电纺碳纳米纤维/金属氧化物复合材料的制备及在光催化和超级电容器方面的性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于碳纳米纤维(CNFs)具有高导电和导热、高比强度、化学稳定性及其易于表面官能化等优点,因此,逐渐成为复合材料研究的热点。碳纤维复合材料已在催化剂和催化剂载体、锂离子二次电池、光电化学电池和传感器等领域获得了广泛的应用。本论文采用静电纺丝技术和溶剂热方法制备多种碳纳米纤维/金属氧化物功能复合材料,并探究了这些功能复合材料在光催化和超级电容器领域的应用性能,取得的创新性成果如下:
     1.通过静电纺丝技术和水热方法成功获得了具有一维结构的高催化活性ZnO-CNFs异质结光催化剂,样品通过FE-SEM,EDX,TEM,XRD,XPS和IR光谱测试说明ZnO纳米粒子成功分散生长在CNFs上,通过改变水热过程中醋酸锌和CNFs的比例,可以很好地控制生长在CNFs上ZnO纳米粒子的覆盖密度。由于在ZnO和CNFs间形成的异质结促进了电子和空穴的分离,因此ZnO-CNFs异质结光催化剂在对罗丹明B降解测试中显示了较高的催化活性。另外,ZnO-CNFs异质结光催化剂由于其具有一维特性,因而可以很容易地实现回收再利用,而且其重复利用后光催化效果无明显减弱。
     2.为了充分利用太阳光对污水进行处理,我们对窄带隙In_2O_3光催化剂进行了改性。首次结合静电纺丝技术和溶剂热方法制备了In_2O_3/CNFs异质结可见光催化剂。在可见光照下,与纯In_2O_3对比显示,In_2O_3/CNFs异质结光催化剂在降解罗丹明B方面显示出了更高的催化效果,良好的催化效果是由于在In_2O_3和CNFs间形成了异质结,这个异质结的存在,加速了光生电子和空穴分离。另外,由于一维纳米纤维特有的性质使得In_2O_3/CNFs异质结可见光催化剂在提高其催化效果的同时提高了其回收循环利用的性能。同时,我们还发现,通过改变添加剂如CO(NH2)2和水的量便可以实现对纳米In_2O_3的形貌的控制,如纳米立方体,纳米簇和纳米粒子,并对纳米结构的In_2O_3形成机理进行了讨论。
     3.通过静电纺丝技术和水热方法制备了SnO_2/CNFs异质结。结果表明,SnO_2纳米粒子成功负载在CNFs表面上,通过对水热过程中CNFs和SnCl_4.5H_2O的质量比可以控制SnO_2在CNFs表面上的覆盖度。对该材料在超级电容器电极材料方面的电化学性能进行了测试。用1M H_2SO_4溶液作为电解液,对材料进行循环伏安和恒流充放电测试表明,在不同扫描速率下,各样品均显示良好的电容性能。在20mV/s扫速下,样品CS2(CNFs和SnCl_4.5H_2O的质量比为1:7)拥有最高的电容量187F/g,而且经过1000次循环后,其电容量仍然保持在95%以上。良好的电化学性能可能是由于SnO_2/CNFs异质结材料低高电导率以及电解液可以快速传输到SnO_2表面的原因。
     4利用静电纺丝技术和溶剂热过程,首次成功地在CNFs表面上合成了高分散的Fe_3O_4纳米片层。将Fe_3O_4/CNFs复合材料制成超级电容器电极,并采用采用循环伏安和恒流充放电测试其电化学性能。结果显示,在不同扫描速率下,该材料呈现良好的电容性能。同纯Fe_3O_4相比(83F/g),Fe_3O_4/CNFs复合材料具有更高的比容量(135F/g)。经过一千次循环使用后,Fe_3O_4/CNFs复合材料的电容量仍可达到91%。较高的电容性能是由于在Fe_3O_4/CNFs复合材料中高电导率的一维CNFs降低了Fe_3O_4的电阻。另外,在CNFs表面上高分散和高比表面积的Fe_3O_4纳米片层提高了Fe_3O_4的利用率。最后,我们还讨论了纳米片层状Fe_3O_4在CNFs表面上的形成机理。
Carbon nanofibers (CNFs) show high conductivity and thermal conductivity, goodmechanical properties, chemieal stabllity, easy surfac efunctionalized and so on. In thisdissertation, In this dissertation, the valuable explorations have been focused on the designand synthesis of composite material, which has attracted special attention due to its widepotential application in many fields, such as catalysis and catalyst support chemical sensors,chemical cells, lithium-ion batteries, adsorbing material etc. In this dissertation, we employ anovel strategy to fabricate functional CNFs/metallic oxide nanocomposites by combining theelectrospinning technique and the solvothermal method. And the practical applications of theas-prepared functional nanocomposites materials are also investigated. The main researches arelist as follow:
     1. One-dimensional ZnO-carbon nanofibers (CNFs) heteroarchitectures with highphotocatalytic activity have been successfully obtained by a simple combination ofelectrospinning technique and hydrothermal process. The as-obtained products werecharacterized by field-emission scanning electron microscopy (FE-SEM), energy-dispersiveX-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), and IR spectrum. The results revealed thatthe secondary ZnO nanostructures were successfully grown on the primary CNFs substrateswithout aggregation. And, the coverage density of ZnO nanoparticles coating on the surfaceof the CNFs could be controlled by simply adjusting the mass ratio of zinc acetate to CNFs inthe precursor during the hydrothermal process for the fabrication of ZnO-CNFsheterostructures. The obtained ZnO-CNFs heteroarchitectures showed high photocatalyticproperty to degrade rhodamine B (RB) because of the formation of heteroarchitectures,whichmight improve the separation of photogenerated electrons and holes. Moreover, theZnO-CNFs heteroarchitectures could be easily recycled without the decrease in photocatalyticactivity due to their one-dimensional nanostructural property.
     2One-dimensional In_2O_3nanocubes/carbon nanofibers (CNFs) heterostructures have beensuccessfully obtained by a simple combination of electrospinning technique and solvothermalprocess for the first time. Photocatalytic tests displayed that the In_2O_3/CNFs heterostructurespossessed a much higher degradation rate of rhodamine B (RB) than the pure In_2O_3undervisible light. The enhanced photocatalytic activity could be attributed to the formation ofheterostructures, which might improve the separation of photogenerated electrons and holes. Moreover, the In_2O_3/CNF heterostructures could be easily recycled without the decrease ofthe photocatalytic activity due to their one-dimensional nanostructural property. Themorphology of the secondary In_2O_3nanostructures (nanocubes, nanoagglomerates ornanoparticles) could be controlled by adjusting the additives including CO(NH2)2and adefined amount of water. The general growth mechanisms for the In_2O_3nanostructures havealso been discussed.
