In_2S_3、TiO_2/In_2S_3纳微结构薄膜的制备及其光电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在太阳能的有效利用中,太阳能电池是近年来发展最快、最具活力的研究领域之一。虽然目前开发的太阳能电池的种类很多,但仍旧存在着制备工艺复杂和环境污染等问题。提高太阳能电池的光电转换效率、降低生产成本和解决环境污染仍是人类亟待解决的问题。
     β-In_2S_3是一种无毒的半导体化合物,带隙宽度在2.0~2.3eV之间,同时具有优良的光学性能、电学性能和光电化学性能,因此在光伏器件方面具有巨大的应用潜力。目前,已表明β-In_2S_3薄膜可以作为过渡层用于CIGS太阳能电池中,来替代有毒化合物CdS,其光电转换效率可达16.4%,接近标准的CIGS电池(19.9%)。薄膜形态的In_2S_3通常采用水浴合成法来制备,并且还需要退火等处理过程,这种方法往往会造成薄膜结晶性差、附着力不好等问题。迄今为止关于In_2S_3薄膜的光电化学性质的报道还很少。针对这种现状,本论文主要进行了In_2S_3薄膜的制备研究,并对其光电化学性质进行了考察。
     (1)以半胱氨酸为硫源,首次采用水热合成法在FTO基底上合成了由In_2S_3薄片组装而成的薄膜。系统地研究了该薄膜的制备规律,发现薄膜的形貌可以通过控制反应时间、反应物的浓度比例和反应温度来调节,提出了其可能的生长过程。
     (2)对不同反应阶段的薄膜进行了光电化学性质研究,发现其具有良好的光响应特性,反应12h得到的样品的短路电流密度最大,约为0.07mA·cm~(-2),6h制得的样品光电转换效率最高,为0.01%。
     (3)将制得的片状In_2S_3薄膜放到500℃的空气中退火即得到了纯相的In_2O_3薄膜,其形貌仍保持着In_2S_3薄膜的形貌。这说明将In_2S_3薄膜氧化是制备形貌可控的In_2O_3的一种有效的途径。
     (4)以硫脲为硫源,在体系中添加酒石酸,水热合成了由楔形In_2S_3颗粒组装而成的薄膜。详细探讨了酒石酸对薄膜形成的重要作用,结合不同反应阶段薄膜的形貌分析了其生长机制。光电化学性能的测试结果显示,相比于片状In_2S_3薄膜,楔形In_2S_3薄膜具有更好的光响应特性,光电流密度可以达到0.48mA·cm~(-2),光电转换效率可达0.036%。
     (5)两步法制备TiO_2/In_2S_3核壳结构的光电极。首先采用水热合成法在FTO基底上制备了TiO_2纳米棒阵列,接下来通过连续离子层吸附和反应法(SILAR方法)在TiO_2成功沉积了In_2S_3薄层,并最终通过热处理使其晶化。光学及光电化学性能测试结果表明,In_2S_3敏化TiO_2的薄膜在可见光范围的吸收的明显增大,光电极的光响应大幅度提高,光电流可达到1.07mA·cm~(-2),光电转换效率可达0.33%。探讨了其光电转换机理。
Among the effective use of solar energy, photovoltaic solar cells is the fastestgrowing and the most vibrant research area in recent years. Although there are varioustypes of solar cells, complex manufacture process and environmental pollution are themain problems yet. Hence, improving the photoelectric conversion efficiency,reducing the production cost and solving the problem of the environmental pollutionare still critical issues for human beings.
     β-In_2S_3is a nontoxic semiconductor with band gap of2.0~2.3eV, which hasgreat potential for photovoltaic applications owing to its excellent optical, electricaland photoelectrochamical properties. Recently, it was reported that the CIGS solarcells prepared using β-In_2S_3as buffer layer instead of CdS showed16.4%conversionefficiency, which was close to the typical solar cell using a CdS buffer layer (19.9%).Presently, In_2S_3thin films are prepared by chemical bath method, which generallyresult in the poor crystallinity and adhesion with the substrate. Further, theextra-annealing process would complex the preparation and increases the cost. On theother hand, there are seldom reports on the photoelectrochemical properties of In_2S_3thin films. Herein, the preparation and the photoelectrochemical properties of In_2S_3thin films were investigated. The main content and innovation of this thesis are list asfollowing:
     1. For the first time, the In_2S_3thin films composed of nano-/microflakes werefabricated on FTO substrate when L-cystine was used as the S source in the hydrothermal system. By investigaing the samples obtained with different experimentparameters, we found that the morphology of the films can be controlled by adjust thereaction time, the reactant contration ratio and the reation temperature. A possiblegrowth process of the films was also proposed.
