改性TiO_2纳米管阵列光阳极裂解水制氢的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能源是未来的清洁能源之一,光电催化裂解水制氢是清洁、节能和经济可行的方法,该方法将太阳能通过光电化学转化为可贮存的氢能,其中催化剂光电极的研制是最关键的技术。目前光电催化裂解水催化剂的缺点首先是可见光光响应低,不能有效利用太阳光,其次是导带电位较正,光激发到导带的电子不足以还原水生成氢气,这需要对催化剂进行改性,来满足上述要求,提高光电催化产氢效率。
     本文研究合适的金属及其氧化物半导体共同改性TiO2纳米管阵列,形成复合光催化剂,更好地改善TiO2纳米管阵列光催化剂的性能,此种光电极的制备、光电性质及其光电催化分解水产氢机理研究未见报道。本实验使用SEM、XRD和XPS表面分析方法研究了纳米管阵列及改性后纳米管的表面形貌和晶相组成,采用半导体光电流响应分析及电子结构分析方法研究了改性物质对TiO2纳米管阵列光电响应的作用结果,同时结合容抗分析(Mott-Schottky曲线和电化学阻抗谱EIS)研究改性TiO2纳米管阵列半导体特性和半导体/溶液界面的电荷传递动力学。
     首先在含F-的乙二醇有机溶液中阳极氧化6h制备的TiO2纳米管阵列,经过450℃焙烧后呈锐钛矿晶型,表面和纵向分布整齐规则,光电响应最强;同时与纳米TiO2薄膜对比,TiO2纳米管阵列吸收光红移,最高光电流是纳米TiO2薄膜的4倍。
     采用阴极还原和阳极氧化法制备过渡金属Ce及其氧化物(Ce2O3/CeO2)改性TiO2纳米管阵列。在10×10-3mo1/L硝酸铈乙醇溶液中制备的还原态铈和氧化态铈两种改性试样光催化效果最好,在此条件下,还原态铈以单质Ce和Ce2O3纳米线形式存在于TiO2纳米管阵列表面及管内,对比TiO2纳米管阵列,经还原态铈改性的TiO2纳米管阵列在可见光区光电响应增强,紫外光区光电响应减弱,平带电位向电负方向移动,同时改性TiO2纳米管阵列能带宽度减小至2.88eV;还原态铈经阳极氧化后,氧化态铈以单质Ce、Ce2O3和CeO2结晶态存在于TiO2纳米管阵列表面及管内,对比TiO2纳米管阵列,氧化态铈改性的TiO2纳米管阵列在可见光区和紫外光区光电响应都增强,平带电位向电负方向移动;随着氧化的不断深入,改性TiO2纳米管阵列在可见光区光电响应随之增强。同时光电流对光子能量谱分析发现,在还原态铈和氧化态铈中都存在能带宽度为Eg=2.4eV的氧化相Ce2O3。
     通过电化学阻抗谱研究发现,在阳极电解液中添加供电子物质减小了光生载流子传递阻抗,其中添加有机物乙二醇效果最佳。经氧化态铈改性后的TiO2纳米管阵列,由于电极表面增加了新的界面而导致一个新的容抗圆弧,但改性减小了TiO2纳米管阵列空间电荷层阻抗,说明单质铈和氧化铈有助于提高TiO2纳米管阵列的电子传输性能,增加偏压主要有利于减小TiO2纳米管层的电荷传递阻抗。根据光电响应特性和电化学阻抗谱特点,讨论了氧化铈和单质铈加强TiO2纳米管阵列在可见和紫外光区光电流响应与促进光生载流子传输的机理:窄能带宽度半导体Ce2O3(Eg=2.4eV)和宽能带宽度半导体CeO2(Eg=3.16eV)分别加强TiO2纳米管阵列在可见光区和紫外光区的光电响应,同时这两种氧化铈导带电位负于TiO2纳米管的导带电位,有利于光生电子向TiO2导带移动,进而到达对电极裂解水产氢;单质铈一方面作为杂质能级位于TiO2的禁带之中,有利于光生电子和空穴的分离,促进可见光光电响应,另一方面可能单质铈掺杂进入TiO2晶格中,与Ti的3d轨道形成混合导带使其禁带宽度变窄,增加了对可见光的吸收。
     铈及其氧化物改性有助于提高TiO2纳米管阵列的产氢光电转换效率,在水溶液中无外加偏压条件下,在450W氙灯光照反应5h期间,TiO2NTs电极无氢气生成,而单质铈和氧化铈共同改性的TiO2NTs-Ce-CeOx有0.092mL/h·cm2氢气生成。在阳极电解液中添加乙二醇后,TiO2NTs-Ce-CeOx的最高产氢光电转换效率为5.9%,是TiO2NTs的1.76倍,在0.4V偏压条件下,TiO2NTs-Ce-CeOx的平均产氢量为2.38mL/h·cm2;在大于370nm波长光照下,TiO2NTs-Ce-CeOx最高产氢光电转换效率为4.43%,是TiO2NTs的1.92倍,在0.4V偏压条件下,TiO2NTs-Ce-CeOx的平均产氢量为1.39mL/h·cm2。
     金属铅及其氧化物改性有助于TiO2纳米管阵列的平带电位向电负方向移动,但降低了光电流响应;金属铜或铟及其氧化物改性有助于提高TiO2纳米管阵列在紫外和可见光区的光电流响应,但是平带电位都向正向移动,都不利于光电催化裂解水产氢。
Hydrogen is one of the clean energy in future. The hydrogen production from photoelectrocatalytic water spliting which transfers solar to hydrogen energy by photoelectrochemical cell is the cleanest, low energy and economical feasible technology, the preparation of catalyst photoelectrode is the key role of this work. At present, the shortcomings of catalyst for photoelectrocatalytic water spliting maily include two aspects. Firstly the low visible light response cannot effectively use the sunlight. Secondly the light electron from valence band exciting into the conduction band is not sufficient to split water molecular to generate hydrogen as the positive conduction band potential. So the catalyst needs modification to meet the above requirements, and increase photoconversion efficiency of hydrogen generation.
