染料敏化太阳能电池光阳极研究和一种新型光电化学紫外光探测器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)具有转换效率高、制作工艺简单、成本低廉和对环境友好等优点,被视作下一代太阳能电池的替代者。然而传统的TiO2纳米多孔电极在载流子复合和光生电子传输上的不足限制了电池效率的进一步提高。本论文着眼于DSSCs研究中的瓶颈问题,用电喷涂和电纺丝技术对其光阳极进行了改进研究,主要工作如下:
     1.以商用的P25TiO2(?)内米粉为原料,用电喷涂技术制备了TiO2纳米多孔电极。通过改变喷涂距离,我们调控了电极的结构和形貌,并研究了其对DSSCs性能的影响。在喷涂距离6cm时得到了最大的短路光电流密度(Jsc),并显著提高了电池的能量转换效率。短路光电流的增大是由于电喷涂制备的薄膜解决了传统的Ti02次级小球薄膜电极电子传输能力不足的问题,同时具有优异的光散射性能和构建了高效的电解液离子扩散通道。
     2.我们用电纺丝技术首次在FTO基底上制备了透明的Ti02纳米晶膜,该制备基于前驱体溶液中加入的适量的三乙醇胺和较大的空气湿度综合作用下的纺丝纤维向薄膜的原位转变过程。用光致发光技术研究发现,电纺丝制备的Ti02纳米晶膜具有丰富的体内氧空位缺陷(bulk oxygen vacancies, BOVs,对应的PL峰位于621-640nm)。与此相对的是使用相同的前驱体溶液用旋涂法制备的薄膜的优势缺陷为表面氧空位缺陷(surface oxygen vacancies, SOVs,对应的PL峰位于537-555nm)。测试电池性能发现,丰富的BOVs显著提高了DSSCs的开路电压和填充因子,进而显著提高了能量转换效率。
     传统的紫外光探测器是基于半导体材料的光电导效应工作的。此种类型的探测器受材料表面空穴陷阱的作用,分别在无光照和有光照时吸附和解吸附氧气分子,导致其响应时间一般>1s,严重限制了其应用。本论文在DSSCs研究的基础上,将未经染料分子敏化的光电化学电池(PECC)应用于紫外探测。得到了高的光敏感度,快速的时间响应和稳定的探测性能。具体工作如下:
     1.用未经敏化的Ti02纳米晶(TiO2NC)电极、含I-/I3-氧化还原电对的电解液和镀Pt的对电极封装成“三明治”结构的光电化学电池。将该电池和电流表串联,无需外加能源(0偏压,自供能)即可用该电池的Jsc信号对紫外光强度进行快速、高敏感度和稳定的探测。在紫外光照射下,该自供能紫外光探测器的光敏感度高达0.38安培每瓦特,开关比高达2698,短路电流信号的开启时间为0.08秒,衰减时间为0.03秒,远优于基于光电导效应的紫外光探测器。
     2.传统的TiO2NC膜由于存在大量的晶界导致载流子复合损失严重;TiO2材料自身的电子迁移率相对较低,导致电子传输较慢。针对该问题,我们设计和制作了由电纺丝制备的一维SnO2纳米线网络和生长于其上的TiO2纳米针状结构组成的树枝状TiO2/SnO2异质结结构电极,该电极为PECC型自供能紫外光探测器提供了一种高效的电极结构模式。这是由于该电极同时具有低的载流子复合速率和快速而直接的电子传输通道。在不修正掺氟二氧化锡基底(FTO)对入射光高达64.5%的散射和吸收的条件下,异质结结构电极对330纳米紫外光的能量转换效率达到了14.7%,是TiO2NC (6.4%)基PECC的两倍以上。在紫外光照射下,该自供能紫外光探测器的光敏感度高达0.6安培每瓦特,开关比高达4550,短路电路信号的开启时间为0.03秒,衰减时间为0.01秒。
Dye-sensitized solar cells (DSSCs) have attracted extensive interest due to its high-efficiency, easy, low-cost, and environment-friendly preparation process. However, it is a challenge to further increase the efficiency of DSSCs due to the nature drawbacks of TiO2nanoporous electrode, such as numerous grain boundaries existing in the nanoparticle film and the slower electron mobility of TiO2as compared with other materials. To solve these problems, we optimized the photoanodes of DSSCs using electrospraying and electrospinning technique, which were summerized as following:
     1. Nanocrystalline TiO2electrodes are fabricated using commercially available powers (P25) by electrospray coating technique. The structures and morphologies of the film, which ultimately influence the solar cell performances, can be controlled via changing the spraying distance. The optimized spraying distance for the maximum short-circuit photocurrent density (Jsc) of the cells is6cm, and thus a great improvement of the power conversion efficiency (PCE). The improvement of Jsc can be mainly ascribed to the enhanced light scattering and better ion-diffusion path, which is caused by presence of the secondary spheres produced in electrospraying process.
     2. We first fabricate a highly transparent nanocrystalline TiO2films by electrospinning technique. It is based on a transmutation process from as-spun nanofibers with an appropriate amount of tri-ethanolamine added to the precursor. By photoluminescence (PL) spectroscopy analysis, it is found that these films possess rich bulk oxygen vacancies (BOVs, PL band at621-640nm). Contrastively, the dominant peak in PL spectrum of the spin-coated film prepared from the same precursor solution is the emission from surface oxygen vacancies (SOVs, PL band at537-555nm). The rich BOVs in electrospun TiO2films induces large open-circuit voltage (Voc) and fill factor (FF) improvements in DSSCs, and thus a large improvement of PCE.
     Detection of ultraviolet (UV) light is usually based on the photoconductivity effect of semiconductors. However, this type of photodetectors possess a long recovery time of>1s due to the absorption and dis-absorption of oxygen at the nanomaterial surface without and with light irradiation, limiting its application. Herein, on the basis of DSSCs, we demonstrate the application of a photoelectrochemical cell (PECC) with an unsensitized semiconductor film as work electrode as a fast, high responsivity, and stable self-powered UV-photodetector for detecting the UV light.
     1. In details, we assembled unsensitized TiO2NC electrode, electrolyte containing I-/I3-redox and Pt counter electrode into a sandwiched PECC. By connecting a PECC to an ammeter, the intensity of UV light have been quantified using the output Jsc signal without a power source. This self-powered UV-photodetector exhibits a high on/off ratio of2698, a rise time of0.08s and a decay time of0.03s for Jsc signal.
     2. The nature drawbacks of the conventional TiO2NC films are numerous grain boundaries existing in the nanoparticle film and the slower electron mobility of TiO2as compared with other materials. To solve these problems, we design and fabricate a TiO2/SnO2branched heterojunction nanostructure with TiO2branches on electrospun SnO2nanofibers (B-SnO2NF) networks, which serves as a model architecture for efficient self-powered UV-photodetectors based on PECC. The nanostructure simultaneously offers a low degree of charge recombination and a direct pathway for electron transport. Without correcting64.5%loss of incident photons resulting from light absorption and scattering by the FTO glass, the PCE reaches14.7%at330nm, more than twice as large as the TiO2NC-film based PECC (6.4%). Under UV irradiation, the self-powered UV-photodetector exhibits a high responsivity of0.6A/W, a high on/off ratio of4550, a rise time of0.03s and a decay time of0.01s for Jsc signal.
引文
[1]李俊峰,王斯成,张敏吉,马玲娟.中国光伏发展报告.2007.
    [2]S. Mori, S. Yanagida:TiO2-Based Dye-Sensitized Solar Cell. Nanostructured Materials for Solar Energy Conversion. Edited by Tetsuo S. Amsterdam:Elsevier,2006. pp.193-225.
    [3]熊绍珍,朱美芳.太阳能电池基础与应用.北京:科学出版社.2009.
    [4]M. Ettenberg. A little night vision. Adv. Imaging.2005,20:29.
    [5]S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, J. V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol.2004,22:93.