     2. The photoeletrochemical properties of the time-dependent films wereinvestigated. It was found that the films prepared for12h achieved a photocurrentdensity of about0.07mA·cm2. However, the highest photoelectric conversionefficiency0.01%was obtained for the6h-synthesized film.
     3. When the In_2S_3films prepared at160℃for12h were annealed at500℃for3h, In_2O_3films with similar morphology to the In_2S_3films were obtained. Thisdemonstrated that it is an effective way to obtain the morphology-controlled In_2O_3thin films by oxiding the In_2S_3thin films.
     4. The In_2S_3thin films composed of wedgelike crystals were fabricated on FTOsubstrate when thiourea was used as the S source with the assistant of tartaric acid inthe hydrothermal system. The crucial role of tartaric acid on the film formation wasstudied detailedly. A possible formation mechanism of the films was also proposed byanalyzing the time-dependent thin films. The photoelectrochemical measurementresults showed a photocurrent up to0.48mA·cm~(-2), which is higher than that of theflakelike In_2S_3thin films.
     5. The TiO_2/In_2S_3core/shell nanorod arrays photoelectrodes were prepared bytwo step method. The TiO_2nanorod array films were synthesized by a hydrothermalmethod. And In_2S_3thin films were deposited on TiO_2nanorods by SILAR method.Finally, the resulting films were annealed in N2atmosphere in order to get a bettercrystallinity. The optical and photoelectrochemical measurement results demonstratedthat the absorbance range was extensively extended in the visible light region for theIn_2S_3-sensitized TiO_2thin films, and the photo activity was enhanced significantly. Aphoto current of1.07mA·cm~(-2)and a photoelectric conversion efficiency of0.33%were obtained. Furthermore, the photoelectric conversion efficiency mechanism wasalso discussed.
引文
[1]世界能源发展简史[J],太阳能,1991,01期.
    [2]那刹.美国能源协会发出警告:能源危机逼近[J],1988,11期,1-2.
    [3]苏佳凯.中国新能源发展概述[J],北京农业,2011,12月下旬刊,28-129.
    [4]苟兴龙.硫属化合物纳米微米材料的合成、表征与光学电化学性能研究[D],天津:南开大学,2006.
    [5]曹永胜.铜铟硒太阳能电池材料的制备与表征及RTP的设计[D],合肥:中国科学技术大学,2009.
    [6]赵文燕. Cu2O、ZnO微纳米结构薄膜的制备及其光电性能研究[D].长春:吉林大学,2011.
    [7] Jenny Nelson,高扬译.太阳能电池物理[M].上海:上海交通大学出版社,2011,1-3.
    [8]成志秀,王晓丽.太阳能光伏电池综述简史[J],信息记录材料,2007,8,11-17.
    [9] B. O’Regna, M. Gr tzel. A low-cost light-efficency solar cell based ondye-sensitized colloidal TiO2films [J], Nature,1991,353,737-740.
    [10]蒋方丹.铜铟硒薄膜太阳能电池材料的制备与若干理论计算研究[D],北京:清华大学,2007.
    [11]蔺旭鹏,强颖怀,肖裕鹏,徐明磊.薄膜太阳能电池研究综述[J],半导体技术,2012,37,96-104.
    [12] J. Zhao. Recent advances of high-efficency single crystalline silicon solar cells inprocessing technologies and substrate materials [J], Solar energy materials&solarcells,2004,82,53-64.
    [13] H. Tabor. Selective radiation. wavelength discrimation [C], Bulletin researchconference,1956,5A,119-126.
    [14]郑名山.太阳能发展简介[J],2007,29,3期.
    [15] T. Toyama, T. Yamamoto, H. Okamoto. Interfacial mixed-crystal laryer inCdS/CdTe heterostructure elucidated by electroreflectance spectroscopy [J], Solarenergy materials&solar cells,1997,49,213-218.
    [16] Dominik K. Koll, Ahmad H. Taha, Dean M. Giolando. Photochemical‘‘Self-healing’’pyrrole based treatmentof CdS/CdTe photovoltaics [J], Solar EnergyMaterials&Solar Cells,2011,95,1716–1719.
    [17] Masafumi Yamaguchi, Tatsuya Takamoto, Kenji Araki, Nicholas Ekins-Daukes.Multi-junction III–V solar cells: current status and future potential [J], Solar Energy,2005,79,78–85.