     In this work, the TiO2nanotube arrays were modified by an appropriate metal and its oxide as semiconductor to improve the performance in water splitting hydrogen production. According to our knowledge, such photoelectrode preparation in photoelectrocatalytic splitting water to hydrogen production investigation has not been reported. The surface morphology and crystal phase of the modified TiO2nanotube arrays were analysised by SEM, XRD and XPS. The modified substances effect on TiO2nanotube arrays photoresponse were studied by semiconductor photocurrent response and electronic structure analysis. And the semiconductor characteristics and charge transfer kinetics on the TiO2nanotube arrays semiconductor/solution interface vere investigated by capacitance analysis of Mott-Schottky curves and electrochemistry impedance spectrum(EIS).
     The optimal TiO2nanotube arrays(TiO2NTs) prepared by anodic oxidation6h in the glycol solution containing F", showed well-ordered surface and profile as anatase after calcination at450℃and indicated the highest photocurrent response. This sample absorbed light redshift and its photocurrent improved four times than that of TiO2thin film.
     Reductive Cerium and oxidative Cerium were deposited on the TiO2nanotube arrays by electrochemical cathodic reduction and then anodic oxidation. The sample(TiO2NTs-Ce-CeOx) prepared in the10mmol/L cerium nitrate solution suggested an optimal deposition quantity. In this condition, the reductive Cerium was in the form of elementary Cerium and Ce2O3nanofibers dispersed both on the surface and inside of TiO2nanotubes. Compared with TiO2nanotubes without modification, reductive Cerium modification lowered the original bandgap energy from3.15eV to2.88eV and enhanced photocurrent response in visible spectra rather than in UV spectra. The flat band potentials also moved to negative direction. After anodic oxidation, the oxidative Cerium was in the form of elementary Cerium, Ce2O3and CeO2dispersed both on the surface and inside of TiO2nanotube. Comparred with TiO2nanotube, the photocurrent response of the sample was enhanced in visible spectra and in UV spectra region and the flat potentials moved to negative direction. As the anodic oxidation in depth, the photocurrent responses increased in visible light. The study of photocurrent on photon energy indicated that there was a band gap energy of2.4eV as Ce2O3oxidation phase in the reductive Cerium and oxidative Cerium.
     The donor materials adding in the anode electrolyte significantly reduced the charge transfer impedance of TiO2nanotube to promote the photocatalytic spitting water for production hydrogen by EIS with adding organic glycol(C2H6O2) optimum. Although the oxidative Cerium modified TiO2nanotube arrays had a new capacitace arc by EIS as the TiO2nanotube arrays electrode surface increased the new interface, while reduced the space charge layer impedance of TiO2nanotube arrays. This indicated the elemental cerium and cerium oxide work to improve the electron transmission performance of TiO2nanotube arrays. The bias potential on working electrode reduces charge transfer impedance on TiO2nanotube layer. The mechanism of the Cerium and oxidative Cerium acting on TiO2nanotube arrays to improve photocurrent response and reduce charge transfer was discussed. The narrow bandgap semiconductor Ce2O3(Eg=2.4eV)and wide bandgap semiconductor CeO2(Eg=3.16eV) respectively enhanced the photocurrent responces of TiO2nanotube arrays in the visible and UV region. And two cerium oxides had negative conduction band potential than TiO2, which contributed that photoinduced electrons move to the conduction band of TiO2and then reach the counter electrode to split water for hydrogen production; On the one hand, elemental cerium as the impurity levels in the band gap of TiO2was conducive to the separation of photo-generated electrons and holes, and promote visible light photoresponce. On the other hand, elemental cerium was doped into TiO2crystal lattice to form a mixed conduction band with Ti3d. This new conduction band narrowed the energy bandgap to promote the absorption of visible light.
