ZnO薄膜的等离子体辅助MOCVD生长及掺杂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)材料,是直接带隙的宽禁带半导体材料,禁带宽度达3.37eV,它在室温下有高达60emV的激子束缚能,正是由于具有这些优异的性质,使得近年来ZnO材料得到了人们的广泛关注。本论文利用新型等离子体辅助金属有机化学气相沉积系统(plasma-assisted MOCVD)在蓝宝石衬底、Si衬底和GaN外延层上生长出高质量的ZnO薄膜,同时利用N2O作为掺杂源进行了p型掺杂的研究,得到了p型ZnO薄膜,并以此为基础制作了相关的原型光电器件。研究内容如下:
     1、根据MOCVD生长ZnO薄膜的原理及技术要求,参与设计和组装了新型等离子体辅助MOCVD系统,该系统设计具有自主知识产权,已取得国家发明专利。
     2、利用MOCVD在蓝宝石衬底和Si衬底上生长出高质量的ZnO薄膜。通过优化生长条件和引入分步退火生长的方法,在c面蓝宝石单晶衬底上得到了高质量ZnO薄膜,其(002)面X射线衍射(XRD)半峰宽(FWHM)为0.1699°,可见光透过率超过90%,原子力显微镜(AFM)测试得到的薄膜表面均方根粗糙度最小为4.696nm;而在Si衬底上生长的ZnO(002)面的衍射峰半峰宽最窄为0.1602°;在蓝宝石和Si衬底上生长的ZnO薄膜的光荧光(PL)谱的近带边紫外发射与深能级发射的强度比最大为433:1和327:1,此结果为世界上已知报道的MOCVD法生长ZnO薄膜的最好结果。
     3、利用射频离化的N2O等离子体对ZnO进行了掺杂。在c面蓝宝石和Si衬底上都得到了p型ZnO薄膜。在c面蓝宝石衬底上生长的p型ZnO薄膜经Hall方法测量得到的最好结果是电阻率8.71Ω?cm、迁移率2.09 cm2/V?s、载流子浓度3.44×1017 cm-3,这是首次以N2O等离子体作为掺杂源,利用MOCVD方法生长出高质量的p型ZnO薄膜。同时利用n型Si衬底生长出p型ZnO,制备了p-ZnO/n-Si异质结构器件,其I-V曲线表现出良好的整流特性和光电响应特性,之前未见相关报道。
     4、先利用路明集团的工业化MOCVD系统在c面蓝宝石衬底上生长出p型GaN外延层,然后在p-GaN外延层上生长了n型ZnO薄膜,并制作出n-ZnO/p-GaN异质结发光二极管原型器件,在室温下器件电致发光(EL)的主发光峰在415nm左右,经高斯拟合发现这个主发光峰由中心位置在410nm和470nm的两个发光峰组成,这两个发光峰归结于n-ZnO/p-GaN异质结两侧的n-ZnO和p-GaN层中均产生辐射复合的缘故。MOCVD法生长的n-ZnO/p-GaN异质结发光二极管原型器件和发现此异质结器件在电致发光过程中n-ZnO和p-GaN层中均产生辐射复合发光,这些都为国内外首次报道。
     本论文的创新点:
     1、利用分步退火生长方法,大幅提高了所生长的ZnO薄膜晶体质量,在蓝宝石和Si衬底上生长的ZnO样品的(002)面的XRD半峰宽低至0.1699°和0.1602°;
     2、利用新型等离子体辅助MOCVD设备,采用射频离化的N2O等离子体作为掺杂源对ZnO薄膜生长时进行掺杂,在国内外首次通过这种掺杂生长方法得到了高质量的p型ZnO薄膜;
     3、在n型Si衬底上生长出p型ZnO薄膜,并制作了p-ZnO/n-Si异质结构器件,其I-V曲线表现出良好的整流特性和光电响应特性,证明了掺杂的ZnO薄膜具有很好的p型特性,之前未见相关报道;
     4、利用路明集团的工业化MOCVD系统先在c面蓝宝石衬底上生长出p型GaN外延层,然后在p-GaN外延层上生长了n型ZnO薄膜,并制作出n-ZnO/p-GaN异质结发光二极管原型器件,在室温下器件EL的主发光峰在415nm左右,经高斯拟合发现这个主发光峰由中心位置在410nm和470nm的两个发光峰组成,这两个发光峰归结于n-ZnO/p-GaN异质结两侧的n-ZnO和p-GaN层中均产生辐射复合的缘故。这是国内外首次报道用MOCVD法生长出n-ZnO/p-GaN异质结发光二极管原型器件并首次发现此异质结器件在电致发光过程中n-ZnO和p-GaN层中均产生辐射复合发光。
ZnO, a wide direct-gap semiconductor material, has attracted great interest recently because of its wide band-gap (3.37eV) and relatively large exciton binding energy (60meV) at room temperature (RT) and the production cost will be reduced significantly compared with current technology. It has been regarded as one of the most promising candidates for the next generation of short-wavelength light emitting diodes (LEDs) and lasing devices (LDs). Especially in 1996, the upsurge in ZnO research is coming due to the realization of the light pumped exciton emitting. ZnO can be used to fabricate emitting diode, ultraviolet detector, surface acoustic wave device, transparent electrode, thin film transistor, gas sensor and nano structure device. In order to realize the above-mentioned devices, it is necessary to grow high quality ZnO film and p type ZnO film by proper doping. A lot of methods have been used to grow ZnO films such as Sputtering, Pulsed Laser Deposition (PLD), Molecular Beam Epitaxy (MBE), Metal Organic Chemical Vapor Deposition (MOCVD). Among them, MOCVD offers the advantage of industrial production, such as high growth rate and efficiency, large area uniformity, prefect composition control and sharp interface. In this thesis, we grow high quality ZnO film on sapphire, silicon and gallium nitride epi-layer by new-type self-designed plasma-assisted MOCVD, and find a way of p type doping by using N2O plasma source. Then we fabricate p-ZnO/n-Si and p-GaN/n-ZnO heterojunction devices based on high quality p and n type ZnO.