    [6]B. Tian, C. M. Lieber. Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes. Pure Appl. Chem.2011,83:2153.
    [7]Z. L. Wang. Towards Self-Powered Nanosystems:From Nanogenerators to Nanopiezotronics. Adv. Funct. Mater.2008,18(22):3553.
    [8]Z. L. Wang. Self-Powered Nanosensors and Nanosystems. Adv. Mater.2011,24:280.
    [9]E. Monroy, F. Omnes, F. Calle. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol.2003,18(4):R33.
    [10]T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg. Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors. Adv. Funct. Mater.2010,20: 4233.
    [11]S. M. Hatch, J. Briscoe, S. Dunn. A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response. Advanced Materials.2012,25(6):867-871.
    [12]Y. Yang, W. Guo, J. Qi, J. Zhao, Y. Zhang. Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Appl. Phys. Lett.2010,97(22):223113.
    [13]Z. L. Wang. Nanogenerators for Self-powered Devices and Systems. Books. First edition, June 2011.
    [14]Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen, Y. Zhang. ZnO nanowire array ultraviolet photodetectors with self-powered properties. Current Applied Physics.2013,13(1):165-169.
    [15]S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang. Self-powered nanowire devices. Nat. Nano. 2010,5:366.
    [16]Z. L. Wang. Self-Powered Nanotech-nanosize machines need still tinier power plants. Sci. Am. 2008,298:82.
    [17]A. Yu, P. Jiang, Z. Lin Wang. Nanogenerator as self-powered vibration sensor. Nano Energy. 2012,1(3):418-423.
    [18]X. Li, C. Gao, H. Duan, B. Lu, X. Pan, E. Xie. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy.2012,1(4):640-645.
    [19]X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, E. Xie. High-Performance Photoelectrochemical-Type Self-Powered UV Photodetector Using Epitaxial TiO2/SnO2 Branched Heterojunction Nanostructure. Small.2013,9(11):2005-2011.
    [20]Z. L. Wang. Toward self-powered sensor networks. Nano Today.2010,5(6):512-514.
    [21]B. O'Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature.1991,353:737.
    [22]M. Gratzel. Photoelectrochemical cells. Nature.2001,414:338.
    [23]C. Longo, M.-A. De Paoli. Dye-sensitized solar cells:a successful combination of materials. J. Braz. Chem. Soc.2003,14:898-901.
    [24]A. J. Nozik, J. Miller. Introduction to Solar Photon Conversion. Chem. Rev.2010,110(11): 6443-6445.
    [25]J. Nelson, R. E. Chandler. Random walk models of charge transfer and transport in dye sensitized systems. Coordin. Chem. Rev.2004,248(13-14):1181-1194.
    [26]黄春辉.光电功能超薄膜.北京:北京大学出版社.2004.
    [27]J. Gong, J. Liang, K. Sumathy. Review on dye-sensitized solar cells (DSSCs):Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews.2012,16(8): 5848-5860.
    [28]G. Boschloo, A. Hagfeldt. Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research.2009,42(11):1819-1826.
    [29]http://finechem.dlut.edu.cn/dsc/DSCmemorabilia.html.
    [30]C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. Nanoscale.2012,4(11):3475-3481.
    [31]P. S. Archana, R. Jose, C. Vijila, S. Ramakrishna. Improved Electron Diffusion Coefficient in Electrospun TiO2 Nanowires. J. Phys. Chem. C.2009,113(52):21538-21542.
    [32]Q. Zhang, G. Cao. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today. 2011,6(1):91-109.
    [33]盛显良,刘娜仁,翟锦,安丽平.一维纳米材料在染料敏化太阳电池中的应用.化学进展.2009,21(9):1969-1979.
    [34]J. Halme, P. Vahermaa, K. Miettunen, P. Lund. Device Physics of Dye Solar Cells. Adv. Mater. 2010,22:E210-E234.
    [35]J. H. Noh, H. S. Han, S. Lee, J. Y. Kim, K. S. Hong, G.-S. Han, H. Shin, H. S. Jung. Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection. Adv. Energy Mater.2011,1(5):829-835.
    [36]Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue. Solution-Derived ZnO Nanowire Array Film as Photoelectrode in Dye-Sensitized Solar Cells. Crystal Growth & Design.2007,7(12):2467-2471.
    [37]J. Qiu, F. Zhuge, K. Lou, X. Li, X. Gao, X. Gan, W. Yu, H.-K. Kim, Y.-H. Hwang. A facile route to aligned TiO2 nanotube arrays on transparent conducting oxide substrates for dye-sensitized solar cells. J. Mater. Chem.2011,21:5062-5068.
    [38]L. Li, T. Zhai, Y. Bando, D. Golberg. Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy.2012,1(1):91-106.
    [39]Z. Dong, S. J. Kennedy, Y. Wu. Electrospinning materials for energy-related applications and devices. J. Power Sources.2011,196(11):4886-4904.
    [40]X. Li, C. Gao, J. Wang, B. Lu, W. Chen, J. Song, S. Zhang, Z. Zhang, X. Pan, E. Xie. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells. J. Power Sources.2012,214:244-250.
    [41]N. Kopidakis, N. R. Neale, K. Zhu, J. van de Lagemaat, A. J. Frank. Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells. Applied Physics Letters.2005,87(20):202106.
    [42]V. Ganapathy, B. Karunagaran, S. W. Rhee. Improved performance of dye-sensitized solar cells with TiO2/alumina core-shell formation using atomic layer deposition. J. Power Sources.2010, 195(15):5138-5143.
    [43]A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Gratzel. Porphyrin-Sensitized Solar Cells with Cobalt (Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science.2011,334(6056):629-634.
    [44]T. P. C. Qifeng Zhang, Bryan Russo, Samson A. Jenekhe, and Guozhong Cao,. Polydisperse Aggregates of ZnO Nanocrystallites:A Method for Energy-Conversion-Efficiency Enhancement in Dye-Sensitized Solar Cells. Adv. Funct. Mater.2008,18:1654-1660.
    [45]T. P. Chou, Q. Zhang, G. E. Fryxell, G. Z. Cao. Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency. Adv. Mater.2007, 19(18):2588-2592.
    [46]K. Park, Q. Zhang, B. B. Garcia, X. Zhou, Y.-H. Jeong, G. Cao. Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells. Adv. Mater.2010,22(21):2329-2332.
    [47]Q. Zhang, T. Chou, B. Russo, S. Jenekhe, G. Cao. Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed.2008,47(13): 2402-2406.
    [48]Z. Yong-Zhe, W. Li-Hui, L. Yan-Ping, X. Er-Qing, Y. De, C. Jiang-Tao. Preparation of ZnO Nanospheres and Their Applications in Dye-Sensitized Solar Cells. Chinese Physics Letters. 2009,26(3):038201.
    [49]Y. Y. Tay, S. Li, F. Boey, Y. H. Cheng, M. H. Liang. Growth mechanism of spherical ZnO nanostructures synthesized via colloid chemistry. Physica B:Condensed Matter.2007,394(2): 372-376.
    [50]R. Gao, Z. Liang, J. Tian, Q. Zhang, L. Wang, G. Cao. ZnO nanocrystallite aggregates synthesized through interface precipitation for dye-sensitized solar cells. Nano Energy.2013, 2(1):40-48.
    [51]J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang. Ti02-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells. Adv. Mater.2009,21(36):3663-3667.
    [52]Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N.-G. Park, K. Kim, W. I. Lee. Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres. Adv. Mater.2009,21(36):3668-3673.
    [53]D. Wu, Y. Wang, H. Dong, F. Zhu, S. Gao, K. Jiang, L. Fu, J. Zhang, D. Xu. Hierarchical TiO2 microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells. Nanoscale.2013,5(1):324-330.