     3Tin oxide (SnO_2)/carbon nanofibers (CNFs) heterostructures were fabricated by combiningthe versatility of the electrospinning technique and hydrothermal process. The results revealedthat the SnO_2nanostructures were successfully grown on the primary electrospun carbonnanofibers substrates. And, the coverage density of SnO_2nanoparticles coating on the surfaceof the CNFs could be controlled by simply adjusting the mass ratio of CNFs to SnCl_4.5H_2O inthe precursor during the hydrothermal process for the fabrication of SnO_2/CNFsheterostructures. The electrochemical performances of the SnO_2/CNFs heterostructures as theelectrode materials for supercapacitors were evaluated by cyclic voltammetry (CV) andgalvanostatic charge discharge measurement in1M H_2SO_4solution. At different scan rates,all the samples with different coverage densities of SnO_2showed excellent capacitancebehavior. And, the sample CS2(the mass ratio of CNFs to SnCl_4.5H_2O reached1:7) exhibiteda maximum specific capacitance of187F/g at a scan rate of20mV/s. Moreover, after1000cycles, the specific capacitance retention of this sample was over95%. The high capacitivebehavior could be ascribed to the low resistance of SnO_2/CNFs heterostructures and rapidtransport of the electrolyte ions from bulk solution to the surface of SnO_2.
     4. Highly dispersed Fe_3O_4nanosheets on one-dimensional (1D) carbon nanofibers (CNFs)were firstly fabricated by combining the versatility of the electrospinning technique andsolvent-thermal process. The electrochemical performances of the Fe_3O_4/CNFsnanocomposites as the electrode materials for supercapacitors were evaluated by cyclicvoltammetry (CV) and galvanostatic charge–discharge measurement in1M Na2SO3electrolyte. At different scan rates, the sample showed excellent capacitance behavior.Incomparison to the pure Fe_3O_4(83F/g), the as-prepared Fe_3O_4/CNFs nanocompositeselectrode exhibited a higher specific capacitance (135F/g). Meanwhile, the supercapacitordevices of the Fe_3O_4/CNFs nanocomposites exhibited excellent long cycle life along with91%specific capacitance retained after1000cycle tests. The high capacitive behavior couldbe ascribed to the high electrical conductivity and the one-dimensional properties of the CNFsin Fe_3O_4/CNFs nanocomposites, which could decrease the charge transfer resistance of theFe_3O_4. At the same time, the high specific surface area and high level exposure of the Fe_3O_4nanosheets on the surface of the CNFs increased the electrochemical utilization of Fe_3O_4. Finally, a possible mechanism for the formation of the Fe_3O_4nanosheets on the surface ofCNFs was suggested.
引文
[1] Choi Y, Sugimoto K, Song S, et a1. Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets [J].Materials Letters,2005,59(27):3515-3520.
    [2]Enomoto, Kazuki, Yasuhara, et a1. Mechanical properties of injection—molded composites of carbonnanofibers in polypmpylene matrix [J]. New Diamond and Frontier Carbon Technology,2005,15(2):59-72.
    [3] Zhu H, Li X, Ci E. Hydrogen storage in heat—treated carbon nanofibers prepared by the verticalfloating catalyst method [J]. Materials Chemistry and Physics,2003,78(3):670-75.
    [4] Yeh M K, Tai N H, Liu J H. Mechanical behavior of phenolic-based composites reinforced withmulti—walled carbon nanotubes [J]. Carbon,2006,44(1):1-9.
    [5] Sophie B, Philippe D, Emile P, et a1. Effect of Palmitic Acid on the Electrical Conductivity ofCarbon-Nanotubes-Epoxy Resin Composites [J]. Macromolccules,2003,36(26):9678-9680.
    [6] Young S, Jae RY. Evaluation of efective thermal conductivity for carbonnanotube/polymer compositesusing control vdume finite element method [J]. Carbon,2006,44(4):710-717.
    [7] Mathur R, Bahl O, Kundra K, Characterization of modified PAN precursors [J]. J. Mater. Sci. Lett.2005,35(5):757-759.
    [8] Hughes T, Chambers C. Manu facture of carbon filaments [P]. USPatent,1889,405-480.
    [9] Mordkovich. Carbon Nanofiber: A New Ultrahigh-Strength Material for ChemiealTechnology [J].Theoretieal Foundation of Chemieal Engineering,2003,37(5):429-438.
    [10]谢自立,郭坤敏.[J].无机材料学报,2004,19(3):599-604.
    [11] Bernadetz A, Higgin, william J, et a1. Polycarbonat carbon nanofiber composites [J]. EuropeanPolymer Journal,2005,41(5):889-893.
    [12]鹿海军,梁国正,张宝艳等,纳米碳管在聚合物中的应用及其复合材料[J].研究进展,材料导报,2003/7,17(7):57-60.
    [13]陈红燕,气相生长碳纳米纤维的制备及碳纳米纤维增强环氧树脂性能研究.武汉理工大学学位论文,2005/6.
    [14] Jaeob C, Kearns, Robert L. Polypropylene Fibers Reinfored with Carbon Nanotubes [J]. Joumal ofApplied Polymer Seienee,2002,86(8):2079-2084.
    [15] Baker R, Harris D, Thomas R, et a1. Formation of filamentous carbon from iron Formation offilamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene [J]. J.Cata.,1973,30(1):86-95.
    [16] Rodriguez N M, chamers A, Baker R T K. Catalytic Enneering of Carbon Nanostmctures [J].Langmuir,1995,11:38-62.
    [17] Chambei A, Rodiguez N M, Bakerrtk. Influence of Copper on the Stmctural Characteristics of CarbonNanofibers Produced from the Cobaltcatalyzed Decomposition of Ethylene [J]. J Mater Res.,1996,11(2):430-438.
    [18] TibbettS G G, Doll G L, Grorkiewiez D, et a1. Physical Properties of Vapor grown Carbon Fibers [J].Carbon,1993,31(7):1039-1047.
    [19] Endo M, Takeuch K, Hiraoka T, et a1. Stackillg Nature of Graphite Layers in Carbon Nanotubers andnanofibres [J]. J Phys chem solids.1997,58(11):1707-1712.
    [20] Max L. Global Outlook for Carbon Fiber [J]. Lecture presented at conference,2002, Raleigll, NC.USA.2002,21-23.
    [21]史铁钧,廖若谷,王鹏.电纺法制备聚丙烯腈基碳纳米纤维[J].化工学报,2007,58(2):507-513.