    [18] Ingrid Repins1, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf,Craig L. Perkins, Bobby To, Rommel Noufi.19.9%-efficient ZnO/CdS/CuInGaSe2solar cell with81.2%fill factor [J], Progress in photovoltaics: research andapplications,2008,16,235–239.
    [19] CdSe quantum dot-sensitized solar cells exceeding efficiency1%at full sunintersity [J], The journal of physical C,2008,112,11600-11688.
    [20] Hui Chen, Wuyou Fu, Haibin Yanga, Peng Sun, Yanyan Zhang, LianruWang,Wenyan Zhao, Xiaoming Zhou, Hui Zhao, Qiang Jing, Xuefeng Qi, Yixing Li.Photosensitization of TiO2nanorods with CdS quantum dots for photovoltaic devices[J], Electrochimica acta,2010,56,919–924.
    [21] Mohammad Afzaal, Paul O’Brien. Recent developments in II–VI and III–VIsemiconductors and their applications in solar cells [J]. Journal of materials chemistry,2006,16,1597-1620.
    [22]郭军,李博,胡来归.有机薄膜太阳能电池[J],材料导报A:综述篇,2011,25,51-54.
    [23] Dattatri K. Nagesha, Xiaorong Liang, Arif A. Mamedov, Gordon Gainer,Margaret A. Eastman, Michael Giersig, Jin-Joo Song, Tong Ni, Nicholas A. Kotov.In2S3nanocolloids with excitonic emission: In2S3vs CdS comparative study ofoptical and structural characteristics [J], The journal of physical chemistry,2001,105,7490-7498.
    [24] S. Gorai, P. Guha, D. Ganguli, S. Chaudhuri. Chemical synthesis of β-In2S3powder and its optical characterization [J], Materials chemistry and physics,2003,82,974-979.
    [25] Wei Chen, Jan Olov Bovin, Alan G. Joly, Shaopeng Wang, Fuhai Su, Guohua Li,Full-Color Emission from In2S3and In2S3:Eu3+Nanoparticles [J], The journal ofphysical chemistry B,2004,108,11927-11934.
    [26] Hui Zhu, Xiaolei Wang, Wen Yang, Fan Yang, Xiurong Yang. Indium sulfidemicroflowers: Fabrication and optical properties [J], Materials Research Bulletin,2009,44,2033-2039.
    [27] Anuja Datta,Amitava Patra. Bright white light emission from In2S3: Eu3+nanoparticles [J], Journal of physics D: applied physics,2009,42,145116.
    [28] Yi Ping Wang, Ching Hwa Ho, Ying Sheng Huang. The study of surfacephotoconductive response in indium sulfide crystals [J],Journal of physics D: Appliedphysics,2010,43,415301.
    [29] Faycel Saadallah, Neila Jebbari, Najoua Kammoun, Noureddine Yacoubi. Opticaland thermal properties of In2S3[J], International jounal of photoenergy,2011,734574.
    [30] A. Shazlyy, D. Elhadyyz, H. Metwallyy M. Seyamy. Electrical properties of thinfilms [J], Journal of physics: condensed matter,1998,10,5943-5954.
    [31] N. Naghavi, S. Spiering, M. Powalla, B. Cavana, D. Lincot. High-efficiencyCopper Indium Gallium Diselenide (CIGS) solar cells with indium sulfide bufferlayers deposited by atomic layer chemical vapor deposition (ALCVD)[J], Progress inphotovoltaics: research and applications,2003,11,437–443.
    [32] Teny Theresa John, Meril Mathew, C. Sudha Kartha, K. P. Vijayakumar, T. Abe,Y. Kashiwaba. CuInS2/In2S3thin film solar cell using spray pyrolysis techniquehaving9.5%efficiency [J], Solar Energy Materials&Solar Cells,2005,89,27–36.
    [33] T. Dittrich, D. Kieven, A. Belaidi, M. Rusu, J. Tornow, K. Schwarzburg, M. Ch.Lux-Steiner. Formation of the charge selective contact in solar cells with extremelythin absorber based on ZnO-nanorod/In2S3/CuSCN [J], Journal of applied physics,2009,105,034509.
    [34] B. Asenjo, A.M. Chaparro, M. T. Gutiérrez, J. Herrero, J. Klaer. Study ofCuInS2/buffer/ZnO solar cells with chemically deposited ZnS-In2S3buffer layers [J],Thin solid films,2007,515,6036-6040.