     Cerium and oxidative Cerium increased TiO2nanotube arrays photoconversion efficiency for splitting water. In water TiO2NTs-Ce-CeOx photoelectrode without bias resulted in stable and consistent hydrogen generation throughout the5h reaction and the average hydrogen generation rate was0.092mL/h·cm2, but TiO2NTs photoelectrode without hydrogen generation. After adding C2H6O2in anode electrolyte, this optimized TiO2NTs-Ce-CeOx photoelectrode was found to split water with maximum photoconversion efficiency of5.9%under white light illumination, which was1.76times that of TiO2NTs and the average hydrogen generation rate was2.38mL/h·cm2with0.4V bias. In above370nm wavelength light illumination, TiO2NTs-Ce-CeOx photoelectrode was found to split water with maximum photoconversion efficiency of4.43%, which was1.92times that of TiO2NTs and the average hydrogen generation rate was1.39mL/h·cm2with0.4V bias.
     Very experiments were taken out in different metal and its oxide as method discussed above. The flat band potentials of TiO2NTs modified by Lead(Pb) and its oxides moved to the negative direction while its photocurrent responses in visible spectra and UV spectra reduced by modification. As a contrast, the photocurrent responses of TiO2NTs modified by In or Cu, respectively, improved in visible spectra and UV spectra, while their flat band potentials moved to the positive direction, which played a negative effect in photoelectrocatalytic splitting water for hydrogen production.
引文
[1]Alexander B.D., Kulesza P.J., Rutkowska L., et al. Metal oxide photoanodes for solar hydrogen production[J]. J Mater Chem,2008,18:2298-303
    [2]Bak T., Nowotny J., Rekas M., et al. Photo-electrochemical hydrogen generation from water using solar energy[J]. Int. J. Hydrogen Energy,2002,27:991-1022
    [3]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38
    [4]Sayama K., Arakawa H. Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts[J]. J Photochem Photobio A:Chem.,1994,77:243-247
    [5]Wang Y.Q., Zhang Z.J., Zhu Y., et al. Nanostructured VO2 photocatalysts for hydrogen production[J]. Acs Nano,2008,2:1492-1496
    [6]Liu Y., Xie L., Li Y., et al. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation[J]. J Power Sources,2008,183:701-707
    [7]Kato H., Asakura K., Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. J. Am.Chem. Soc.,2003,125:3082-3089
    [8]Janet C.M., Viswanath R.P. Large scale synthesis of CdS nanorods and its utilization in photo-catalytic H2 production[J]. Nanotech.,2006,17:5271-5277
    [9]Zhang X.H., Jing D.W., Liu M.C., et al. Efficient photocatalytic H2 production under visible light irradiation over Ni doped CdxZnxS microsphere photocatalysts[J]. Catal Commun,2008,9:1720-1724
    [10]Sato J., Saito N., Yamada Y., et al. RuO2-loaded p-Ge3N4 as a non-oxide photocatalyst for overall water splitting[J]. J Am Chem Soc., 2005,127:4150-4151
    [11]Maeda K., Teramura K., Lu D.L., et al. Photocatalyst releasing hydrogen from water[J]. Nature,2006,440:295-295
    [12]Choi J., Ryu S.Y., Balcerski W.,et al. Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light[J]. J MaterChem.,2008,18:2371-2378
    [13]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38
    [14]Minggu L. J., Daud W. R. W., Kassim M. B. An overview of photocells and photoreactors for photoelectrochemical water splitting[J]. International journal of hydrogen energy,2010,35:5233-5244
    [15]Chandra N, Wheeler B. L., Bard A. J. Semiconductor electrodes.59. Photocurrent efficiencies at p-indium phosphide electrodes in aqueous solutions [J]. Journal of Physical Chemistry 1985;89:5037-5040
    [16]Kainthla R. C., Khan SUM, Bockris JOM. The theory of electrode matching in photoelectrochemical cells for the production of hydrogen[J]. International Journal of Hydrogen Energy,1987,12:381-92
    [17]Nozik A. J. P-N photoelectrolysis cell[J]. Applied Physics Letters, 1976,29:150-153
    [18]Nozik A. J. Photochemical diodes[J]. Applied Physics Letters,1977,30:567-569.
    [19]Grimes C. A., Varghese O. K., Ranian S. Light, water, hydrogen-the solar generation of hydrogen by water photoelectrolysis[M]. New York, US:Springer, 2008:123-126
    [20]Bard A. J., Faulkner L. R. Electrochemical methods:fundamentals and applications. New York, US:Wiley; 2001.