    [22]候鹏翔,白朔.气体流动状态对碳纳米纤维制备的影响[J].新型炭材料.2000,15(4):17-20.
    [23] Ci L,Wei J, Wei B, et a1.Carbon Nanofibers and Single·walled Carbon Nanotubes Prepared by thenoating Catalyst [J]. carbon.2001,39(3):329-335.
    [24]昊大诚,杜仲良,高绪珊,[M]纳米纤维.化学工业出版社,2003,44.
    [25] Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel [J]. Adv Mater,2004,16(14):1151-1170.
    [26] Xia Y, Yang P. Guest editorial: chemistry and physics of nanowires [J]. Adv Mater,2003,15(5):351-456.
    [27] Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets ofpolymer solutions in electrospinning [J]. Journal of Applied Physics,2000,87(9):4531-4547.
    [28] Greiner A, Wendorff J H. Electrospinning: A fascination method for the preparation of ultrathinfibers[J]. Angew Chem Int Ed,2007,46(30):5670-5703.
    [29] Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedical research [J]. MacromolRapid Commun,2008,29(22):1775-1792.
    [30]吕砚山.常见电工电子技术手册[M].北京:化学工业出版社,1995.
    [31] Chun l, Reneker DH, et al. Carbon nanofibers from polyacrylonitrile and mesophase pitch [J]. J AdvMater.1999,31:36-41.
    [32] Wang Y U, Santiago-aviles J J. Large Negative Magnetoresistance and Two-dimensionalWeaklocalization in Carbon Nanofibers Fabrieated Using ElectroSPinning [J]. J Appl Phys.2003,94(3):1721-727.
    [33] Olive GH, olive. Molecular interactions and macroscopic Properties of Polyacrylonitrile and modelsubstance [J]. Advances in Polymer Seienee,1979,32:123-152.
    [34]于美杰.聚丙烯睛纤维预氧化过程中的热行为与结构转变[D].济南:山东大学,2007.
    [35] Morita K, Murata Y, Ishitani A, et al. Characterization of commereially available PAN-based carbonfibers [J]. Pure and Applied Chemistry,1986,58(3):455-468.
    [36] Kalashnik AT. The role of different factors in creation of the strueture of stabilized aerylic fibers [J].Fiber chemistry,2002,34(1):10-17.
    [37] GuPta A, Harrison IR. New aspects in the oxidadtive stabilization of PAN-based carbon fiers [J].Carbon,1996,34(11):1427-1445.
    [38] Fitzer E, Gkogkidis A. Carbon-Fiber-Reinforced Carbon Composites Fabricated by LiquidImpregnation [J]. ACS Polylller PrePrints,1986,303(24):346-379.
    [39] Bahl O, Manocha L. Effect of Preoxidation Conditions on Mechanical Properties of Carbon Fibers [J].Carbon,1975,13(4):297-300.
    [40] Dennet J, Bansal R.著李仍元,过梅丽(译).碳纤维.科学出版社.1989.
    [41] Chen R, Zhang Y, Wang D, et al. Noncovalent Sidewall Functionalization of Single-Walled CarbonNanotubes for Protein Immobilization [J]. J. Am. Chem. Soc.2001,123(16):3838-3839.
    [42] Collins P, Bradley K, Ishigami M, et al. Extreme Oxygen Sensitivity of Electronic Properties ofCarbon Nanotubes [J]. Science,2000,287(5458):1801-1804.
    [43] Lü R, Shi K, Zhou W, et al. Highly dispersed Ni-decorated porous hollow carbon nanofibers:fabrication, characterization, and NOx gas sensors at room temperature [J]. J. Mater. Chem.,2012,22(47):24814-24820.
    [44] Lin C, Ritte A, Popov N. Charerizationof sol-gel-derived cboalt oxide xeorgels as electorhcemiealcapacitors [J]. J.Electorhcem. Soc.,1998,145(12):4097-4103.
    [45]王德诚,纳米纤维及其制造方法,合成纤维工业,2004/2,27(1):29-31.
    [46] Klankowski S, Rojeski Ronald, Cruden B, et al. A high-performance lithium-ion battery anode basedon the core–shell heterostructure of silicon-coated vertically aligned carbon nanofibers [J]. J. Mater. Chem.A,2013(1):1055-1064.
    [47] Kim C. Electorehemical characterization of electorspun activated carbon naofibres as an electrode insupercapacitors [J]. J. Power. Soucres,2005,142(1-2):382-388.
    [1] Hoffmann M R, Martin S T, Choi w,et al. Environmental application of semiconductor photocatalyst[J]. Chem Rev,1995,95(1):69-96.
    [2] Wang C, Shao C, Liu Y, et al. Water-Dichloromethane Interface Controlled Synthesis of HierarchicalRutile TiO2Superstructures and Their Photocatalytic Properties [J]. Inorg. Chem.,2009,48(3):1105-1113.
    [3] Zhang L, Wang W, Yang J, et al. Sonochemical synthesis of nanocrystallite Bi2O3as avisible-light-driven photocatalyst [J]. Applied Catalysis A: General,2006,308(10):105-110.
    [4] Li L, Chu Y, Liu Y, et al. Template-free synthesis and photocatalytic properties of novel Fe2O3hollowspheres [J]. J. Phys. Chem. C,2007,111(5):2123-2127.
    [5] Smith Y R, Kar A, Subramanian V R. Investigation of physicochemical parameters that influencephotocatalytic degradation of methyl orange over TiO2nanotubes [J]. Ind. Eng. Chem. Res.,2009,48(23):10268-10276.
    [6] Jing L, Wang D, Wang B, et al. Effects of noble metal modification on surface oxygen composition,charge separation and photocatalytic activity of ZnO nanoparticles [J]. J. Mol. Catal. A,2006,244(1-2):193-200.
    [7] Stroyuk A L, Shvalagin V, V, Kuchmii S Y. Photochemical synthesis and optical properties of binaryand ternary metal–semiconductor composites based on zinc oxide nanoparticles [J]. J. Photochem. Photobio.A,2005,173(2):185-194.
    [8] Yu J, Zhang L, Cheng B, et al. Hydrothermal preparation and photocatalytic activity of hierarchicallysponge-like macro-/mesoporous titania [J]. J. Phys. Chem. C,2007,111(28):10582-10589.
    [9] Yu J, Liu S, Yu H. Microstructures and photoactivity of mesoporous anatase hollow microspheresfabricated by fluoride-mediated self-transformation [J]. J. Catal.,2007,249(1):59-66.
    [10] Yeber M C, Rodr guez J, Freer J, et al. Photocatalytic degradation of cellulose bleaching effluent bysupported TiO2and ZnO [J]. Chemosphere,2000,41(8):1193-1197.