    [54]Hironori Arakawa, Kazuhiro Sayama, Kohjrio Hara, Hideki Sugihara, Takeshi Yamaguchi, Masatoshi Yanagida, Hiroshi Kawauchi, Takeo Kashima, Gaku Fujihashi, S. Takano. Improvement of efficiency of dye-sensitized solar cell-optimization of titanium oxide photoelectrode.3rd World Conference on Photovoltaic Energy Conversion.2003, May 11-18, 2003 Osaka, Japan.
    [55]D. Hwang, H. Lee, S.-Y. Jang, S. M. Jo, D. Kim, Y. Seo, D. Y. Kim. Electrospray Preparation of Hierarchically-structured Mesoporous TiO2 Spheres for Use in Highly Efficient Dye-Sensitized Solar Cells. ACSAppl. Mater. Interfaces.2011,3(7):2719-2725.
    [56]Horim Lee, Daesub Hwang, Seong Mu Jo, Dongho Kim, Yongsok Seo, D. Y. Kim. Low-Temperature Fabrication of TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells Using an Electrospray Process. ACSAppl. Mater. Interfaces.2012,4(6):3308-3315.
    [57]B. Nie, J.-G. Hu, L.-B. Luo, C. Xie, L.-H. Zeng, P. Lv, F.-Z. Li, J.-S. Jie, M. Feng, C.-Y. Wu, Y.-Q. Yu, S.-H. Yu. Monolayer Graphene Film on ZnO Nanorod Array for High-Performance Schottky Junction Ultraviolet Photodetectors. Small.2013,10.1002/smll.201203188.
    [58]H. Wang, C. T. Yip, K. Y. Cheung, A. B. DjuriSie, M. H. Xie. Titania-nanotube-array-based photovoltaic cells. Appl. Phys. Lett.2006,89(17):023508.
    [59]Y. Bai, H. Yu, Z. Li, R. Amal, G. Q. Lu, L. Wang. In Situ Growth of a ZnO Nanowire Network within a TiO2 Nanoparticle Film for Enhanced Dye-Sensitized Solar Cell Performance. Advanced Materials.2012,24(43):5850-5856.
    [60]G.-J. Wang, M.-W. Lee, Y.-H. Chen. A TiO2/CNT Coaxial Structure and Standing CNT Array Laminated Photocatalyst to Enhance the Photolysis Efficiency of TiO2. Photochemistry and Photobiology.2008,84(6):1493-1499.
    [61]T. Y. Lee, P. S. Alegaonkar, J.-B. Yoo. Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films.2007,515(12):5131-5135.
    [62]S. Chappel, S.-G. Chen, A. Zaban. TiO2-Coated Nanoporous SnO2 Electrodes for Dye-Sensitized Solar Cells. Langmuir.2002,18(8):3336-3342.
    [63]M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang. ZnO-Al203 and ZnO-TiO2 Core-Shell Nanowire Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B.2006,110(45):22652-22663.
    [64]J. W. Liu, Y. T. Kuo, K. J. Klabunde, C. Rochford, J. Wu, J. Li. Novel Dye-Sensitized Solar Cell Architecture Using Ti02-Coated Vertically Aligned Carbon Nanofiber Arrays. Acs Applied Materials & Interfaces.2009,1(8):1645-1649.
    [65]W. Chen, Y. Qiu, Y. Zhong, K. S. Wong, S. Yang. High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanodes of SnO2 Nanoparticles/ZnO Nanotetrapods. The Journal of Physical Chemistry A.2010,114(9):3127-3138.
    [66]C. Prasittichai, J. T. Hupp. Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells:Significant Improvements in Photovoltage via A12O3 Atomic Layer Deposition. The Journal of Physical Chemistry Letters.2010,1(10):1611-1615.
    [67]H. J. Snaith, C. Ducati. SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Lett.2010,10(4):1259-1265.
    [68]S. Panigrahi, D. Basak. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. Nanoscale.2011,3(5):2336-2341.
    [69]D. V. Shinde, R. S. Mane, I.-H. Oh, J. K. Lee, S.-H. Han. SnO2 nanowall-arrays coated with rutile-TiO2 nanoneedles for high performance dye-sensitized solar cells. Dalton Transactions. 2012,41(34):10161-10163.
    [70]B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature.2007,449:885.
    [71]M. Yang, J.-L. Zhu, W. Liu, J.-L. Sun. Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts. Nano Research.2011,4(9): 901-907.
    [72]J. Zou, Q. Zhang, K. Huang, N. Marzari. Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays. J. Phys. Chem. C.2010,114:10725.
    [73]X.-W. Fu, Z.-M. Liao, Y.-B. Zhou, H.-C. Wu, Y.-Q. Bie, J. Xu, D.-P. Yu. Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Applied Physics Letters.2012,100(22):223114-223114.
    [74]X. Zhang, X. Han, J. Su, Q. Zhang, Y. Gao. Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector. Appl. Phys. A-Mater. Sci. Process.2012,107(2): 255-260.
    [75]S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, X. Wang. High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates. Adv. Funct. Mater.2011,21:4464.
    [76]X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg. Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors. Adv. Mater. 2009,21:2034.
    [77]D. Kim, Y.-K. Kim, S. C. Park, J. S. Ha, J. Huh, J. Na, G.-T. Kim. Photoconductance of aligned SnO2 nanowire field effect transistors. Appl. Phys. Lett.2009,95(4):043107-043103.
    [78]X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, A. J. Heeger. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science.2009,325(5948):1665-1667.
    [79]L. Hu, J. Yan, M. Liao, L. Wu, X. Fang. Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors. Small.2011,7(8):1012-1017.
    [80]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters.2007,7(4): 1003-1009.
    [81]J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, J. R. Morante. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology.2008,19:465501.
    [82]J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, Z. L. Wang. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett.2009,94:191103.
    [83]L. Li, X. Fang, T. Zhai, M. Liao, U. K. Gautam, X. Wu, Y. Koide, Y. Bando, D. Golberg. Electrical Transport and High-Performance Photoconductivity in Individual ZrS2 Nanobelts. Advanced Materials.2010,22(37):4151-4156.
    [84]Y.-Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, D.-P. Yu. Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions. Adv. Mater.2011,23:649.
    [85]S. Yang, J. Gong, Y. Deng. A sandwich-structured ultraviolet photodetector driven only by opposite heterojunctions. Journal of Materials Chemistry.2012,22(28):13899-13902.
    [86]刘恩科,朱秉升,罗晋生.半导体物理学(第七版).北京:电子工业出版社.2008.
    [87]W. Jin, Y. Ye, L. Gan, B. Yu, P. Wu, Y. Dai, H. Meng, X. Guo, L. Dai. Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem.2012,22(7):2863-2867.
    [88]D. Wu, Y. Jiang, Y. Zhang, Y. Yu, Z. Zhu, X. Lan, F. Li, C. Wu, L. Wang, L. Luo. Self-powered and fast-speed photodetectors based on CdS:Ga nanoribbon/Au Schottky diodes. Journal of Materials Chemistry.2012,22(43):23272-23276.
    [89]L.-Y. Chen, Y.-T. Yin. Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells. Nanoscale.2013,5(5): 1777-1780.
    [90]C. Gao, X. Li, Y. Wang, L. Chen, X. Pan, Z. Zhang, E. Xie. Titanium dioxide coated zinc oxide nanostrawberry aggregates for dye-sensitized solar cell and self-powered UV-photodetector. J. Power Sources.2013,239:458-465.
    [91]Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, J. Jiao. A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Research Letters.2013,8:188.
    [92]W.-J. Lee, M.-H. Hon. An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction. Applied Physics Letters.2011,99(25):251102-251103.
    [1]G. A. Ozin. Nanochemistry:Synthesis in diminishing dimensions. Advanced Materials.1992, 4(10):612-649.
    [2]Z. Tachan, S. Ruhle, A. Zaban. Dye-sensitized solar tubes:A new solar cell design for efficient current collection and improved cell sealing. Solar Energy Materials and Solar Cells.2010,94(2): 317-322.