    [21]Bak T, Nowotny J., Rekas M., et al. Photoelectrochemical properties of TiO2-Pt system in aqueous solutions[J]. International Journal of Hydrogen Energy, 2002,27:19-26
    [22]Currao A., Reddy V. R., Veen M. K. V., et al. Calzaferria G. Water splitting with silver chloride photoanodes and amorphous silicon solar cells[J]. Photochemical & Photobiological Sciences,2004,3:1017-1025
    [23]Selli E., Chiarello G. L., Quartarone E., et al. A photocatalytic water splitting device for separate hydrogen and oxygen evolution[J]. Chemical Communications, 2007,21 (47):5022-5024
    [24]Gratzel M. Photoelectrochemical cells[J]. Nature,2001,414:338-44
    [25]Miller E. L., Paluselli D., Marsen B., et al. Development of reactively sputtered metal oxide films for hydrogen producing hybrid multijunction photoelectrodes[J]. Solar Energy Materials and Solar Cells,2005,88:131-144
    [26]Khaselev O., Bansal A., Turner J. A. High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production[J]. International Journal of Hydrogen Energy,2001,26:127-32
    [27]Gratzel, M., Augustynski, J. Tandem cell for water cleavage by visible light[P]. US:6936143,2005-08-30
    [28]Sayama K., Arakawa H. Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum(IV) oxide suspension[J].J Chem Soc Chem Commun.,1992,(2):150-152
    [29]Sayama K.,Aakawa H. Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst[J]. J.Chem Soc.,Faraday Trans.1997,93:1647-165
    [30]Aakawa H., Aakawa H. Solar hydrogen production significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts[J].Catal Surv. Jpn,2000,4:75-80
    [31]Lee K., Nam W.S., Han G.Y. Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis[J].International journal of hydrogen energy,2004,29(13):1343-1347
    [32]Ryu A.,Kazuhiro S.,Hironori A. Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst:suppression of backward reaction[J].Chemical Physics Letters,2003,371:360-364
    [33]Li Y. X., Lu G. X., Li S. B. Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy[J]. Chemosphere,2003,52(5):843-850
    [34]尹忠环,李越湘,彭绍琴,等.污染物乙醇胺Pt/TiO2光催化制氢[J].分子催化,2007,21(2):155-161
    [35]李越湘,谢艳招,彭绍琴,等.以葡萄糖和蔗糖为电子给体在Pt/TiO2上光催化制氢[J].高等学校化学学报,2007,28(1):156-158
    [36]A. A. Nada, M. H. Barakat, H. A. Hamed, et al. Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts[J]. International journal of hydrogen energy,2005,30 (7):687-691
    [37]A. Patsoura, D. I. Kondarides, X. E. Verykios, et al. Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes[J]. Applied Catalysis B,2006,64:171-179
    [38]M. Grzegorz, K. Atsuo, T. Kazuyuki, et al. Photoelectrochemical oxygen evolution using polysulfide as sacrificial electron acceptor[J]. Solar energy materials and solar cells,2005,86(1):43-52
    [39]R Abe, K Sayama, KDomen et al. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I-shuttle redox mediator[J]. Chemical physics Letters,2001,344(1-2):339-344
    [40]K. Sayama, K. Mukasa, R. Abe, et al. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis[J].J. Photochem. Photobiol. A:Chem.,2002,148:71-77
    [41]R. Asahi, T. Morikawa, T. Ohwaki, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293:269-271
    [42]Baoshun Liu, Liping Wen, Xiujian Zhao. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering[J]. Solar Energy Mater. Solar Cells.2008,92(1):1-10
    [43]Chengkun Xu, Richard Killmeyer, McMahan L. Gray, et al. Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting[J]. Electrochemistry Communications,2006,8:1650-1654
    [44]Yasser A. Shaban, Shahed U. M. Khan. Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water[J]. International journal of hydrogen energy.2008,33:1118-1126
    [45]K. Yang, Y. Dai, B. B. Huang. Origin of the photoactivity in boron-doped anatase and rutile TiO2 calculated from first principles[J]. Phys. Rev. B,2007, 76:195201-195206
    [46]Hong, X. T., Wang, Z. P., Cai, W. M., et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide [J]. Chem. Mater., 2005,17:1548-1552
    [47]T. Ohno, M. Akiyoshi, T. Umebayashi, et al., Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J], Appl. Catal. A-Gen.,2004,265(1):115-121