    [11] Khodja A, Sehili T, Pilichowski J, et al. Photocatalytic degradation of2-phenylphenol on TiO2andZnO in aqueous suspensions [J]. Journal of Photochemistry and Photobiology A: Chemistry,2001,141(2-3):231-239.
    [12] Ye C, Bando Y, Shen G, et al. Thickness-dependent photocatalytic performance of ZnO nanoplatelets[J]. J. Phys. Chem. B,2006,110(31):15146-15151.
    [13] Cao B, Cai W. From ZnO nanorods to nanoplates: chemical bath deposition growth andsurface-related emissions [J]. J. Phys. Chem. C,2008,112(2):680-685.
    [14] Zhang Z, Shao C, Li X, et al. Electrospun Nanofbers of ZnO-SnO2Heterojunction with HighPhotocatalytic Activity [J]. J. Phys. Chem. C,2010,114(17)7920-7925.
    [15] Zhang Z, Shao C, Li X, et al. Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunctionswith Enhanced Photocatalytic Activity [J]. ACS Applied Materials&Interfaces,2010,2(10):2915-2923.
    [16] Wang C, Zhao J, Wang X, et al. Preparation, characterization and photocatalytic activity of nano-sizedZnO/SnO2coupled photocatalysts [J]. Applied Catalysis B: Environmental,2002,39(3):269-279.
    [17] Song K, Park M, Kwon Y, et al. Preparation of transparent particulate MoO3/TiO2and WO3/TiO2films and their photocatalytic properties [J]. Chem. Mater.,2001,13(7):2349-2355.
    [18] Ostermann R, Li D, Yin Y, et al. V2O5nanorods on TiO2nanofibers: a new class of hierarchicalnanostructures enabled by electrospinning and calcination [J]. Nano Lett.,2006,6(6):1297-1302.
    [19] Fu H, Xu T, Zhu S, et al. Photocorrosion Inhibition and Enhancement of Photocatalytic Activity forZnO via Hybridization with C60[J]. Environ. Sci. Technol.,2008,42(21):8064-8069.
    [20] Zhang L, Austin D, Merkulov V, et al. Four-probe charge transport measurements on individualvertically aligned carbon nanofibers [J]. Appl. Phys. Lett.,2004,84(20):3972-3974.
    [21] Unalan H, Wei D, Suzuki K, et al. Photoelectrochemical cell using dye sensitized zinc oxidenanowires grown on carbon fibers [J]. Appl. Phys. Lett.,2008,93(13):133116-133118.
    [22] Liu J, Li J, Sedhain A, et al. Structure and photoluminescencestudy of TiO2nanoneedle texture alongvertically aligned carbon nano-fiber arrays[J]. J. Phys. Chem. C2008,112(44):17127-17132.
    [23] Zhang G, Sun S, Yang D, et al. The surface analytical characterization of carbon fibers functionalizedby H2SO4/HNO3treatment [J]. Carbon,2008,46(2):196-205.
    [24] Chen L, Tsai F, Fang S, et al. Properties of sol–gel SnO2/TiO2electrodes and theirphotoelectrocatalytic activities under UV and visible light illumination [J]. Electrochimica Acta,2009,54(4):1304-1311.
    [25] Ahimou F, Boonaert C, Adriaensen Y, et al. XPS analysis of chemical functions at the surface ofBacillus subtilis [J]. Journal of Colloid and Interface Science,2007,309(1):49-55.
    [26] Yu J, Yu X. Environ. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Sci. Technol.,2008,42(13):4902-4907.
    [27] Ottaviano L, Kwoka M, Bisti F, et al. Local surface morphology and chemistry of SnO2thin filmsdeposited by rheotaxial growth and thermal oxidation method for gas sensor application [J]. Thin SolidFilms,2009,517(22):6161-6169.
    [28] Ros T, Van Dillen A, Geus J, et al. Surface Structure of Untreated Parallel and Fishbone CarbonNanofibres: An Infrared Study [J]. ChemPhysChem,2002,3(2):209-214.
    [29] Mawhinney D, Naumenko V, Kuznetsova A, et al. Infrared Spectral Evidence for the Etching ofCarbon Nanotubes: Ozone Oxidation at298K [J]. J Am Chem Soc.,2000,122(10):2383-2384.
    [30] Qin Y, Yang H, Zhang X, et al. Electrophoretic deposition of network-like carbon nanofibers as apalladium catalyst support for ethanol oxidation in alkaline media [J]. Carbon,2010,48(12):3323-3329.
    [31] Xiong H, Wang Z, Xia Y. Polymerization Initiated by Inherent Free Radicals on Nanoparticle Surfaces:A Simple Method of Obtaining Ultrastable (ZnO) Polymer Core–Shell Nanoparticles with Strong BlueFluorescence [J]. Adv. Mater.,2006,18(6):748-751.
    [32] Tang X, Choo E, Li L, et al. One-Pot Synthesis of Water-Stable ZnO Nanoparticles via a PolyolHydrolysis Route and Their Cell Labeling Applications [J]. Langmuir,2009,25(9)5271-5275.
    [33] Turchi C, Ollis D. Photocatalytic degradation of organic water contaminants: Mechanisms involvinghydroxyl radical attack [J]. J. Catal.,1990,122(1):178-192.
    [34] Lee M, Park S, Lee G, et al. Synthesis of TiO2particles by reverse microemulsion method usingnonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity [J].Catal. Today,2005,101(3-4):283-290.
    [35] Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon-nanotube–TiO2composites [J]. Adv.Mater.,2009,21(21):2233-2239.
    [36] Aarthi T, Madras G. Photocatalytic degradation of rhodamine dyes with nano-TiO2[J]. Ind. Eng.Chem. Res.,2007,46(1):7-14.
    [37] Rajeshwar K, Osugi M, Chanmanee W, et al. Heterogeneous photocatalytic treatment of organic dyesin air and aqueous media [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2008,9(4):171-192.
    [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38.
    [2] Wang C, Shao C, Liu Y, et al. Water-Dichloromethane Interface Controlled Synthesis of HierarchicalRutile TiO2Superstructures and Their Photocatalytic Properties [J]. Inorg. Chem.,2009,48(3):1105-1113.
    [3] Ye C, Bando Y, Shen G, et al. Thickness dependent photocatalytic performance of ZnO nanoplatelets[J]. J. Phys. Chem. B,2006,110(31):15146-15151.
    [4] Zhang L, Wang W, J Yang, et al. Sonochemical synthesis of nanocrystallite Bi2O3as avisible-light-driven photocatalyst [J]. Appl. Catal., A,2006,308,105-110.