    [35] A. Belaidi, Th. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst,N.Allsop, M.-Ch. Lux-Steiner, S. Gavrilov. ZnO-nanorod arrays for solarcells withextremely thin sulfidic absorber [J], Solar energy materials&solar cells,2009,93,1033-1036.
    [36] Christian Herzog, Abdelhak Belaidi, Alex Ogachoab, Thomas Dittrich. Inorganicsolid state solar cell with ultra-thin nanocomposite absorber based on nanoporousTiO2and In2S3[J], Energy&environmental science,2009,2,962-964.
    [37] Meril Mathew, C. Sudha Kartha, K. P. Vijayakumar. In2S3:Ag, an ideal bufferlayer for thin film solar cells [J], Journal materials science: materials electron,2009,20, S294-298.
    [38] Yoichi Yasaki, Noriyuki Sonoyama, Tadayoshi Sakata. Semiconductorsensitization of colloidal In2S3on wide gap semiconductors [J], Journal ofelectroanalytical chemistry,1999,469,116-122.
    [39] Prashant V. Kamat, Nada M. Dimitrijeviir, Richard W. Fessenden.Photoelectrochemlstry in Particulate Systems.7. Electron-Transfer Reactions ofIndium Sulfide Semlconductor Colloids [J], The journal of physical chemistry,1988,92,2324-2329.
    [40] Prasad Manjusri Sirimanne, Satoshi Shiozaki, Noriyuki Sonoyama, TadayoshiSakata. Photoelectrochemical behavior of In2S3formed on sintered In2O3pellets [J],Solar Energy Materials&Solar Cells,2000,62,247-258.
    [41] S. S. Kale, R. S. Mane, C. D. Lokhande, K. C. Nandi, Sunghwan Han. Acomparative photo-electrochemical study of compact In2O3/In2S3multilayer thin films[J], Materials science and engineering B,2006,133,222–225.
    [42] Wonjoo Lee, Jungwoo Lee, Haiwon Lee, Whikun Yi, Sung-Hwan Han. Enhancedcharge-collection efficiency of In2S3/In2O3photoelectrochemical cells in the presenceof single-walled carbon nanotubes [J], Applied physics letters,2007,91,043515.
    [43] Wonjoo Lee, Sunki Min, Gangri Cai, Rajaram S. Mane, T. Ganesh, Gumae Koo,Jinho Chang, Sujin Baek, Soohyoung Lee, Sunghwan Han. Polymer-sensitizedphotoelectrochemical solar cells based on water-soluble polyacetylene and β-In2S3nanorods [J], Electrochimica acta,2008,54,714-719.
    [44] Xianliang Fu, Xuxu Wang, Zhixin Chen, Zizhong Zhang, Zhaohui Li, DennisY.C. Leung, Ling Wu, Xianzhi Fu. Photocatalytic performance of tetragonal and cubicβ-In2S3for the water splitting under visible light irradiation [J], Applied catalysisB:environmental,2010,95,393-399.
    [45] Ching-Hwa Ho. Enhanced photoelectric-conversion yield inniobium-incorporated In2S3with intermediate band [J], Journal of materials chemistry,2011,21,10518-10524.
    [46] Indra Puspitasari, T. P. Gujar, Kwang Deog Jung, Oh Shim Joo. Simple chemicalmethod for nanoporous network of In2S3platelets for buffer layer in CIS solar cells [J],Journal of materials processing technology,2008,201,775–779.
    [47] Xu Meng, Yongjuan Lu, Xiaoliang Zhang, Baoping Yang, Gewen Yi, Junhong Jia.Fabrication and characterization of indium sulfide thin films deposited on SAMsmodified substrates surfaces by chemical bath deposition [J], Applied surface science,2011,258,649-656.
    [48] Shaibal K. Sarkar, Jin Young Kim, David N. Goldstein, Nathan R. Neale, KaiZhu, C. Michael Elliott, Arthur J. Frank, Steven M. George. In2S3Atomic LayerDeposition and its application as a sensitizer on TiO2nanotube arrays for solar energyconversion [J], The journal of physical chemistry C2010,114,8032–8039.
    [49] N. Barreau,, J. C. Bernède, S. Marsillac, C. Amory, W. N. Shafarman. NewCd-free buffer layer deposited by PVD: In2S3containing Na compounds [J], ThinSolid Films,2003,431–432,326–329.