    [48]Y. Murakami, B. Kasahara, Y. Nosaka. Photoelectrochemical properties of the sulfur doped tio2 film electrodes:characterization of the doped states by means of the photocurrent measurements[J], Chem. Lett.,2007,36(2):330-331
    [49]陈恒,龙明策,徐俊,等.可见光响应的氯掺杂TiO2的制备、表征及其光催化活性[J].催化学报,2006,27(10):890-894
    [50]W. K. Ho, J. C. Yu, S. C. Lee. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity[J]. Chem. Commun. 2006,10:1115-1117
    [51]Nakamura I., Negishi N., Kutsuna S., et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J]. J. Mol Catal A:Chem.2000,161:205-212
    [52]Kitano M., Tsujimaru K., Anpo M. Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts:Effect of the work function of the substrates on the yield of the reaction[J]. Appl Catal A-Gen.2006,314:179-183
    [53]Korzhak A., Ermokhina N., Stroyuk A., et al. Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites[J]. J Photochem Photobio A-Chem. 2008,198:126-134
    [54]S. sakthivel, M. V. shankar, M. palanichamy, et al. Enhancement of photocatalytic activity by metal deposition:characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J], Water Res.,2004,38:3001-3008
    [55]Dhanalakshmi K. B., Latha S., Anandan S., et al. Dye sensitized hydrogen evolution from water[J]. Int J Hydrogen Energ.,2001,26(7):669-674
    [56]Shiping Xu, Jiawei Ng, Xiwang Zhang, et al. Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water[J]. International journal of hydrogen energy,2010,35:5254-5261
    [57]Wu N. L., Lee M. S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J].Int. J. Hydrogen. Energy, 2004,29(15):1601-1605
    [58]E. Szabo-Bardos, H. Czili, A. Horvath. Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface[J]. J. Photochem. Photobiol. A, 2003,154:195-201
    [59]吴树新,马智,秦永宁,等.掺杂纳米Ti02光催化性能的研究[J].物理化学学报,2004,20(2):138-143
    [60]W. Choi, A. Termin, M. R. Hoffmann. The Role of Metal-Ion Dopants in Quantum-Sized TiO2:Correlation Between Photoreactivity and Charge-Carrier Recombination Dynamics[J]. J. Phys. Chem.1994,98:13669-13679
    [61]Wu N. J., Lee M. S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J]. Int J Hydrog Energy,2004,29:1601-1605
    [62]王添辉,李越湘,彭绍琴,等.铂修饰的稀土掺杂Ti02的光催化制氢活性[J].化学学报,2005,63(9):797-801
    [63]黄翠英,由万胜,党利琴,等.钕掺杂对纳米Ti02光催化分解水制氢活性的影响[J].催化学报,2006,27(3):203-209
    [64]Silva, A. M. T., Silva, C. G., Drazic, G., et al. Ce-doped TiO2 for photocatalytic degradation of chlorophenol[J]. Catal. Today,2009,144(1-2):13-18
    [65]Xie J. M., Jiang, D. L., Chen, M., et al. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2010,372(1-3):107-114
    [66]Wang C., Ao Y., Wang P., et al. Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium[J].Hazard.Mater.2010,178 (1-3):517-52
    [67]Yan S. G., Hupp J. T. Semiconductor-based interfacial electron-transfer reactivity: Decoupling kinetics from pH-dependent band energetic in a dye -sensitized titanium dioxide aqueous solution system[J]. J. Phys. Chem.1996,100:6867-6870
    [68]T. Hannappel, B. Burfeindt, W. Storck, et al. Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal Anatase film[J]. J. Phys. Chem. B.,1997,101: 6799-6802
    [69]W.W. So, K. J. Kim and S. J. Moon. Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4[J]. Int J Hydrogen Energy,2004,29:229-234
    [70]R. Sasikalaa, A. Shirole, V. Sudarsan, et al. Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route:Photocatalytic activity for hydrogen generation[J]. International Journal of Hydrogen Energy,2009,34(9): 3621-3630
    [71]R. Sasikalaa, A. R. Shirolea, V. Sudarsana, et al. Role of support on the photocatalytic activity of titanium oxide[J]. Applied Catalysis A:General. 2010,390:245-252
    [72]Xu, A.W.; Gao, Y.; Liu, H.Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles[J]. J. Catal. 2002,207(2):151-157
    [73]彭绍琴,张伟,李越湘,等.AIC13修饰对虎红-Ti02光催化剂可见光制氢活性的影响[J].功能材料,2007,38(3):362-365
    [74]S. S. Rayalu, N. Dubey, N. KLabhsetwar, et al. UV and visibly active photocatalysts for water splitting reaction[J]. Int. J. Hydrogen Energy, 2007,32:2776-2783
    [75]N. Dubey, N. K. Labhsetwar, S. Devotta, et al. Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst[J]. Catalysis Today, 2007,129:428-434
    [76]Y. X. Li, C. F. Xie, S. Q. Peng, et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution[J]. J Mol Catal A:Chem. 2008,282:117-123