    [3]Rayleigh. XXXVI. Investigations in Capillarity:-The size of drops.—The liberation of gas from supersaturated solutions.—Colliding jets.—The tension of contaminated water-surfaces. Philosophical Magazine Series 5.1899,48(293):321-337.
    [4]J. Doshi, D. H. Reneker. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics.1995,35(2-3):151-160.
    [5]M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schaper, M. Hellwig. Preparation of fibers with nanoscaled morphologies:Electrospinning of polymer blends. Polymer Engineering & Science.2001,41(6):982-989.
    [6]Z. Liu, D. D. Sun, P. Guo, J. O. Leckie. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method. Nano Letters.2006,7(4):1081-1085.
    [7]N. A. M. Barakat, B. Kim, S. J. Park, Y. Jo, M.-H. Jung, H. Y. Kim. Cobalt nanofibers encapsulated in a graphite shell by an electrospinning process. Journal of Materials Chemistry. 2009,19(39):7371-7378.
    [8]N. Dharmaraj, C. H. Kim, K. W. Kim, H. Y. Kim, E. K. Suh. Spectral studies of SnO2 nanofibres prepared by electrospinning method. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2006,64(1):136-140.
    [9]X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, E. Xie. High-Performance Photoelectrochemical-Type Self-Powered UV Photodetector Using Epitaxial TiO2/SnO2 Branched Heterojunction Nanostructure. Small.2013,9(11):2005-2011.
    [10]D. Li, Y. Xia. Fabrication of Titania Nanofibers by Electrospinning. Nano Letters.2003,3(4): 555-560.
    [11]Y. X. D. Li. Electrospinning of Nanofibers:Reinventing the Wheel? Adv. Mater.2004,16(14): 1151-1170.
    [12]J. T. McCann, D. Li, Y. Xia. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. Journal of Materials Chemistry.2005,15(7):735-738.
    [13]W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan, M. Zhou, C. Gong, Z. Bao, B. Lu, X. Li, W. Lan, E. Xie. A novel method to fabricate silica nanotubes based on phase separation effect. J. Mater. Chem.2010,20(41):9068-9072.
    [14]C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. Nanoscale.2012,4(11):3475-3481.
    [15]B. Lu, X. Guo, Z. Bao, X. Li, Y. Liu, C. Zhu, Y. Wang, E. Xie. Direct preparation of carbon nanotubes and nanobelts from polymer. Nanoscale.2011,3:2145-2149.
    [16]D. Li, J. T. McCann, Y. Xia. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small.2005,1(1):83-86.
    [17]Y. Su, B. Lu, Y. Xie, Z. Ma, L. Liu, H. Zhao, J. Zhang, H. Duan, H. Zhang, J. Li, Y. Xiong, E. Xie. Temperature effect on electrospinning of nanobelts:the case of hafnium oxide. Nanotechnology.2011,22(28):285609.
    [18]P. Dayal, T. Kyu. Porous fiber formation in polymer-solvent system undergoing solvent evaporation. J. Appl. Phys.2006,100(4):043512-043516.
    [19]V. A. Ganesh, S. S. Dinachali, A. S. Nair, S. Ramakrishna. Robust Superamphiphobic Film from Electrospun TiO2 Nanostructures. ACS Applied Materials & Interfaces.2013,5(5):1527-1532.
    [20]J. Shui, J. C. M. Li. Platinum Nanowires Produced by Electrospinning. Nano Letters.2009,9(4): 1307-1314.
    [21]X. Li, C. Gao, J. Wang, B. Lu, W. Chen, J. Song, S. Zhang, Z. Zhang, X. Pan, E. Xie. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells. J. Power Sources.2012,214:244-250.
    [22]J. A. Lee, K. C. Krogman, M. Ma, R. M. Hill, P. T. Hammond, G. C. Rutledge. Highly Reactive Multilayer-Assembled TiO2 Coating on Electrospun Polymer Nanofibers. Adv. Mater.2009, 21(12):1252-1256.
    [23]S. Chuangchote, T. Sagawa, S. Yoshikawa. Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer. Appl. Phys. Lett.2008,93(3):033310-033313.
    [24]R. Zhu, C.-Y. Jiang, X.-Z. Liu, B. Liu, A. Kumar, S. Ramakrishna. Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Appl. Phys. Lett.2008,93(1):013102-013103.
    [25]T. Krishnamoorthy, V. Thavasi, M. Subodh G, S. Ramakrishna. A first report on the fabrication of vertically aligned anatase TiO2 nanowires by electrospinning:Preferred architecture for nanostructured solar cells. Energy& Environmental Science.2011,4(8):2807-2812.
    [26]P. S. Archana, R. Jose, C. Vijila, S. Ramakrishna. Improved Electron Diffusion Coefficient in Electrospun TiO2 Nanowires. J. Phys. Chem. C.2009,113(52):21538-21542.
    [27]Z. Dong, S. J. Kennedy, Y. Wu, Electrospinning materials for energy-related applications and devices. J. Power Sources.2011,196(11):4886-4904.
    [28]S. Mi Yeon, DoKyunKim, KyoJinlhn, SeongMuJo, D. Y. Kim. Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology.2004,15(12):1861.
    [29]H. Hoda, et al. Enhancing the photoelectrical performance of dye-sensitized solar cells using TiO2:Eu3+ nanorods. Nanotechnology.2010,21(41):415201.
    [30]L. Ji, Y. Yao, O. Toprakci, Z. Lin, Y. Liang, Q. Shi, A. J. Medford, C. R. Millns, X. Zhang, Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J. Power Sources.2010, 195(7):2050-2056.
    [31]B. Ding, M. Wang, J. Yu, G. Sun. Gas Sensors Based on Electrospun Nanofibers. Sensors.2009, 9(3):1609-1624.
    [32]C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, L. Lin. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Letters.2010,10(2):726-731.
    [33]H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, Y. Cui. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Letters.2010,10(10):4242-4248.
    [34]J. Song, X. An, J. Zhou, Y. Liu, W. Wang, X. Li, W. Lan, E. Xie. Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling. Appl. Phys. Lett.2010,97(12):122103-122103.
    [35]Z. Yongzhe, Yanxia Liu, Xiaodong Li, Qi Jie Wang, E. Xie. Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers. Nanotechnology.2011,22(41):415702.
    [36]B. Lu, T. Li, H. Zhao, X. Li, C. Gao, S. Zhang, E. Xie. Graphene-based composite materials beneficial to wound healing. Nanoscale.2012,4(9):2978-2982.
    [37]W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu, S.-H. Hong. SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology.2010,21(24):245605.
    [38]B. A. Lu, Y. J. Wang, Y. X. Liu, H. G. Duan, J. Y. Zhou, Z. X. Zhang, Y. Q. Wang, X. D. Li, W. Wang, W. Lan, E. Q. Xie. Superhigh-Throughput Needleless Electrospinning Using a Rotary Cone as Spinneret. Small.2010,6(15):1612-1616.
    [39]D. Li, Y. Xia. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Letters.2004,4(5):933-938.
    [40]Z. Liu, D. D. Sun, P. Guo, J. O. Leckie. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method. Nano Lett.2006,7(4):1081-1085.
    [41]姚永毅,朱谱新,叶海,钮安建,高绪珊,吴大诚.静电纺丝法和气流-静电纺丝制备聚砜纳米纤维.高分子学报.2005,5:687-692.
    [42]D. Li, Y. Wang, Y. Xia. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters.2003,3(8):1167-1171.
    [43]D. Li, T. Herricks, Y. Xia. Magnetic nanofibers of nickel ferrite prepared by electrospinning. Applied Physics Letters.2003,83(22):4586-4588.
    [44]P. Katta, M. Alessandro, R. D. Ramsier, G. G. Chase. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Letters.2004,4(11):2215-2218.