    [50] Anuja Datta, Godhuli Sinha, Subhendu K. Panda, Amitava Patra. Growth,Optical, and Electrical Properties of In2S3Zigzag Nanowires [J], Crystal growth&design,2009,9,427-431.
    [51] Andreas Othonos, Matthew Zervos. Carrier dynamics in InS nanowires grownvia chemical vapor deposition [J], Physica status solidi A,2010,10,2258-2262.
    [52] N. Revathi, P. Prathap, R. W. Miles, K. T. Ramakrishna Reddy. Annealing effecton the physical properties of evaporated In2S3films [J], Solar Energy Materials&Solar Cells,2010,94,1487–1491.
    [53] A. Amlouk, K. Boubaker, M. Amlouk. A new procedure to preparesemiconducting ternary compounds from binary buffer materials andvacuum-deposited copper for photovoltaic applications [J], Vacuum,2010,85,60-64.
    [54] A. Timoumi, H. Bouzouita, M. Kanzari, B. Rezig. Fabrication andcharacterization of In2S3thin films deposited by thermal evaporation technique [J],Thin Solid Films,2005,480–481,124–128.
    [55] N. Barreau, S. Marsillac, J. C. Bernède, A. Barreau. Investigation of β-In2S3growth on different transparent conductive oxides [J], Applied physics science,2000,16,20-26.
    [56] N. Revathi, P. Prathap, K. T. Ramakrishna Reddy. Thickness dependent physicalproperties of close space evaporated In2S3films [J], Solid state science,2009,11,1288-1296.
    [57] M. M. El-Nahass, B. A. Khalifa, H. S. Soliman, M. A. M. Seyam. Crystalstructure and optical absorption investigations on β-In2S3thin films [J], Thin solidfilms,2006,515,1796–1801.
    [58] N. Naghavi, R. Henriquez, V. Laptev, D. Lincot. Growth studies andcharacterisation of In2S3thin films deposited by atomic layer deposition (ALD)[J],Applied Surface Science,2004,222,65–73.
    [59] S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, D. Lincot. CD-freeCu(In,Ga)Se2thin-film solar modules with In2S3buffer layer by ALCVD [J], ThinSolid Films,2003,431-432,359–363.
    [60] Mohammmad Afzaal, Mohammad A. Malik, Paul O’Brien. Indium sulfidenanorods from single-source precursor [J], Chemical. Communications,2004,334–335.
    [61] R. Yoosuf, M. K. Jayaraj. Optical and photoelectrical properties of β-In2S3thinfilms prepared by two-stage process [J], Solar Energy Materials&Solar Cells,2005,89,85-94.
    [62] M. Lajnef, H. Ezzaouia. Structural and optical studies of In2S3thin filmsprepared by sulferization of indium thin films [J], The open applied physics journal,2009,2,23-26.
    [63] A. Datta, S. K. Panda, S. Gorai, D. Ganguli, S. Chaudhuri. Room temperaturesynthesis of In2S3micro-and nanorod textured thin films [J], Materials ResearchBulletin,2008,43,983–989.
    [64] J. B. Shi, C. J. Chen, Y. T. Lin, W. C. Hsu, Y. C. Chen, P. F. Wu. AnodicAluminum Oxide Membrane-Assisted Fabrication of β-In2S3Nanowires [J],Nanoscale research letters,2009,4,1059-1063.
    [65] L. Bhira, H. Essaidi, S. Belgacem, G. Couturier, J. Salardenne, N. Barreaux, J.C.Bernede, Structural and photoelectrical properties of sprayed β-In2S3thin films [J],Physica status solidi,2000,181,427-435.
    [66] Teny Theresa John, S. Bini, Y. Kashiwaba, T. Abe, Y. Yasuhiro, C. Sudha Kartha,K. P. Vijayakumar. Characterization of spray pyrolysed indium sulfide thin films [J],Semiconductor science and technology,2003,18,491-500.
    [67] Metin Bedir, Mustafa ztas. Effect of air annealing on the optical electrical andstructural properties of In2S3films [J], Science in China Series E: TechnologicalSciences,2008,51,487-493.
    [68] Meril Mathew, R. Jayakrishnan, P. M. Ratheesh Kumar, C. Sudha Kartha, K. P.Vijayakumara. Anomalous behavior of silver doped indium sulfide thin films [J],2009,100,033504.
    [69] Enrique Quiroga-González, Wolfgang Bensch, Viola Duppel, Lorenz Kienle.Transmission Electron Microscopy Study of Copper Containing Spinel-type In2S3Nanocrystals Prepared by Rapid Pyrolysis of a Single Molecular Precursor [J],Zeitschrift für anorganische und allgemeine Chemie,2010,636,2413–2421.