    [77]H. H. Yang, L. J. Guo, W. Yan, et al. A novel composite photocatalyst for water splitting hydrogen production[J]. Journal of Power Sources,2006,159:1305-1309
    [78]R. Sasikala, A.R. Shirole, V. Sudarsan,et al. Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2-Pd nanocomposites for hydrogen generation[J]. Applied Catalysis A:General,2010,377(1-2):47-54
    [79]M. Ikeda, Y. Kusumoto, Y. Yakushijin,et al. Hybridized synergy effect among TiO2, Pt and graphite silica on photocatalytic hydrogen production from water-methanol solution[J], Catal Comm.2007,8:1943-1946
    [80]Sayama K, Arakawa H. Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts [J]. J. Photochem. Photobio. A:Chem.1994,77:243-247
    [81]Sreethawong T., Ngamsinlapasathian S., Suzuki Y., et al. Nanocrystalline mesoporous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol-gel process for photocatalytic H2 evolution[J]. J. Mol. Catal. A-Chem.2005,235:1-11
    [82]Jing D. W., Guo L. J. Hydrogen production over Fe-doped tantalum oxide from an aqueous methanol solution under the light irradiation [J]. J. Phys. Chem. Solids. 2007,68:2363-2369
    [83]Wang Y.Q., Zhang Z. J., Zhu Y., et al. Nanostructured VO2 photocatalysts for hydrogen production[J]. Acs. Nano 2008,2:1492-1496
    [84]Compton O.C., Carroll E.C., Kim J.Y., et al. Calcium niobate semiconductor nanosheets as catalysts for photochemical hydrogen evolution from water[J]. J. Phys. Chem. C.2007,111:14589-14592
    [85]Hata H., Kobayashi Y., Bojan V., et al. Direct deposition of trivalent rhodium hydroxide nanoparticles onto a semiconducting layered calcium niobate for photocatalytic hydrogen evolution[J]. Nano. Lett.2008,8:794-799
    [86]D. Gong, C. A. Grimes, O. K. Varghese, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research. 2001,16(12):3331-3334
    [87]Maggie Paulose, Gopal K. Mor, Oomman K. Varghese, et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2006,178:8-15
    [88]Z. H. Zhang, M. F. Hossain, T. Takahashi. Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation[J]. International Journal of Hydrogen Energy,2010,35:8528-8535
    [89]J. J. Gong, Y. Lai, C. Lin. Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting[J]. Electrochimica Acta,2010,55:4776-4782
    [90]C. K. Xu, Y. A. Shaban, W. B. Ingler Jr., et al. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting[J]. Solar Energy Materials & Solar Cells,2007,91(10):938-943
    [91]K. S. Raja, M. Misra, V. K. Mahajan, et al. Photo- electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light[J]. Journal of Power Sources,2006,161:1450-1457
    [92]F. Z. Jia,, Z. P. Yao, Z. H. Jiang, et al. Preparation of carbon coated TiO2 nanotubes film and its catalytic application for H2 generation[J]. Catalysis Communications 2011,12:497-501
    [93]Lin C. H., Lee C. H., Chao J. H., et al. Photocatalytic generation of H2 gas from neat ethanol over Pt/TiO2 nanotube catalysts[J]. Catal Lett.2004,98:61-66
    [94]Nam W., Han G. Y. Preparation and characterization of anodized Pt-TiO2 nanotube arrays for water splitting[J]. J Chem Eng Jpn.2007,40:266-269
    [95]M. Alam Khan, O-Bong Yang. Photocatalytic water splitting for hydrogen production under visible light on Ir and Co ionized titania nanotube [J].Catalysis Today,2009,146:177-182
    [96]C. L. Li, J. Yuan, B.Y. Han, et al. TiO2 nanotubes incorporated with CdS for photocatalytichydrogen production from splitting water under visible light irradiation[J]. International journal of hydrogen energy,2010,35:7073-7079
    [97]S. P. Xu, A. J. H. Du, J. C Liu, et al. Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water[J]. International journal of hydrogen energy,2011,36:6560-6568
    [98]B. B. Lakshimi, P. K. Dorhout, C. R Martin. Sol-Gel template synthesis of semiconductor nanostructures[J]. Chem. Mater.1997,9(3):857-862
    [99]李晓红,张校刚,力虎林.TiO2纳米管的模板法制备及表征[J].高等学校化学学报,2001,22(1):130-132
    [100]H. Patrick. Formation of a titanium dioxide nanotube array[J]. Langmuir, 1996,12:1411-1413
    [101]Michailowski A., Aimawlawi D., Cheng G. S., et al. Highly regular anatase nanotubule arrays fabricated in porous anodic temp lates[J]. Chemical Physics Letters,2001,349:1-5