    [5] Li L, Chu Y, Liu Y. et al. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3Hollow Sphere [J]. J. Phys. Chem. C,2007,111(5):2123-2127.
    [6] Smith Y R, Kar A, Subramanian V (R.), Investigation of Physicochemical Parameters That InfuencePhotocatalytic Degradation of Methyl Orange over TiO2Nanotubes [J]. Ind. Eng. Chem. Res.,2009,48(23):10268-10267.
    [7] Mu J B, Shao C L, Guo Z C, et al. High Photocatalytic Activity of ZnO-Carbon NanofiberHeteroarchitectures [J]. ACS Appl. Mater. Interfaces,2011,3(2):590-596.
    [8] Stroyuk A L, Shvalagin V V, Kuchmii S Y. Photochemical synthesis and optical properties of binaryand ternary metal–semiconductor composites based on zinc oxide nanoparticles [J]. J. Photochem. Photobio.A,2005,173(2):185-194.
    [9] Yu J, Zhang L, Cheng B, et al. HydrothermalPreparation and Photocatalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania [J]. J.Phys. Chem. C,2007,111(28):10582-10589.
    [10] Yu J, Liu S, Yu H. Microstructures and photoactivity of mesoporous anatase hollow microspheresfabricated by fluoride-mediated self-transformation [J]. J. Catal.,2007,249(1):59-66.
    [11] Usseglio S, Damin A, Scarano D, et al.(I2)n incapsulation inside TiO2: a way to tune photoactivity inthe visible region [J]. J. Am. Chem. Soc.,2007,129(10):2822-2828.
    [12] Wang C, Shao C, Liu Y, et al. Water-Dichloromethane Interface Controlled Synthesis of HierarchicalRutile TiO2Superstructures and Their Photocatalytic Properties [J]. Inorg. Chem.,2009,48(3):1105-1113.
    [13] Linsebigler A, Lu G, Yates J T. Photocatalysis on TiO2Surfaces: Principles, Mechanisms, andSelected Results [J]. Chem. Rev.,1995,95(3):735-758.
    [14] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalystsoperating under visible light irradiation [J]. J. Catal.,2003,216(1-2):505-516.
    [15] Diebold U. The surface science of titanium dioxide Surf. Sci. Rep.,2003,48,53-229.
    [16] Arana J, DIaz O G, Saracho M M, et al. Photocatalytic degradation of formic acid using Fe/TiO2catalysts: the role of Fe3+/Fe2+ions in the degradation mechanism [J]. Appl. Catal., B,2001,32(1-2):49-61.
    [17] Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. J. Phys. Chem.,1994,98(51)13669-13679.
    [18] Wang J W, Mao B D, Gole J L, et al. Visible-light-driven reversible and switchable hydrophobic tohydrophilic nitrogen-doped titania surfaces: correlation with photocatalysis [J].Nanoscale,2010,2(10):2257-2261.
    [19] In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B,N-codopedTiO2photocatalysts [J]. J. Am. Chem. Soc.,2007,129(45):13790-13791.
    [20] Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide.[J]. Angew.Chem., Int. Ed.,2003,42(40):4908-4011.
    [21] Valentin C Di, Pacchioni G, Selloni A. Theory of Carbon Doping of Titanium Dioxide [J]. Chem.Mater.,2005,17(26):6656-6665.
    [22] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium dioxide[J]. Science,2001,293(5528):269-271.
    [23] Zhang L W, Fu H B, Zhu Y F. An Efficient TiO2Photocatalyst by Surface Hybridization withGraphite-like Carbon [J]. Adv. Funct. Mater.,2008,18(15):2180-2189.
    [24] Zhong J, Chen F, Zhang J L. Evolution of horizontally aligned carbon nanotubes to orthogonallyaligned nanotube arrays [J]. J. Phys. Chem. C,2010,114(2):933-939.
    [25] Zhao L, Chen X F, Wang X C, et al. One-Step Solvothermal Synthesis of a Carbon@TiO2DyadeStructure Effectively Promoting Visible-Light Photocatalysis [J]. Adv. Mater.,2010,22(30):3317-3321.
    [26] Lettmann C, Hildenbrand K, Kisch H, et al. Visible light photodegradation of4-chlorophenol with acoke-containing titanium dioxide photocatalyst [J]. Appl. Catal., B,2001,32(4):215-298.
    [27] Zhang Z, Shao C, Li X, et al. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions withenhanced photocatalytic activity [J]. ACS Appl. Mater. Interfaces,2010,2(10):2915-2923.
    [28] Mitoraj D, Kisch H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visiblelight [J]. Angew. Chem., Int.Ed.2008,47(51):9975-9978.
    [29] Dong F, Guo S, Wang H Q, et al. Enhancement of the visible light photocatalytic activity of C-dopedTiO2nanomaterials prepared by a green synthetic approach [J]. J. Phys. Chem. C,2011,115(27):13285-13292.
    [30] Guo Y, Wang H S, He C L, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C forvisible light photocatalysis [J]. Langmuir,2009,25,4678-4684.
    [31] Cho S, Jang J W, Lee J S, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C forvisible light photocatalysis [J]. CrystEngComm,2010,12(10):3929-3935.
    [32] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium dioxide[J]. Science,2001,293(5528):269-271.
    [33] Walsh A, Da Silva J L F, Wei S H, et al. Nature of the Band Gap of In2O3Revealed by First-PrinciplesCalculations and X-Ray Spectroscopy [J]. Phys. Rev. Lett.,2008,100(16):167402-167405.
    [34] Lv J, Kako T, Li Z S, et al. Synthesis and Photocatalytic Activities of NaNbO3Rods Modified byIn2O3Nanoparticles [J]. J. Phys. Chem. C,2010,114(47):6157-6162.
    [35] Wang Z Y, Huang B B, Dai Y, et al. High photocatalytic ZnO/In2O3hetero-nanostructures synthesizedby co-precipitation method [J]. J. Phys. Chem. C,2009,113(11):4612-4617.
    [36] Chang W K, Rao K K, Kuo H C, et al. A novel core–shell like composite In2O3@CaIn2O4for efficientdegradation of Methylene Blue by visible light [J]. Applied Catalysis A: General,2007,321(1):1-6.
    [37] Zhou F L, Li X J, Shu J, et al. Synthesis and visible light photo-electrochemical behaviors ofIn2O3-sensitized ZnO nanowire array film [J]. Journal of Photochemistry and Photobiology A: Chemistry,2011,219(1):132-138.
    [38] Yan T J, Long J L, Shi X C, et al. Efficient Photocatalytic Degradation of Volatile OrganicCompounds by Porous Indium Hydroxide Nanocrystals [J]. Environ. Sci. Technol.,2010,44(4):1380-1385.