    [70] B. Asenjo, C.Guillén, A. M. Chaparro, E. Saucedo, V. Bermudez, D. Lincot, J.Herrero, M. T. Gutiérrez. Properties of In2S3thin films deposited ontoITO/glasssubstrates by chemical bath deposition [J], Journal of physics and chemistryof solids,2010,71,1629–1633.
    [71] M. G. Sandoval-Paz, M. Sotelo-Lerma, J. J. Valenzuela-Ja′uregui. M.Flores-Acosta, R. Ramírez-Bon. Structural and optical studies on thermal-annealedIn2S3films prepared by the chemical bath deposition technique [J], Thin Solid Films,2005,472,5-10.
    [72] D. Dwyer, R. Sun, H. Efstathiadis, P. Haldar. Characterization of chemical bathdeposited buffer layers for thin film solar cell applications [J], Physica status solidi A,2010,207,2272-2278.
    [73] C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, K. Diesner, M. Muller, H.Tributsch. Chemical bath deposition of indium sulphide thin films: preparation andcharacterization [J], Thin Solid Films,1999,340,18-23.
    [74]高志华,刘晶冰,汪浩.柠檬酸浓度对化学浴沉积硫化铟薄膜形成机理的影响研究[J],无机化学学报,2001,27,1685-1690.
    [75] Koichi Yamaguchi, Tsukasa Yoshida, Hideki Minoura. Structural andcompositional analyses on indium sulfide thin films deposited in aqueous chemicalbath containing indium chloride and thioacetamide [J], Thin solid films,2003,431–432,354–358.
    [76] B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, C. Maffiotte. Quartzcrystal microbalance study of the growth of indium (III) sulphide films from achemical solution [J], Electrochimica acta,2004,49,737–744.
    [77] B. Asenjo, C. Sanz, C. Guillén, A. M. Chaparro, M. T. Gutiérrez, J. Herrero.Indium sulfide buffer layers deposited by dry and wet methods [J], Thin Solid Films,2007,515,6041–6044.
    [78] Wonjoo Lee, SuJin Baek, R. S. Mane, V. V. Todkar, Olga Egorova, WonseokChae, Soohyoung Lee, Sung-Hwan Han. Liquid phase deposition of amorphous In2S3nanorods: Effect of annealing on phase change [J], Current Applied Physics,2009,9,S62-64.
    [79] B. Asenjo, C. Guillén, J. Herrero, M.T. Gutiérrez. Comparative study ofIn2S3-ITO bilayers deposited on glass and different plastic substrates [J], Thin solidfilms,2009,517,2320-2323.
    [80] Anis Akkari, Cathy Guasch, Michel Castagne, Najoua Kamoun-Turki. Opticalstudy of zinc blend SnS and cubic In2S3:Al thin films prepared by chemical bathdeposition [J], Journal of materials science,2011,46,6285-6292.
    [81] M. Kilani, B. Yahmadi, N. Kamoun Turki, M. Castagne. Effect of Al doping anddeposition runs on structural and optical properties of In2S3thin films grown by CBD[J], Journal of materials science,2011,46,6293-6300.
    [82] O. A. Castelo-gonzález, H. C. Santacruz-ortega, M. A. Quevedo-lópez, M.Sotelo-lerma. Synthesis and characterization of In2S3thin films deposited by chemicalbath deposition on polyethylene naphthalate substrates [J], Journal of electronicmaterials, Journal of electronic materials,2012,41,695-700.
    [83] Y. L. Nicolau. Solution deposition of thin solid compound films by a successiveionic-layer adsorption and reaction process [J], Applied surface science,1985,22-23(2),1061-1074.
    [84] Mutlu Kundak i. The annealing effect on structural, optical and photoelectricalproperties of CuInS2/In2S3films [J], Physica B,2011,406,2953-2961.
    [85] H. M. Pathan, C. D. Lokhande, S. S. Kulkarni, D. P. Amalnerkar, T. Seth, SungHwan Han. Some studies on successive ionic layer adsorption and reaction (SILAR)grown indium sulphide thin films [J], Materials Research Bulletin,2005,40,1018–1023.
    [86] R. Ranjith, Teny Theresa John, C. Sudha Kartha, K.P. Vijayakumar, T. Abe, Y.Kashiwaba. Post-deposition annealing effect on In2S3thin films deposited usingSILAR technique [J], Materials science in semiconductor processing,2007,10,49-55.