    [45]S. V. Fridrikh, J. H. Yu, M. P. Brenner, G. C. Rutledge. Controlling the Fiber Diameter during Electrospinning. Physical Review Letters.2003,90(14):144502.
    [46]R. S. Carson, C. D. Hendricks, J. Hogan, J. M. Schneider. Photomicrography of electrically sprayed heavy particles. AIAA Journal.1964,2(4):733-737.
    [47]G. Taylor. Studies in Electrohydrodynamics. I. The Circulation Produced in a Drop by Electrical Field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1966,291(1425):159-166.
    [48]Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge. Experimental characterization of electrospinning:the electrically forced jet and instabilities. Polymer.2001,42(25):09955-09967.
    [49]O. V. Salata. Tools of Nanotechnology:Electrospray. Current Nanoscience.2005,1:25-33.
    [50]A. T. S. A. Jaworek. Electrospraying route to nanotechnology:An overview. Journal of Electrostatics.2008,66:197-219.
    [51]A. Jaworek. Electrospray droplet sources for thin film deposition Journal of Materials Science. 2007,42:266-297.
    [52]K. Benkestock, G. Sundqvist, P.-O. Edlund, J. Roeraade. Influence of droplet size, capillary-cone distance and selected instrumental parameters for the analysis of noncovalent protein-ligand complexes by nano-electrospray ionization mass spectrometry. Journal of Mass Spectrometry. 2004,39(9):1059-1067.
    [53]http://en.wikipedia.org/wiki/Electrospray#cite-2.
    [54]W. Gilbert. De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). London.1628.
    [55]L. Rayleigh. XX. On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine Series 5.1882,14(87):184-186.
    [56]A. Gomez, K. Tang. Charge and fission of droplets in electrostatic sprays. Physics of Fluids. 1994,6(1):404-414.
    [57]J. Zeleny. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces. Physical Review.1914,3(2):69-91.
    [58]J. Zeleny. Instability of Electrified Liquid Surfaces. Physical Review.1917,10(1):1-6.
    [59]I. Hayati, A. I. Bailey, T. F. Tadros. Investigations into the mechanisms of electrohydrodynamic spraying of liquids:I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. Journal of Colloid and Interface Science. 1987,117(1):205-221.
    [60]I. Hayati, A. Bailey, T. F. Tadros. Investigations into the mechanism of electrohydrodynamic spraying of liquids:II. Mechanism of stable jet formation and electrical forces acting on a liquid cone. Journal of Colloid and Interface Science.1987,117(1):222-230.
    [61]G. Taylor. Disintegration of Water Drops in an Electric Field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1964,280(1382):383-397.
    [62]M. Fujimoto, T. Kado, W. Takashima, K. Kaneto, S. Hayase. Dye-Sensitized Solar Cells Fabricated by Electrospray Coating Using TiO2 Nanocrystal Dispersion Solution. Journal of The Electrochemical Society.2006,153(5):A826-A829.
    [63]X. Li, Y. Zhang, Z. Zhang, J. Zhou, J. Song, B. Lu, E. Xie, W. Lan. Electrospraying tuned photoanode structures for dye-sensitized solar cells with enhanced energy conversion efficiency. J. Power Sources.2011,196(3):1639.
    [64]D. Hwang, H. Lee, S.-Y. Jang, S. M. Jo, D. Kim, Y. Seo, D. Y. Kim. Electrospray Preparation of Hierarchically-structured Mesoporous TiO2 Spheres for Use in Highly Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces.2011,3(7):2719-2725.
    [65]Horim Lee, Daesub Hwang, Seong Mu Jo, Dongho Kim, Yongsok Seo, D. Y. Kim. Low-Temperature Fabrication of TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells Using an Electrospray Process. ACS Appl. Mater. Interfaces.2012,4(6):3308-3315.
    [66]R. Kessick, J. Fenn, G. Tepper. The use of AC potentials in electrospraying and electrospinning processes. Polymer.2004,45(9):2981-2984.
    [67]L. Ding, T. Lee, C.-H. Wang. Fabrication of monodispersed Taxol-loaded particles using electrohydrodynamic atomization. Journal of Controlled Release.2005,102(2):395-413.
    [68]J. M. Lopez-Herrera, A. Barrero, A. Lopez, I. G. Loscertales, M. Marquez. Coaxial jets generated from electrified Taylor cones. Scaling laws. Journal of Aerosol Science.2003,34(5):535-552.
    [69]G. Luurtsema. Spin coating for rectangular substrates. Spin coating for rectangular substrates, Ph.D. thesis, University of California (1997).
    [70]P. Haaland, J. McKibben, M. Paradi. Fundamental Constraints on Thin Film Coatings for Flat Panel Display Manufacturing. Proceedings of the Display Manufacturing Technology Conference. 1995:79-81.
    [71]E. Khaleghi, E. Olevsky, M. Meyers. Uniaxial Freezing, Freeze-Drying, and Anodization for Aligned Pore Structure in Dye-Sensitized Solar Cells. Journal of the American Ceramic Society. 2009,92(7):1487-1491.
    [72]B. O'Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature.1991,353:737.
    [73]W. Chen, X. Sun, Q. Cai, D. Weng, H. Li. Facile synthesis of thick ordered mesoporous TiO2 film for dye-sensitized solar cell use. Electrochemistry Communications.2007,9(3):382-385.
    [74]Q. Zhang, T. Chou, B. Russo, S. Jenekhe, G. Cao. Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed.2008,47(13): 2402-2406.
    [75]张清敏,徐濮.扫描电子显微镜和x射线微区分析.天津:南开大学出版社.1988.
    [76] https://zh.wikipedia.org/wiki/%E9%80%8F%E5%B0%84%E7%94%B5%E5%AD%90%E6%98 %BE%E5%BE%AE%E9%95%9C#cite note-7.
    [77]M. Khan. The transmission electron microscope. First published March,2012, Printed in Croatia. 2012.
    [78]何崇智.x射线衍射实验技术.北京:原子能出版社.1998.
    [79]郑顺旋.激光喇曼光谱学.上海:上海科学技术出版社.1985.
    [80]D. J. Gardiner. Practical Raman spectroscopy. Springer-Verlag.1989.
    [81]沈学础.半导体光学性质.北京:科学出版社.1992.
    [82]黄春辉.光电功能超薄膜.北京:北京大学出版社.2004.
    [83]A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Gratzel. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science.2011,334(6056):629-634.
    [84]Allen J. Bard, L. R. Faulkner. Electrochemical Methods:Fundamentals and Applications. Second Edition.2001.
    [85]Y. Shi, X. Dong. Coupled analysis of steady-state and dynamic characteristics of dye-sensitized solar cells for determination of conduction band movement and recombination parameters. Physical Chemistry Chemical Physics.2013,15(1):299-306.
    [86]A. Zaban, M. Greenshtein, J. Bisquert. Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements. Chemphyschem.2003,4:859.
    [87]J. H. Noh, H. S. Han, S. Lee, J. Y. Kim, K. S. Hong, G.-S. Han, H. Shin, H. S. Jung. Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection. Adv. Energy Mater.2011,1(5):829-835.
    [88]X. Zhang, X. Han, J. Su, Q. Zhang, Y. Gao. Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector. Appl. Phys. A-Mater. Sci. Process.2012,107(2): 255-260.
    [1]B. O'Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature.1991,353:737.
    [2]B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Gratzel, M. D. McGehee. Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photonics.2009,3(7):406-411.
    [3]H. J. Snaith. Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells. Adv. Fund. Mater.2010,20(1):13-19.
    [4]T. Ma, T. Kida, M. Akiyama, K. Inoue, S. Tsunematsu, K. Yao, H. Noma, E. Abe. Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique. Electrochemistry Communications.2003,5(4):369-372.
    [5]S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, M. Gratzel. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films.2008,516(14):4613-4619.
    [6]S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, M. Grazel. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt:Res. Appl.2007,15:603-612.