    [39] Zhang L, Austin D, Merkulov V, et al. Four-probe charge transport measurements on individualvertically aligned carbon nanofibers [J]. Appl. Phys. Lett.,2004,84(20):3972-3974.
    [40] Unalan H, Wei D, Suzuki K, et al. Photoelectrochemical cell using dye sensitized zinc oxidenanowires grown on carbon fibers [J]. Appl. Phys. Lett.,2008,93(13):133116-13119.
    [41] Liu J, Li J, Sedhain A, et al. Structure and Photoluminescence Study of TiO2Nanoneedle Texturealong Vertically Aligned Carbon Nanofiber Arrays [J]. J. Phys. Chem. C,2008,112(44):17127-17132.
    [42] Ottaviano L, Kwoka M, Bisti F, et al. Local surface morphology and chemistry of SnO2thin filmsdeposited by rheotaxial growth and thermal oxidation method for gas sensors application [J]. Thin SolidFilms,2009,517(22):6161-6169.
    [43] J. M. Du, L. Huang, Z. Q. Chen. et al. A Controlled Method to Synthesize Hybrid In2O3/AgNanochains and Nanoparticles: Surface-Enhanced Raman Scattering [J]. J. Phys. Chem. C,2009,113(23):9998-10004.
    [44] Gurlo A, Barsan N, Weimar U, et al. Polycrystalline Well-Shaped Blocks of Indium Oxide Obtainedby the Sol Gel Method and Their Gas-Sensing Properties [J]. Chem. Mater.,2003,15(23):4377-4383.
    [45] Fran ois A, Christophe J P B, Yasmine A, et al. XPS analysis of chemical functions at the surface ofBacillus subtilis [J]. Journal of Colloid and Interface Science,2007,309(1):49-55.
    [46] Sanjinés R, Tang H, Berger H, et al. Electronic structure of anatase TiO2oxide [J]. J Appl. Phys.,1994,75(6):2945-2951.
    [47] Li J H, Shen D Z, Zhang J Y, et al. Magnetism origin of Mn-doped ZnO nanoclusters [J]. J. Magn.Magn. Mater.,2006,302(1):118-121.
    [48] Turchi C, Ollis D. Photo catalytic degradation contaminants mechanisms. involving hydroxyl radicalattack [J]. J. Catal.,1990,122(1):178-192.
    [49] Lee M, Park S, Lee G, et al. Synthesis of TiO2particles by reverse microemulsion method usingnonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity [J].Catal. Today,2005,101(3-4):283-290.
    [50] Woan K, Pyrgiotakis G, Sigmund W, et al. Photocatalytic carbon-nanotube–TiO2composites [J]. Adv.Mater.,2009,21(21):2233-2239.
    [51] Tada H, Hattori A, Tokihisa Y, et al. A Patterned-TiO2/SnO2Bilayer Type Photocatalyst [J]. J. Phys.Chem. B,2000,104(19):4585-4587.
    [52] Aarthi T, Madras G. Photocatalytic Degradation of Rhodamine Dyes with Nano-TiO2[J]. Ind. Eng.Chem. Res.,2007,46(1):7-17.
    [53] Rajeshwar K, Osugi M, Chanmanee W, et al. Heterogeneous photocatalytic treatment of organic dyesin air and aqueous media [J]. Photochem. Photobiol. C,2008,9(4):171-192.
    [1] Wang S R, Huang J, Zhao Y Q, et al. Preparation, characterization and catalytic behavior of SnO2supported Au catalysts for low-temperature CO oxidation [J]. J. Mol. Catal. A: Chem.2006,259(1-2):245-252.
    [2] Maksimov G M, Fedotov M A, Bogdanov S V, et al. Synthesis and study of acid catalyst30%WO3/SnO2[J]. J. Mol. Catal. A: Chem.,2000,158(1):435-458.
    [3] Williams D E, Pratt K F E. Classification of reactive sites on the surface of polycrystalline tin dioxide[J]. J. Chem. Soc. Faraday.,1998,94(23):3493-3500.
    [4] Chiu H C, Yeh C S. Hydrothermal Synthesis of SnO2Nanoparticles and Their Gas-Sensing of Alcohol[J]. J. Phys. Chem. C,2007,111(20):7256-7259.
    [5] Dazhi W, Shulin W, Jun C, et al. Microstructure of SnO2[J]. Phys. ReV. B1994,49(20):14282-14287.
    [6] Zheng Y, Kalmakor A, Lilach Y, et al. Electronic Control of Chemistry and Catalysis at the Surface ofan Individual Tin Oxide Nanowire [J]. J. Phys. Chem. B2005,109(5):1923-1929.
    [7] Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscaleelectronic and optoelectronic devices [J]. Nature2001,409(6816):66-69.
    [8] Srivastava D N, Chappel S, Palchik O, et al. Sonochemical Synthesis of MesoporousTin Oxide [J].Langmuir2002,18(10):4160-4164.
    [9] Cummins D, Boschloo G, Regan M, et al. Ultrafast Electrochromic Windows Based OnRedox-Chromophore Modified Nanostructured Semiconducting And Conducting Films [J]. J. Phys. Chem.B,2000,104(48):11449-11459.
    [10] He Y S, Cambell J C, Murphy R C, et al. Elec-trical and optical characterization of Sb: SnO2[J]. J.Mater. Res.,1993,8(12):3131-3134.
    [11] Zhu J, Lu Z, Aruna S T, et al. Sonochemical Synthesis of SnO2Nanoparticles and Their PreliminaryStudy as Li Insertion Electrodes [J]. Chem. Mater.,2000,12(9):2557-2566.
    [12] Prasad K R, Miura N. Electrochemical synthesis and characterization of nanostructured tin oxide forelectrochemical redox supercapacitors [J]. Electrochem. Commun,2004,6(8):849-852.
    [13] Hou Y, Cheng Y W, Hobson T, et al. Design and Synthesis of Hierarchical MnO2Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High PerformanceElectrochemical Electrodes [J]. Nano Lett.,2010,10(7):2727-2733.
    [14] Park M S, Kang Y M, Wang G Xiu, et al. Epitaxial Growth of Branched α-Fe2O3/SnO2Nano-Heterostructures with Improved Lithium-Ion Battery Performance [J]. Funct. Mater.,2008,18(3):455-461.
    [15] Sivakkumar S R, Ko J M, Kim D Y, et al. Performance evaluation of CNT/polypyrrole/MnO2composite electrodes for electrochemical capacitors [J]. Electrochim. Acta,2007,52(25):7377-7385.