    [87] M. Kundakci, A. Ate, A. Astam, M. Yildirim. Structural, optical and electricalproperties of CdS, Cd0.5In0.5S and In2S3thin films grown by SILAR method [J],Physica E,2008,40,600–605.
    [88] R. S. Mane, C. D. Lokhande. Studies on structural, optical and electricalproperties of indium sulfide thin films [J], Materials Chemistry and Physics,2002,78,15–17.
    [89] H. M. Pathan, C. D. Lokhande. Deposition of metal chalcogenide thin films bysuccessive ionic layer adsorption and reaction (SILAR) method [J], Bulletin materialsscience,2004,27,85-111.
    [90] B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, C. Maffiotte. Study ofthe electrodeposition of In2S3thin films [J], Thin solid films,2005,480–481,151–156.
    [91] T. Todorov, J. Carda, P. Escribano, A. Grimmb, J. Klaer, R. Klenk. Electrodeposited In2S3buffer layers for CuInS2solar cells [J], Solar Energy Materials&Solar Cells,2008,92,1274-1278.
    [92] S. Yu, L. Shu, Y. Qian, Y. Xie, J. Yang, L. Yang. Hydrothermal preparation andcharacterization of nanocrystalline powder of β-indium sulfide [J],Materials researchbulletin,1998,33,717-721.
    [93] S. Gorai, S. Chaudhuri. Sonochemical synthesis and characterization of cage-likeβ-indium sulphide powder [J], Materials Chemistry and Physics,2005,89,332–335.
    [94] Yi Liu, Meng Zhang, Yongqian Gao, Rui Zhang, Yitai Qian. Synthesis andoptical properties of cubic In2S3hollow nanospheres [J], Materials chemistry andphysics,2007,101,362-366.
    [95] Feng Cao, Weidong Shi, Ruiping Deng, Shuyan Song, Yongqian Lei, Song Wang,Shengqun Su, Hongjie Zhang. Uniform In2S3octahedron-built microspheres:Bioinspired synthesis and optical properties [J], Solid state sciences,2010,12,39-44.
    [96] Hai Xin Bai, Liu Xing Zhang, Yong Cai Zhang. Simple synthesis of urchin-likeIn2S3and In2O3nanostructures [J], Materials Letters,2009,63,823–825.
    [97] Lijun Liu, Weidong Xiang, Jiasong Zhong, Xinyu Yang, Xiaojuan Liang, HaitaoLiu, Wen Cai. Flowerlike cubic β-In2S3microspheres: Synthesis and characterization[J], Journal of Alloys and Compounds,2010,493,309–313.
    [98] Pingtang Zhao, Tao Huang, Kaixun Huang. Fabrication of indium sulfide hollowspheres and their conversion to indium oxide hollow spheres consisting of multiporenanoflakes [J], The journal of chemical physics C,2007,111,12890-12897.
    [99] Peng Gao, Yi Xie, Shaowei Chen, Mingzhou Zhou. Micrometre-sized In2S3half-shells by a new dynamic soft template route: properties and applications [J],Nanotechnology,2006,17,320-324.
    [100] A. Datta, S. Gorai, D. Ganguli, S. Chaudhuri. Surfactant assisted synthesis ofIn2S3dendrites and their characterization [J], Materials Chemistry and Physics,2007,102,195–200.
    [101] Anuja Datta, Subhendu K. Panda, Dibyendu Ganguli, Pratima Mishra, SubhadraChaudhuri. In2S3micropompons and their conversion to In2O3nanobipyramids:simple synthesis approaches and characterization [J], Crystal growth&design,2007,7,163-169.
    [102] Liyong Chen, Zude Zhang, Weizhi Wang. Self-assembled porous3d flowerlikeβ-In2S3structures: synthesis, characterization, and optical properties [J], The journalof physical chemistry C,2008,112,4117-4123.
    [103] Lu Liu, Huajie Liu, Hui-Zhong Kou, Yuqiu Wang, Zhen Zhou, Manman Ren,Ming Ge, and Xiwen He. Morphology control of β-In2S3from chrysanthemum-likemicrospheres to hollow microspheres: synthesis and electrochemical properties [J],Crystal growth&design,2009,9,113-117.
    [104] Yujie Xiong, Yi Xie, Guoan Du and Xiaobo Tian. A solvent-reduction andsurface-modification technique to morphology control of tetragonal In2S3nanocrystals[J], Journal of materials chemistry,2002,12,98–102.