    [7]S. Ito, T. Kitamura, Y. Wada, S. Yanagida. Facile fabrication of mesoporous TiO2 electrodes for dye solar cells:chemical modification and repetitive coating. Solar Energy Materials and Solar Cells.2003,76(1):3-13.
    [8]W. Chen, X. Sun, Q. Cai, D. Weng, H. Li. Facile synthesis of thick ordered mesoporous TiO2 film for dye-sensitized solar cell use. Electrochemistry Communications.2007,9(3):382-385.
    [9]T. Miyasaka, Y. Kijitori. Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers. Journal of The Electrochemical Society. 2004,151(11):A1767-A1773.
    [10]G.-S. Kim, H.-K. Seo, V. P. Godble, Y.-S. Kim, O. B. Yang, H.-S. Shin. Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles:Application to dye-sensitized solar cells. Electrochemistry Communications.2006,8(6):961-966.
    [11]M. Okuya, K. Nakade, S. Kaneko. Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells. Solar Energy Materials and Solar Cells.2002,70(4):425-435.
    [12]M. Okuya, K. Nakade, D. Osa, T. Nakano, G. R. Asoka Kumara, S. Kaneko. Fabrication of dye-sensitized solar cells by spray pyrolysis deposition (SPD) technique. Journal of Photochemistry and Photobiology A:Chemistry.2004,164(1-3):167-172.
    [13]C. H. Chen, F. L. Yuan, J. Schoonman. Spray pyrolysis routes to electroceramic powders and thin films. European Journal of Solid State and Inorganic Chemistry.1998,35(2):189-196.
    [14]E. Khaleghi, E. Olevsky, M. Meyers. Uniaxial Freezing, Freeze-Drying, and Anodization for Aligned Pore Structure in Dye-Sensitized Solar Cells. Journal of the American Ceramic Society. 2009,92(7):1487-1491.
    [15]Y. Zhang, L. Wu, E. Xie, H. Duan, W. Han, J. Zhao. A simple method to prepare uniform-size nanoparticle TiO2 electrodes for dye-sensitized solar cells. Journal of Power Sources.2009, 189(2):1256-1263.
    [16]A. T. S. A. Jaworek. Electrospraying route to nanotechnology:An overview. Journal of Electrostatics.2008,66:197-219.
    [17]M. Fujimoto, T. Kado, W. Takashima, K. Kaneto, S. Hayase. Dye-Sensitized Solar Cells Fabricated by Electrospray Coating Using TiO2 Nanocrystal Dispersion Solution. Journal of The Electrochemical Society.2006,153(5):A826-A829.
    [18]T. P. Chou, Q. Zhang, G. E. Fryxell, G. Z. Cao. Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency. Adv. Mater.2007, 19(18):2588-2592.
    [19]Z. Yong-Zhe, W. Li-Hui, L. Yan-Ping, X. Er-Qing, Y. De, C. Jiang-Tao. Preparation of ZnO Nanospheres and Their Applications in Dye-Sensitized Solar Cells. Chinese Physics Letters. 2009,26(3):038201.
    [20]S. L. Kim, S. R. Jang, R. Vittal, J. Lee, K. J. Kim. Rutile TiO2-modified multi-wall carbon nanotubes in TiO2 film electrodes for dye-sensitized solar cells. Journal of Applied Electrochemistry.2006,36(12):1433-1439.
    [21]T. Y. Lee, P. S. Alegaonkar, J.-B. Yoo. Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films.2007,515(12):5131-5135.
    [22]S. Pimanpang, W. Maiaugree, W. Jarernboon, S. Maensiri, V. Amornkitbamrung. Influences of magnesium particles incorporated on electrophoretically multiwall carbon nanotube film on dye-sensitized solar cell performance. Synthetic Metals.2009,159(19-20):1996-2000.
    [23]Y. Zhao, X. L. Sheng, J. Zhai, L. Jiang, C. H. Yang, Z. W. Sun, Y. F. Li, D. B. Zhu. TiO2 porous electrodes with hierarchical branched inner channels for charge transport in viscous electrolytes. Chemphyschem.2007,8(6):856-861.
    [24]P. C. Seigo Ito, Pascal Comte, Mohammad Khaja Nazeeruddin, Paul Liska, Peter Pdchy, Michael Grazel. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics:Research and Applications.2007,15(7):603-612.
    [25]J. Ferber, J. Luther. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells.1998,54(1-4):265-275.
    [26]N. Papageorgiou, C. Barbe, M. Gratzel. Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films. The Journal of Physical Chemistry B.1998, 102(21):4156-4164.
    [27]M. Diirr, G. Kron, U. Rau, J. H. Werner, A. Yasuda, G. Nelles. Diffusion-limited transport of I3-through nanoporous TiO2-polymer gel networks. J. Chem. Phys.2004,121(22):11374-11378.
    [28]B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields. Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces. J. Phys. Chem. B.2001, 105(7):1422-1429.
    [29]T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi. Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells. Journal of The Electrochemical Society.2005,152(2):E68-E73.
    [1]A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Gratzel. Porphyrin-Sensitized Solar Cells with Cobalt (Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science.2011,334(6056):629-634.
    [2]J. Nelson, S. A. Haque, D. R. Klug, J. R. Durrant. Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Phys. Rev. B.2001,63(20):205321.
    [3]A. Usami, S. Seki, Y. Mita, H. Kobayashi, H. Miyashiro, N. Terada. Temperature dependence of open-circuit voltage in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells.2009,93(6-7): 840-842.
    [4]G. Schlichthorl, S. Y. Huang, J. Sprague, A. J. Frank. Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:□ A Study by Intensity Modulated Photovoltage Spectroscopy. J. Phys. Chem. B.1997,101(41):8141-8155.
    [5]J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Sero. Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method. J. Am. Chem. Soc. 2004,126(41):13550-13559.
    [6]M. Salari, K. Konstantinov, H. K. Liu. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. Journal of Materials Chemistry.2011,21(13): 5128-5133.
    [7]W. Zhang, R. Zhu, X. Liu, B. Liu, S. Ramakrishna. Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications. Appl. Phys. Lett.2009,95(4): 043304-043303.
    [8]B. Ding, M. Wang, J. Yu, G. Sun. Gas Sensors Based on Electrospun Nanofibers. Sensors.2009, 9(3):1609-1624.
    [9]D. Lin, H. Wu, R. Zhang, W. Pan. Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers. Chem. Mater.2009,21(15):3479-3484.
    [10]L. Ji, Y. Yao, O. Toprakci, Z. Lin, Y. Liang, Q. Shi, A. J. Medford, C. R. Millns, X. Zhang. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J. Power Sources.2010, 195(7):2050-2056.
    [11]H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, Y. Cui. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Lett.2010,10(10):4242-4248.
    [12]Y. X. D. Li. Electrospinning of Nanofibers:Reinventing the Wheel? Adv. Mater.2004,16(14): 1151-1170.
    [13]W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan, M. Zhou, C. Gong, Z. Bao, B. Lu, X. Li, W. Lan, E. Xie. A novel method to fabricate silica nanotubes based on phase separation effect. J. Mater. Chem.2010,20(41):9068-9072.
    [14]C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. Nanoscale.2012,4(11):3475-3481.
    [15]Y. Su, B. Lu, Y. Xie, Z. Ma, L. Liu, H. Zhao, J. Zhang, H. Duan, H. Zhang, J. Li, Y. Xiong, E. Xie. Temperature effect on electrospinning of nanobelts:the case of hafnium oxide. Nanotechnology.2011,22(28):285609.
    [16]X. Li, Y. Zhang, Z. Zhang, J. Zhou, J. Song, B. Lu, E. Xie, W. Lan. Electrospraying tuned photoanode structures for dye-sensitized solar cells with enhanced energy conversion efficiency. J. Power Sources.2011,196(3):1639.
    [17]R. Zhu, C.-Y. Jiang, X.-Z. Liu, B. Liu, A. Kumar, S. Ramakrishna. Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Appl. Phys. Lett.2008,93(1):013102-013103.