    [16] Liu C, Li Feng, Ma L P, et al. Advanced materials for energy storage [J]. Adv. Mater.,2010,22(8):E28-E62.
    [17] Hu Z A, Xie Y L, Wang Y X, et al. Polyaniline/SnO2nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics,2009,114(2-3):990-995.
    [18] Yuan L, Wang J, Chew S Y, et al. Synthesis and characterization of SnO2–polypyrrole composite forlithium-ion battery [J]. Journal of Power Sources,2007,174(2):1183-1187.
    [19] Li F H, Song J F, Yang H F, et al. One-step synthesis of graphene/SnO2nanocomposites and itsapplication in electrochemical supercapacitors [J]. Nanotechnology,2009,20(45):455602-455607.
    [20] Hwang S W, Hyun S H. Synthesis and characterization of SnO2–polypyrrole composite for lithium-ionbattery [J]. Journal of Power Sources2007,172(1):451-459.
    [21] Hou Y, Cheng Y G, Hobson T, et al. Design and Synthesis of Hierarchical MnO2Nanospheres/CarbonNanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J].Nano Lett.,2010,10(7):2727-2733.
    [22] Gallegos A K C, Rincón M E. Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes forsymmetric and asymmetric electrochemical capacitor cells [J]. Journal of Power Sources,2006,162(1):743-747.
    [23] Lua T, Zhang Y P, Li H B, et al. Electrochemical behaviors of graphene–ZnO and graphene–SnO2composite films for supercapacitors [J]. Electrochimica Acta,2010,55(13):4170-4173.
    [24] Leela Mohana Reddy A, Ramaprabhu S. et al. Pt/SWNT Pt/C Nanocomposite Electrocatalysts forProton-Exchange Membrane Fuel Cells [J]. J. Phys. Chem. C2007,111(44):16138–16146.
    [25] Li D, Xia Y. et al. Electrospinning of Nanofibers: Reinventing the Wheel [J]. Adv Mater.,2004,16(14):1151-1170.
    [26] Ng K C, Zhang S W, Peng C, et al. Individual and bipolarly stacked asymmetrical aqueoussupercapacitors of CNTs/SnO2and CNTs/MnO2nanocomposites [J]. J. Electrochem. Soc.,2009,156(11):A846-A853.
    [27] Yang Z X, Du G D, Guo Z P, et al. Plum-branch-like carbon nanofibers decorated with SnO2nanocrystals [J]. Nanoscale,2010,2(6):1011-1017.
    [28] Ottaviano L, Kwoka M, Bisti F, et al. Local surface morphology and chemistry of SnO2thin filmsdeposited by rheotaxial growth and thermal oxidation method for gas sensor application [J]. Thin SolidFilms,2009,517(22):6161-6169.
    [29] Liu Y H, Jing X L. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins [J].Carbon,2007,45(10):1965-1971.
    [30] Ahimou F, Boonaert C J P, Adriaensen Y, et al. XPS analysis of chemical functions at the surface ofBacillus subtilis [J]. Journal of Colloid and Interface Science,2007,309(1):49-55.
    [31] An G, Na N, Zhang X R, et al. SnO2/carbon nanotube nanocomposites synthesized in supercriticalfluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery [J].Nanotechnology,2007,18(43):435707-4357013.
    [32] Liang L Y, Liu Z M, Cao H T, et al. Microstructural, Optical, and Electrical Properties of SnO ThinFilms Prepared on Quartz via a Two-Step Method [J]. ACS Appl. Mater. Interfaces.,2010,2(4):1060-1065.
    [33] Lee S H, Mathews M, Toghiani H, et al. Fabrication of Carbon-Encapsulated Mono-and Bimetallic(Sn and Sn/Sb Alloy) Nanorods. Potential Lithium-Ion Battery Anode Materials [J]. Chem. Mater.,2009,21(11):2306-2341.
    [34] Ahimou F, Boonaert C, Adriaensen Y, et al. XPS analysis of chemical functions at the surface ofBacillus subtilis [J]. Journal of Colloid and Interface Science,2007,309(1):49-55.
    [35] Zhang G X, Sun S H, Yang D Q, et al. The surface analytical characterization of carbon fibersfunctionalized by H2SO4/HNO3treatment [J]. Carbon,2008,46(2):196-205.
    [36] Fujihara S, Maeda T, Ohgi H, et al. Hydrothermal routes to prepare nanocrystalline mesoporous SnO2having high thermal stability [J]. Langmuir,2004,20(15):6476-6481.
    [38] Gujar T P, Shinde V R, Lokhande C D, et al. Electrosynthesis of Bi2O3thin films and their use inelectrochemical supercapacitors [J]. J. Power Sources,2006,161(2):1479-1485.
    [39] Yang X H, Wang Y G, Xiong H M, et al. Interfacial synthesis of p orous MnO2and its application inelectrochemical capacito [J]. Electrochim. Acta,2007,53(2):752-757.
    [40] Sharma R K, Oh H S, Shul Y.G, et al. Carbon-supported, nano-structured, manganese oxide compositeelectrode for electrochemical supercapacitor [J]. J. Power Sources,2007,173(2):1024-1028.
    [41] Yan J, Khoo E, Sumboja A, et al. Facile Coating of Manganese Oxide on Tin Oxide Nanowires withHigh-Performance Capacitive Behavior [J]. ACS Nano,2010,4(7):4247-4255.
    [1] B. E. Conway, et al. Transition from “supercapacitor” to “battery” behavior in electromical energystorage [J]. J. Electrochem. Soc.,1991,138(6):1539-1548.
    [2] Arbizzani C, Mastragostino M, Soavi F. New trends in electrochemical supercapacitors [J]. J. PowerSources,2001,100(1-2):164-170.
    [3] Zheng F L, Li G R, Ou Y N, et al. Using enzymatic reaction to enhance photodynamic therapy effect ofporphyrin dityrosine phosphates [J]. Chem. Commun.,2010,46(27):5021–5023.
    [4] Xiong S L, Yuan C Z, Zhang X G, et al. Controllable synthesis of mesoporous Co3O4nanostructureswith tunable morphology for application in supercapacitors.[J]. Chem. Eur. J.,2009,15(21):5320-5326.
    [5] Bae J, Song M K, Park Y J, et al. Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures forWearable/Flexible Energy Storage [J]. Angew. Chem. Int. Ed.,2011,50(7):1683-1687.
    [6] Reddy A L M, Shaijumon M M, Gowda S R, et al. Multisegmented Au-MnO2/Carbon NanotubeHybrid Coaxial Arrays for High-Power Supercapacitor Applications [J]. J. Phys. Chem. C,2010,114(1):658–663.