    [105] Yujie Xiong, Yi Xie, Guoan Du, Xiaobo Tian, and Yitai Qian. A Novel in SituOxidization-Sulfidation Growth Route via self-Purifcation Process to β-In2S3Dendrites [J], Journal of Solid State Chemistry,2002,166,336–340.
    [106] Kang Hyun Park, Kwonho Jang, Seung Uk Son. Synthesis, optical properties,and self-assemblyof ultrathin hexagonal In2S3nanoplates [J], Angwandte chemieinternational edition,2006,45,4608-4612.
    [107] Guodong Liu, Xiuling Jiao, Zhenhua Qin, Dairong Chen. Solvothermalpreparation and visible photocatalytic activity of polycrystalline β-In2S3nanotubes [J],Crysengcomm,2011,13,182-187.
    [108] N. M. Huang. Synthesis and characterization of In2S3nanorods in sucroseesterwater-in-oil microemulsion [J], Journal of nanomaterials,2011,815709.
    [109] Matthew A. Franzman, Richard L. Brutchey. Solution-phase synthesis ofwell-defined Indium Sulfide nanorods [J], Chemistry of materials,2009,21,1790-1792.
    [110] Jiajia Ning, Kangkang Men, Guanjun Xiao, Liyan Zhao, Li Wang, BingbingLiu, Bo Zou, Synthesis, optical properties and growth process of In2S3nanoparticles[J], Journal of colloid and interface science,2010,347,172-176.
    [111] Pulakesh Bera, Sang Il Seok. Facile-chelating amine-assisted synthesis ofβ-In2S3nanostructures from a new single-source precursor derived from S-methyldithiocarbazate [J], Journal of nanoparticles research,2011,13,1889–1896.
    [112] Yu Hee Kim, Jong Hak Lee, Dong-Wook Shin, Sung Min Park, Jin Soo Moon,Jung Gyu Nam, Ji-Beom Yoo. Synthesis of shape-controlled β-In2S3nanotubesthrough oriented attachment of nanoparticles [J], Chemical Communications,2010,46,2292–2294.
    [113] Weimin Du, Jun Zhu, Shixiong Li, and Xuefeng Qian. Ultrathin β-In2S3nanobelts: shape-controlled synthesis and optical and photocatalytic properties [J],Crystals growth&design,2008,8,2130-2136.
    [114]陈招科,熊翔,李国栋,肖鹏,张红波,王雅雷,黄伯云.化学气相沉积TaC涂层的微观形貌及晶粒择优生长[J].中国有色金属学报,2008年,第18卷(第8期):1377-1382.
    [115] Shengjie Peng, Peining Zhu, Velmurugan Thavasi, Subodh G. Mhaisalkara,Seeram Ramakrishna. Facile solution deposition of ZnIn2S4nanosheet films on FTOsubstrates for photoelectric application [J], Nanoscale,2011,3,2602-2608.
    [116] Jinyun Liu, Tao Luo, Fanli Meng, Kai Qian, Yuteng Wan, and Jinhuai Liu.Porous hierarchical In2O3micro-/nanostructures: preparation, formation mechanism,and their application in gas sensors for noxious volatile organic compound detection[J], The journal of physical chemistry C,2010,114,4887-4894.
    [117] Miao Zhong, Maojun Zheng, Ansheng Zeng, L. Ma. Direct integration ofvertical In2O3nanowire arrays, nanosheet chains, and photoinduced reversibleswitching of wettability [J], Applied physics letters,2008,92,093118.
    [118] M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, X. F. Wang. Orderedindium-oxide nanowire arrays and their photoluminescence properties [J], Appliedphysics letters,2001,79,839-841.
    [119] Youguo Yan, Ye Zhang, Haibo Zeng, Junxi Zhang, Xueli Cao, Lide Zhang.Tunable synthesis of In2O3nanowires, nanoarrows and nanorods [J], Nanotechology,2007,18,175601.
    [120] Kelvin H. L. Zhang, Aron Walsh, C. Richard A. Catlow, Vlado K. Lazarov,Russell G. Egdell. Surface energies control the self-organization of oriented In2O3nanostructures on cubic zirconia [J], Nano letters,2010,10,3740–3746.
    [121] Liu Xing Zhang, Yong Cai Zhang, Ming Zhang. Facile routes to In2S3and In2O3hierarchical nanostructures [J], Materials chemistry and physics,2009,118,223-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700