    [18]X. Chen, S. S. Mao. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.2007,107(7):2891-2959.
    [19]C. J. Howard, T. M. Sabine, F. Dickson. Structural and thermal parameters for rutile and anatase. Acta Crystallogr. Sect. B:Struct. Sci.1991,47(4):462-468.
    [20]T. Sugimoto, T. Kojima. Formation Mechanism of Amorphous TiO2 Spheres in Organic Solvents. 1. Roles of Ammonia. J. Phys. Chem. C.2008,112(48):18760-18771.
    [21]H. Tang, H. Berger, P. E. Schmid, F. Levy, G. Burri. Photoluminescence in TiO2 anatase single crystals. Solid State Commun.1993,87(9):847-850.
    [22]Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, S. X. Wang. Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl. Phys. Lett. 2001,78(8):1125-1127.
    [23]N. Serpone, D. Lawless, R. Khairutdinov. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles:Size Quantization versus Direct Transitions in This Indirect Semiconductor?.J. Phys. Chem.1995,99(45):16646-16654.
    [24]L. V. Saraf, S. I. Patil, S. B. Ogale, S. R. Sainkar, S. T. Kshirsager. Synthesis of Nanophase TiO2 by Ion Beam Sputtering and Cold Condensation Technique. Int. J. Mod. Phys. B.1998,12(25): 2635-2647.
    [25]L. Forss, M. Schubnell. Temperature dependence of the luminescence of TiO2 powder. Appl. Phys. B.1993,56(6):363-366.
    [26]D. C. Cronemeyer. Infrared Absorption of Reduced Rutile TiO2 Single Crystals. Phys. Rev.1959, 113(5):1222.
    [27]F. Montoncello, M. C. Carotta, B. Cavicchi, M. Ferroni, A. Giberti, V. Guidi, C. Malagu, G. Martinelli, F. Meinardi. Near-infrared photoluminescence in titania:Evidence for phonon-replica effect. J. Appl. Phys.2003,94(3):1501-1505.
    [28]A. Amtout, R. Leonelli. Optical properties of rutile near its fundamental band gap. Phys. Rev. B. 1995,51(11):6842.
    [29]Q. Wang, J.-E. Moser, M. Gratzel. Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. J. Phys. Chem. B.2005,109(31):14945-14953.
    [30]J. Bisquert. Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer. J. Phys. Chem. B.2001,106(2):325-333.
    [31]G. Kron, U. Rau, J. H. Werner. Influence of the Built-in Voltage on the Fill Factor of Dye-Sensitized Solar Cells. J. Phys. Chem. B.2003,107(48):13258-13261.
    [32]A. Zaban, M. Greenshtein, J. Bisquert. Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements. Chemphyschem.2003,4:859.
    [33]P. S. Archana, R. Jose, C. Vijila, S. Ramakrishna. Improved Electron Diffusion Coefficient in Electrospun TiO2 Nanowires. J. Phys. Chem. C.2009,113(52):21538-21542.
    [34]J. Halme, P. Vahermaa, K. Miettunen, P. Lund. Device Physics of Dye Solar Cells. Adv. Mater: 2010,22:E210-E234.
    [1]M. Ettenberg. A little night vision. Adv. Imaging.2005,20:29.
    [2]T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg. Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors. Adv. Funct. Mater.2010,20: 4233.
    [3]E. Monroy, F. Omnes, F. Calle. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol.2003,18(4):R33.
    [4]Y.-Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, D.-P. Yu. Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions. Adv. Mater.2011,23:649.
    [5]S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, J. V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol.2004,22:93.
    [6]B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature.2007,449:885.
    [7]B. Tian, C. M. Lieber. Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes. Pure Appl. Chem.2011,83:2153.
    [8]J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, J. R. Morante. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology.2008,19:465501.
    [9]J. Zou, Q. Zhang, K. Huang, N. Marzari. Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays. J. Phys. Chem. C.2010,114:10725.
    [10]S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, X. Wang. High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates. Adv. Funct. Mater.2011,21:4464.
    [11]Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen, Y. Zhang. ZnO nanowire array ultraviolet photodetectors with self-powered properties. Current Applied Physics.2013,13(1):165-169.
    [12]W. Jin, Y. Ye, L. Gan, B. Yu, P. Wu, Y. Dai, H. Meng, X. Guo, L. Dai. Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem.2012,22(7):2863-2867.
    [13]D. Wu, Y. Jiang, Y. Zhang, Y. Yu, Z. Zhu, X. Lan, F. Li, C. Wu, L. Wang, L. Luo. Self-powered and fast-speed photodetectors based on CdS:Ga nanoribbon/Au Schottky diodes. Journal of Materials Chemistry.2012,22(43):23272-23276.
    [14]X. Li, C. Gao, H. Duan, B. Lu, X. Pan, E. Xie. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy.2012,1(4):640-645.
    [15]X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, E. Xie. High-Performance Photoelectrochemical-Type Self-Powered UV Photodetector Using Epitaxial TiO2/SnO2 Branched Heterojunction Nanostructure. Small.2013,9(11):2005-2011.
    [16]B. O'Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature.1991,353:737.
    [17]A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Gratzel. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science.2011,334(6056):629-634.
    [18]X. Li, Y. Zhang, Z. Zhang, J. Zhou, J. Song, B. Lu, E. Xie, W. Lan. Electrospraying tuned photoanode structures for dye-sensitized solar cells with enhanced energy conversion efficiency. J. Power Sources.2011,196(3):1639.
    [19]X. Li, C. Gao, J. Wang, B. Lu, W. Chen, J. Song, S. Zhang, Z. Zhang, X. Pan, E. Xie. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells. J. Power Sources.2012,214:244-250.
    [20]X. Chen, S. S. Mao. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.2007,107(7):2891-2959.
    [21]C. J. Howard, T. M. Sabine, F. Dickson. Structural and thermal parameters for rutile and anatase. Acta Crystallogr. Sect. B:Struct. Sci.1991,47(4):462-468.
    [22]S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, M. Gratzel. High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. Adv. Mater.2006,18(9):1202-1205.
    [23]M. Yang, J.-L. Zhu, W. Liu, J.-L. Sun. Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts. Nano Research.2011,4(9): 901-907.
    [24]X. Zhang, X. Han, J. Su, Q. Zhang, Y. Gao. Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector. Appl. Phys. A-Mater. Sci. Process.2012,107(2): 255-260.
    [25]X.-W. Fu, Z.-M. Liao, Y.-B. Zhou, H.-C. Wu, Y.-Q. Bie, J. Xu, D.-P. Yu. Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Applied Physics Letters.2012,100(22):223114-223114.
    [26]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters.2007,7(4): 1003-1009.
    [27]L. Hu, J. Yan, M. Liao, L. Wu, X. Fang. Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors. Small.2011,7(8):1012-1017.
    [28]C. Longo, M.-A. De Paoli. Dye-sensitized solar cells:a successful combination of materials. J. Braz. Chem. Soc.2003,14:898-901.
    [29]M. Gratzel. Photoelectrochemical cells. Nature.2001,414:338.
    [30]S. M. Sze, K. K. Ng. Physics of Semiconductor Devices,3rd ed. John Wiley & Sons, Inc., Hoboken, NJ.2007.
    [31]A. Zaban, M. Greenshtein, J. Bisquert. Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements. Chemphyschem.2003,4:859.
    [1]X. Li, C. Gao, H. Duan, B. Lu, X. Pan, E. Xie. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy.2012,1(4):640-645.
    [2]X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, E. Xie. High-Performance Photoelectrochemical-Type Self-Powered UV Photodetector Using Epitaxial TiO2/SnO2 Branched Heterojunction Nanostructure. Small.2013,9(11):2005-2011.
    [3]C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang. UV sensor based on TiO2 nanorod arrays on FTO thin film. Sens. Actuators B.2011,156(1):114-119.