    [7] Conway B E, Pell W G, et al. Double-layer and pseudocapacitance types of electrochemical capacitorsand their applications to the development of hybrid devices [J]. J. Solid State Electrochem.,2003,7(9):637-644.
    [8] Chen Z, Augustyn V, Wen J, et al. High-Performance Supercapacitors Based on Intertwined CNT/V2O5Nanowire Nanocomposites [J]. Adv. Mater.,2011,23(6):791–795.
    [9] Jiang J, Liu J, Ding R, et al. Large-Scale Uniform α-Co(OH)2Long Nanowire Arrays Grown onGraphite as Pseudocapacitor Electrodes [J]. ACS Appl. Mater. Interfaces,2010,3(1):99–103.
    [10] Hu C C, Chang K H, Lin M C, et al. Design and Tailoring of the Nanotubular Arrayed Architecture ofHydrous RuO2for Next Generation Supercapacitors [J]. Nano Lett.,2006,6(12):2690–2695.
    [11] Ke Y F, Tsai Y S, Huang Y S. Electrochemical capacitors of RuO2nanophase grown on LiNbO3(100)and sapphire(0001) substrates [J]. J. Mater. Chem.,2005,15(21):2122–2127.
    [12] Xiao W, Xia H, Fuh J Y H, et al. Growth of single-crystal α-MnO2nanotubes prepared by ahydrothermal route and their electrochemical properties [J]. J. Power Sources,2009,193(2):935-938.
    [13] Chen J, Huang K, Liu S. Hydrothermal preparation of octadecahedron Fe3O4thin film for use in anelectrochemical supercapacitor [J]. Electrochimica Acta,2009,55(1):1-5.
    [14] Du X, Wang C, Chen M, et al. Electrochemical Performances of Nanoparticle Fe3O4/Activated CarbonSupercapacitor Using KOH Electrolyte Solution [J]. J. Phys. Chem. C,2009,113(6):2643-2646.
    [15] Shi W, Zhu J, Sim D H, et al. Achieving high specific charge capacitances in Fe3O4/reduced grapheneoxide nanocomposites [J]. J. Mater. Chem.,2011,21(10):3422-3427.
    [16] Mu J B, Chen B, Guo Z C, et al. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs)heterostructures: Controlled fabrication and high capacitive behavior [J]. J. Colloid and Interface Science,2011,356(2):706–712.
    [17] Liu Y, Jiang W, Wang Y, et al. Synthesis of Fe3O4/CNTs magnetic nanocomposites at theliquid–liquid interface using oleate as surfactant and reactant [J]. J. Magn. Magn. Mater.,2009,321(5):408-412.
    [18] Yan H, Zhang M, Yan H. Electrical Transport,Magnetic Properties of the Half-metallic Fe3O4-basedSchottky Diode [J]. J. Magn. Magn. Mater.,2009,321(15):2340-2344.
    [19] Hong J P, Lee S B, Jung Y W, et al. Room temperature formation of half-metallic Fe3O4thin films forthe application of spintronic devices [J]. Appl. Phys. Lett.,2003,83(8):1590-1592.
    [20] Fujimori A, Saeki M, Kimizuka N, et al. Photoemission satellites and electronic structure of Fe2O3[J].Phys. Rev. B,1986,34(10):7318-7328.
    [21] Lu C, Quan Z S, Sur J C, Kim S H, et al. One-pot fabrication of carboxyl-functionalized biocompatiblemagnetic nanocrystals for conjugation with targeting agents [J]. New J. Chem.,2010,34(9):2040–2046.
    [22] Xu J, Yang H, Fu W, et al. Preparation and characterization of carbon fibers coated by Fe3O4nanoparticles [J]. Materials Science and Engineering B,2006,132(3):307–310.
    [23] Ottaviano L, Kwoka M, Bisti F, et al. Local surface morphology and chemistry of SnO2thin filmsdeposited by rheotaxial growth and thermal oxidation method for gas sensor application [J]. Thin SolidFilms,2009,517(22):6161-6169.
    [24] Cherepy N J, Liston D B, Lovejoy J A, et al. Ultrafast studies of photoexcited electron dynamics in γ-and α-Fe2O3semiconductor nanoparticles [J]. J. Phys. Chem. B1998,102(5):770-776.
    [25] Xia M, Chen C, Long M, et al. Magnetically separable mesoporous silica nanocomposite and itsapplication in Fenton catalysis [J]. Microporous and Mesoporous Materials,2011,145(1-3):217–223.
    [26] Bennett S W, Keller A A. Comparative photoactivity of CeO2, gamma-Fe2O3, TiO2and ZnO invarious aqueous systems.[J]. Applied Catalysis B: Environmental,2011,102(3-4):600–607.
    [27] Chiu W, Khiew P, Cloke M, et al. Heterogeneous Seeded Growth: Synthesis and Characterization ofBifunctional Fe3O4/ZnO Core/Shell Nanocrystals [J]. J. Phys. Chem. C2010,114(18):8212–8218.
    [28] Miao X, Wang T, Chai F, et al. A facile synthetic route for the preparation of gold nanostars withmagnetic cores and their reusable nanohybrid catalytic properties [J]. Nanoscale,2011,3(3):1189–1194.
    [29] Wu N L, Wang S Y, Han C Y, et al. Capacitor of Magnetite in Aqueous Electrolytes [J]. J. PowerSources2003,113(1):173-178.
    [30] Kuratani K, Tatsumi K, Kuriyama N. Shape-Controlled Synthesis of One-Dimensional MnO2via aFacile Quick-Precipitation Procedure and its Electrochemical Properties [J]. Cryst. Growth Des.,2007,7(8):1375-1377.
    [31] Wu Q, Xu Y, Yao Z, et al. Supercapacitors Based on Flexible Graphene/Polyaniline NanofiberComposite Films [J]. ACS Nano,2010,4(4):1963-1970
    [32] Wang Q, Wen Z H, Li J H.. A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode anda TiO2–B Nanowire Anode [J]. Adv. Funct. Mater.,2006,16(16):2141–2146.
    [33] Bao L, Zang J, Li X. Facilitated ion transport in all-solid-state flexible supercapacitors.[J]. Nano Lett,2011,11(3):1215–1220.
    [34] Wen Z H, Li J H. Hierarchically structured carbon nanocomposites as electrode materials forelectrochemical energy storage, conversion and biosensor systems [J]. J. Mater. Chem.,2009,19(46):8707–8713.
    [35] Cao T, Li Y, Wang C, et al. A Facile in Situ Hydrothermal Method to SrTiO3/TiO2NanofiberHeterostructures with High Photocatalytic Activity [J]. Langmuir,2011,27(6):2946-2952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700