    [102]B. B. Lakshimi, P. K. Dorhout, C. R Martin. Sol-Gel template synthesis of semi-conductor nanostructures[J]. Chemical Mater,1997,9(3):857-861
    [103]Chakarvarti S. K., Vetter J. Template synthesis-a membrane based technology for generation of nano-micro materials:a review[J]. Radiation Measurements, 1998,29:149-159
    [104]Shi E., Wang B., Zhong W., et al. Application and development of hydrothomal method[J]. Inorganic Material Journal,1996,11(2):193-206
    [105]Kasuga T., Hiramatsu M., Hoson A., et al. Titania nanotube prepared by chemical processing[J]. Adv.Mater.,1999,11(15):1307-1311
    [106]吴省,蒋淇忠,马紫峰,等.利用微波法合成二氧化钛纳米管[J].无机化学学报,2006,22(2):341-345
    [107]J. L. Zhao, X. H. Wang, R. Z. Chen, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J]. Solid State Communications, 2005,134:705-710
    [108]S. Kaneco, Y. S. Chen, P. Westerhoff. Fabrication of uniform size titanium oxide nanotubes:Impact of current density andsolution conditions[J]. Scripta Materialia,2007,56:373-376
    [109]X. B. Chen, M. Schriver, Timot hy Suen. Fabrication of 10nm diameter TiO2 nanotube arrays by titanium anodization[J]. Thin Solid Films, 2007,515:8511-8518
    [110]D. Fang,K. L. Huang, S. Q. Liu. Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material[J]. Journal of Alloys and Compounds,2008,464(1-2):L5-L9
    [111]王周成,黄龙门,唐毅.钛表面制备多孔氧化膜的研究[J].厦门大学学报(自然科学版),2006.45:677-682
    [112]陶杰,陶海军,包祖国,等.有机电解液中钛基材表面Ti02纳米管阵列生长机制的研究[J].稀有金属材料与工程,2009.38(6):967-971
    [113]赖跃坤.Ti02纳米管阵列的制备、表征及性能研究[D].厦门:厦门大学,2005
    [114]A. E. Becuerel. Sur Les Effets Electriques Qui se Produisent Sous L'influence solaire[J], C. R. Hebd. Sean. Acad. Sci.,1839,9:711-713
    [115]W. H. Brattain, C. G. B. Garrett. Experiments on the Interface between Germanium and an Electrolyte[J]. Bell System Tech. J.1955,34:129-176
    [116]W. W. Gartner. Depletion-Layer Photoeffects in Semiconductors[J]. Physical Rev.,1959,116:84-87
    [117]H. U. Harten. The Surface Recombination on Silicon Contacting an Electrolyte[J]. J. Phys. Chem. Solids,1960,14:220-225
    [118]W. C. Tennant. Action of Lead Monoxide as an Inorganic Photosensitizer[J]. J. Phys. Chem.,1968,72:1078-1080
    [119]K. Leitner, J. W. Schultze, U. Stimming. Photoelectrochemical Investigations of Passive Films on Titanium Electrodes[J]. J. Electrochem.Soc.,1986,133: 1561-1568
    [120]J. R. Birch, T. D. Burleigh.Oxides Formed on Titanium by Polishing, Etching, Anodizing, or Thermal Oxidizing[J]. Corrosion,2000,56:1233-1241
    [121]S. Cattarin, M. Musiani.Photoelectrochemical Investigation of Film Formation at Titanium and Niobium Anodes in Acid Fluoride Media[J]. J. Electroanal. Chem.,2001,571:101-108
    [122]A. W. E. Hodgson, Y. Mueller, D. Forster, et al. Electrochemical Characterisation of Passive Films on Ti Alloys under Simulated Biological Conditions[J]. Electrochim. Acta,2002,47:1913-1923
    [123]A. Goossens, M. Vazquez, D. D. Macdonald. The Nature of Electronic States in Anodic Zirconium Oxide Films Part 2:Photoelectrochemical Characterization[J]. Electrochim. Acta,1996,41:47-55
    [124]F. Di Quarto, S. Piazza, C. Sunseri, et al. Photoelectrochemical Characterization of Thin Anodic Oxide Films on Zirconium Metal[J]. Electrochim. Acta,1996,41: 2511-2521
    [125]M. Okui, T. Nishizaki, M. Uno, et al. Photoelectrochemical Study of Hydrogen in Zirconium Oxide[J]. J. Allys Comp.,2002,330-332:645-648
    [126]F. Di Quarto, C. Gentile, S. Piazza,et al. Photoelectrochemical Study on Anodic Aluminum Oxide Films[J]. J. Electrochem. Soc.,1991,138:1856-1861
    [127]S. Lopez, J.-P. Petit, H. M. Dunlop, et al. Acid-Base Properties of Passive Films on Aluminum[J]. J. Electrochem. Soc.,1998,145:823-829
    [128]S. Piazza, G. L. Biundo, M. C. Romano, et al. In Situ Characterization of Passive Films on Al-Ti Alloy by Photocurrent and Impedance Spectroscopy[J]. Corros. Sci.,1998,40:1087-1108
    [129]F. Di Quarto, A. Di Paola, C. Sunseri.Semiconducting Properties of Anodic WO3 Amorphous Films[J]. Electrochim. Acta,1981,26:1177-1184
    [130]F. Di Quarto, C. Gentile, S. Piazza, et al. A Photoelectrochemical Study on Anodic Tantalum Oxide Films[J]. Corros. Sci.,1993,35:801-808