    [4]C. Gao, X. Li, Y. Wang, L. Chen, X. Pan, Z. Zhang, E. Xie. Titanium dioxide coated zinc oxide nanostrawberry aggregates for dye-sensitized solar cell and self-powered UV-photodetector. J. Power Sources.2013,239:458-465.
    [5]Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, J. Jiao. A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Research Letters.2013,8:188.
    [6]S. M. Hatch, J. Briscoe, S. Dunn. A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response. Advanced Materials.2012,25(6):867-871.
    [7]Y.-Q. Bie, Z.-M. Liao, H.-Z. Zhang, G.-R. Li, Y. Ye, Y.-B. Zhou, J. Xu, Z.-X. Qin, L. Dai, D.-P. Yu. Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p-n Junctions. Adv. Mater.2011,23:649.
    [8]Q. Zhang, G. Cao. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today. 2011,6(1):91-109.
    [9]C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. Nanoscale.2012,4(11):3475-3481.
    [10]J. H. Noh, H. S. Han, S. Lee, J. Y. Kim, K. S. Hong, G.-S. Han, H. Shin, H. S. Jung. Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection. Adv. Energy Mater.2011,1(5):829-835.
    II1] Y. Bai, H. Yu, Z. Li, R. Amal, G. Q. Lu, L. Wang. In Situ Growth of a ZnO Nanowire Network within a TiO2 Nanoparticle Film for Enhanced Dye-Sensitized Solar Cell Performance. Advanced Materials.2012,24(43):5850-5856.
    [12]L. Li, T. Zhai, Y. Bando, D. Golberg. Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy.2012,1(1):91-106.
    [13]L.-Y. Chen, Y.-T. Yin. Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells. Nanoscale.2013,5(5): 1777-1780.
    [14]C. G. Fonstad, R. H. Rediker. Electrical Properties of High-Quality Stannic Oxide Crystals. J. Appl. Phys.1971,42(7):2911-2918.
    [15]R. G. Breckenridge, W. R. Hosier. Electrical Properties of Titanium Dioxide Semiconductors. Phys. Rev.1953,91(4):793-802.
    [16]J. Ye, H. Zhang, R. Yang, X. Li, L. Qi. Morphology-Controlled Synthesis of SnO2 Nanotubes by Using ID Silica Mesostructures as Sacrificial Templates and Their Applications in Lithium-Ion Batteries. Small.2010,6(2):296-306.
    [17]L. Hu, J. Yan, M. Liao, L. Wu, X. Fang. Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors. Small.2011,7(8):1012-1017.
    [18]S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Letters.2007,7(5): 1286-1289.
    [19]Z. Dong, S. J. Kennedy, Y. Wu. Electrospinning materials for energy-related applications and devices. J. Power Sources.2011,196(11):4886-4904.
    [20]B. Lu, X. Guo, Z. Bao, X. Li, Y. Liu, C. Zhu, Y. Wang, E. Xie. Direct preparation of carbon nanotubes and nanobelts from polymer. Nanoscale.2011,3:2145-2149.
    [21]A. Yang, X. Tao, G. K. H. Pang, K. G. G. Siu. Preparation of Porous Tin Oxide Nanobelts Using the Electrospinning Technique. J. Am. Ceram. Soc.2008,91(1):257-262.
    [22]I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, X. Zheng. Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production. Nano Lett.2011,11(11):4978-4984.
    [23]S. A. Syed, W. N. Alan, T. X. Terry. A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology.2007,18(44):445609.
    [24]W. Ma, Z. Lu, M. Zhang. Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl. Phys. A-Mater. Sci. Process.1998,66(6):621-627.
    [25]A. S. Barnard, L. A. Curtiss. Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano Lett.2005,5(7):1261-1266.
    [26]X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes. Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass:Synthesis Details and Applications. Nano Lett.2008,8(11):3781-3786.
    [27]X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos. Shape control of CdSe nanocrystals. Nature.2000,404(6773):59-61.
    [28]A. A. Bolzan, C. Fong, B. J. Kennedy, C. J. Howard. Structural Studies of Rutile-Type Metal Dioxides. Ada Crystallogr. Sect. B:Struct. Sci.1997,53(3):373-380.
    [29]C. J. Howard, T. M. Sabine, F. Dickson. Structural and thermal parameters for rutile and anatase. Acta Crystallogr. Sect. B:Struct. Sci.1991,47(4):462-468.
    [30]C. Cheng, Y. Y. Tay, H. H. Hng, H. J. Fan. Solution heteroepitaxial growth of dendritic SnO2/TiO2 hybrid nanowires. J. Mater. Res.2011,26(17):2254-2260.
    [31]X. Li, Y. Zhang, Z. Zhang, J. Zhou, J. Song, B. Lu, E. Xie, W. Lan. Electrospraying tuned photoanode structures for dye-sensitized solar cells with enhanced energy conversion efficiency. J. Power Sources.2011,196(3):1639.
    [32]X. Li, C. Gao, J. Wang, B. Lu, W. Chen, J. Song, S. Zhang, Z. Zhang, X. Pan, E. Xie. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells. J. Power Sources.2012,214:244-250.
    [33]A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, J. R. Durrant. Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2 and SnO2 Films. J. Phys. Chem. B.2005,109(25):12525-12533.
    [34]H. J. Snaith, C. Ducati. SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Lett.2010,10(4):1259-1265.
    [35]J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells. Adv. Mater.2009,21(36):3663-3667.
    [36]S. Chappel, S.-G. Chen, A. Zaban. TiO2-Coated Nanoporous SnO2 Electrodes for Dye-Sensitized Solar Cells. Langmuir.2002,18(8):3336-3342.
    [37]J. Bisquert. Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer. J. Phys. Chem. B.2001,106(2):325-333.
    [38]X. Zhang, X. Han, J. Su, Q. Zhang, Y. Gao. Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector. Appl. Phys. A-Mater. Sci. Process.2012,107(2): 255-260.
    [39]P. S. Archana, R. Jose, C. Vijila, S. Ramakrishna. Improved Electron Diffusion Coefficient in Electrospun TiO2 Nanowires. J. Phys. Chem. C.2009,113(52):21538-21542.
    [40]E. Monroy, F. Omnes, F. Calle. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol.2003,18(4):R33.
    [41]B. Nie, J.-G. Hu, L.-B. Luo, C. Xie, L.-H. Zeng, P. Lv, F.-Z. Li, J.-S. Jie, M. Feng, C.-Y. Wu, Y.-Q. Yu, S.-H. Yu. Monolayer Graphene Film on ZnO Nanorod Array for High-Performance Schottky Junction Ultraviolet Photodetectors. Small.2013,10.1002/smll.201203188.
    [42]J. Zou, Q. Zhang, K. Huang, N. Marzari. Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays. J. Phys. Chem. C.2010,114:10725.
    [43]M. Yang, J.-L. Zhu, W. Liu, J.-L. Sun. Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts. Nano Research.2011,4(9): 901-907.
    [44]S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, X. Wang. High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates. Adv. Funct. Mater.2011,21:4464.
    [45]X.-W. Fu, Z.-M. Liao, Y.-B. Zhou, H.-C. Wu, Y.-Q. Bie, J. Xu, D.-P. Yu. Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Applied Physics Letters.2012,100(22):223114-223114.
    [46]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters.2007,7(4): 1003-1009.
    [47]D. Kim, Y.-K. Kim, S. C. Park, J. S. Ha, J. Huh, J. Na, G.-T. Kim. Photoconductance of aligned SnO2 nanowire field effect transistors. Appl. Phys. Lett.2009,95(4):043107-043103.
    [48]J. van de Lagemaat, A. J. Frank. Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films:□ Transient Photocurrent and Random-Walk Modeling Studies. J. Phys. Chem.B.2001,105(45):11194-11205.
    [49]T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg. Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors. Adv. Funct. Mater.2010,20: 4233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700