and annealing treatment on the photocatalytic activities of N- and Si-codoped titanias under visible-light irradiation[J].Industrial and Engineering Chemistry Research,2008,47(7):2287-2293.
    [236]Ozaki H,Iwamoto S,Inoue M.Marked Promotive Effect of iron on visible-light-induced photocatalytic activities of nitrogen- and silicon-codoped titanias[J].The Journal of Physical Chemistry C,2007,111:17061-17066.
    [237]Miyauchi M,Nakajima A,Watanabe T,et al.Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films[J].Chemistry of Materials,2002,14:2812-2816.
    [238]Wang R,Hashimoto K,Fujishima A,et al.Photogeneration of highly amphiphilic TiO_2 surfaces[J].Advanced Materials,1998,10(2):135-138.
    [239]Tang J W,Ouan H D,Ye J H.Photocatalytic properties and photoinduced hydrophilicity of surface-fluorinated TiO_2[J].Chemistry of Materials,2007,19:116-122.
    [240]Tang J W,Zou Z G,Ye J H.Efficient photocatalytic decomposition of organic contaminants over CaBi_2O_4 under visible-light irradiation[J].Angewandte Chemie International Edition,2004,43(34):4463-4466.
    [241]Tang J W,Zou Z G,Ye J H.Effects of substituting Sr~(2+)and Ba~(2+)for Ca~(2+)on the structural properties and photocatalytic behaviors of Caln_2O_4 [J],Chemistry of Materials,2004,16(9):1644-1649.
    [242]Schroder D K.Contactless surface charge semiconductor characterization [J].Materials Science and Engineering B,2002,91-92(1):196-210.
    [243]Genscher H,Heller A.The role of oxygen in photooxidation of organic molecules on semiconductor particles [J].The Journal of Physical Chemistry,1991,95 (13):5261-5267.
    [244]Bonapasta A.A,Filippone F.Photocatalytic reduction of oxygen molecules at the (100)TiO_2 anatase surface [J].Surface Science 2005,577:59-68.
    [245]Li Y X,Xie C F,Peng S Q,Lu G X,Li S B.Eosin Y-sensitized nitrogen-doped TiO_2 for efficient visible light photocatalytic hydrogen evolution [J].Journal of Molecular Catalysis A:Chemical,2008,282:117-123.
    [246]Turchi C S,Ollis D F.Photocatalytic degradation of organic water contaminants:mechanisms involving hydroxyl radical attack [J],Journal of Catalysis,1990,122(1):178-192.
    [247]Ding Z,Lu G Q,Greenfield P F.Role of the crystallite phase of TiO_2 in heterogeneous photocatalysis for phenol oxidation in water [J].The Journal of Physical Chemistry B,2000,104:4815-4820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700