    [131]P. Scholl, X. Shan, D. Bonham, et al. Photoelectrochemical Characterization of the Anodic Film on Zinc in KOH Solution[J]. J. Electrochem. Soc.,1991,138: 895-899
    [132]S. Kapusta, N. Hackerman. Capacitive Studies of the Semiconducting Properties of Passive Tin Electrodes[J]. Electrochim. Acta,1980,25:1001-1006
    [133]C. A. Moina, G. O. Ybarra.Study of Passive Films Formed on Sn in the 7-14 pH Range[J]. J. Electroanal. Chem.,2001,504:175-183
    [134]T. D. Burleigh, R. M. Latanision.The Effect of Phosphorus on the Corrosion of Glassy Copper-ZirconiumAlloys[J]. Corrosion,1987,43:471-475
    [135]D. J. Blackwood.Influence of the Space-charge Region on Electrochemical Impedance Measurements on Passive Oxide Films on Titanium[J]. Electrochim. Acta,2000,46:563-569
    [136]A. Goossens, M. Vazques, D. D. Macdonald.The Nature of Electronic States in Anodic Zirconium Oxide Films Part 1:The Potential Distribution[J]. Electrochim. Acta,1996,41:35-45
    [137]K. Juttner. Electrochemical Impedance Spectroscopy of Corrosion Processes on Inhomogeneous Surfaces[J]. Electrochim. Acta,1990,35:1501-1508
    [138]孔海霞.电化学阻抗图谱法Ti02薄膜光电极能带结构和催化活性研究[D].太原:太原理工大学,2004
    [139]Lopes, T., Andrade, L., Ribeiro, H. A., et al. Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy[J]. International Journal of Hydrogen Energy,2010,35:11601-11608
    [140]Andrade, L., Cruz, R., Ribeiro, H. A., et al. Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting[J]. International Journal of Hydrogen Energy,2010,35:8876-8883
    [141]张俊颉,吴敏,秦艳涛,等.交流阻抗法研究四羧基酞菁锌掺杂的二氧化钛半导体电极[J].物理化学学报,2008,24(1):79-85
    [142]ю.я.古列维奇,ю.B.波利斯科夫[苏].半导体光电化学[M].彭瑞伍译.北京:科学出版社,1989:69-70
    [143]W. P. Gomes, D. Vanmaekelbergh. Impedance spectroscopy at semiconductor electrodes:Review and recent developments[J]. Electrochimica Acta, 1996,41(718):967-973
    [144]查全性.电极过程动力学导论[M].北京:科学出版社,1987:505-528
    [145]冷文华,张昭,成少安,等.直接热氧化制备氧化钛薄膜电极的研究(Ⅰ)制备结构和电化学性质[J].化学物理学报,2001,14(6):705-710
    [146]王娅娟,李斌.溶胶-凝胶法制备Ti02玻璃膜和光催化降解玫瑰红B的研究[J].应用化学,2001,18(1):36-39
    [147]Kontos, A. I., Likodimos, V., Stergiopoulos, T., et al. Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles[J].Chem. Mater.2009,21(4):662-672
    [148]Shankar K., Mor G. K., Fitzgerald A., et al. Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures[J].J. Phys Chem C,2007,111(1):21-26
    [149]陈俊涛,李新军,杨莹,等.稀土元素掺杂对Ti02薄膜光催化性能的影响[J].中国稀土学报,2003,21(专辑):67-70
    [150]王添辉,李越湘,彭绍琴,等.铂修饰的稀土掺杂Ti02的光催化制氢活性[J].化学学报,2005,63(9):797-801
    [151]Xie, J. M., Jiang, D., Chen, M., et al. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010,372:107-114
    [152]Gparline B. E. K., Hnace R. L., Leenad H. I., et al. X-ray photoelectron study of the reaction of oxygen with cerium[J]. J Electron Spectrosc Relat Phenom, 1980,21:17-30
    [153]Koel B. E., Lee G. H. I., White J. M. X-ray photoelectron study of reaction of water with cerim[J]. J Electron Spectrosc Relat Phenom,1980,21:31-46
    [154]Nada, A. A., Barakat, M. H., Hamed, H. A., et al. Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts[J]. Int. J. Hydrogen Energy,2005,30(7):687-691
    [155]Zhang, S. H., Liang, K. X., Tan, Y. Photoelectrochemical characterization of TiO2 nanotube array for ammonia degradation by electrochemical impedance spectroscopy[A].2011 International Conference on Remote Sensing, Environment and Transportation Engineering[C]. Nanjing:IEEEXplore,2011: 6144-6147
    [156]A. J. Bard. Photoelectrochemistry and Heterogeneous Photocatalysis at Semiconductors[J]. Journal of photochemistry,1979,10(1):59-75
    [157]张胜寒,梁可心,檀玉.不同形态铈改性的Ti02纳米管阵列的制备及其可见光光电响应性质[J].物理化学学报,2011,27(11):2726-2732
    [158]邹云玲,李酽,郭英,等.纳米Ce02粉体发光性能的研究[J].辽宁师范大学学报(自然科学版),2009,32:212-214
    [159]陈俊涛,李新军,杨莹,等.稀土元素掺杂对Ti02薄膜光催化性能的影响[J].中国稀土学报,2003,21(专辑):67-70
    [160]Linsebigler, A. L., Lu, G. Q., Yates, Jr. J. T.Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chem. Rev.1995,95:735-758
    [161]龙绘锦,王恩君,董江舟,等.In离子掺杂二氧化钛纳米管可见光催化活性的研究[J].化学学报,2009,67(14):1533-1538
    [162]Ranjit, K. T., Willner, I., Bossmann, S. H., et al. Lanthanide oxide doped titanium dioxide photocatalysts:Novel photocatalysis for enhanced degradation of p-chlorophenoxyacetic acid[J]. Environ. Sci. Technol.2001,35,1544-1549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700