     ZnO thin films had been grown in sapphire firstly by using MOCVD system. According to the growth temperature and O2 flow rate on ZnO films characteristics, we get the optimized growth condition. Temperature is the most crucial factor in the ZnO film growth, and proper growth temperature is in favor of the grains merger and the formation of thin films. As the growth temperature of 550℃and the O2 flow rate of 200~300sccm, ZnO sample has the best crystal quality, surface morphology and optical quality. For ZnO grown on c-sapphire, the FWHM of (002) X-ray diffraction peak was 0.187°, transmission ratio was more than 90%, and the intensity ratio of PL near band edge UV emission and deep level emission was as large as 433:1,which was the world's best results reported.
     We study the step-by-step annealing growth of ZnO films on c-sapphire. Step-by-step annealing growth was, after a period of growth time, ZnO film growth was suspended, and ZnO was experienced a period of annealing, then growth was restored. The quality of ZnO films has been further improved by step-by-step annealing growth, the FWHM of (002) X-ray diffraction peak was as narrow as 0.1699°, and the smallest RMS (root mean square) roughness measured by AFM (atomic force microscope) was down to 4.696nm. Compare with the samples under normal growth, ZnO samples under step-by-step annealing growth has better crystal quality and optical quality.
     Based on the growth condition of ZnO films on c-sapphire, we study the N-doping condition of ZnO films using RF ionized N2O plasma. Only at the right flow and temperature condition high quality p type ZnO samples can be made. Temperature is also the most crucial factor in the p-ZnO film growth. Best p type ZnO thin film had been grown at 430℃on c-sapphire with the resistivity of 8.71Ω?cm, hole mobility of 2.09 cm2/V?s and hole concentration of 3.44×1017 cm-3. XPS (X-ray Photoelectron Spectroscopy) was used to analyze the chemical composition of ZnO film. The XPS data proved that N-Zn bond exist in the film. All results show that N2O plasma is a high efficient source of N doping.
     With reference to the growth and doping conditions of ZnO films on c-sapphire, we also study growth and doping of ZnO films on (001) Si substrates. High quality undoped and N-doped p type ZnO films have been made on Si substrates, and we fabricate p-ZnO/n-Si heterojunction device. For ZnO grown on Si substrates, the FWHM of (002) diffraction peak was as narrow as 0.1602°, the intensity ratio of PL near band edge UV emission and deep level emission was as large as 327:1, which was the world's best results reported about ZnO films grown on Si substrates. The p-ZnO/n-Si heterojunction device showed that the device has good characteristics of the diode rectifier and photoelectric response characteristics. Turn-on voltage of devices was about 4.7V, at reverse voltage of-6V there is no significant increase in the reverse current. When there was light, reverse current increase in the device under the same reverse voltage, which clearly showed that the device has good photoelectric response characteristics.
     Using both Luming group’s industrialized MOCVD system and our independent intellectual property rights MOCVD system, n-ZnO/p-GaN heterojunction light emitting diode was grown on (0001) sapphire substrate. An Mg doped GaN layer with a hole concentration of ~1017 cm-3 was used for the p-type side, and a unintentionally doped n-type ZnO layer with an electron concentration of ~1018 cm-3 for the n-type side of the heterojunction device. Distinct blue-violet electroluminescence emission with a dominant emission peak at ~ 415 nm was observed at room temperature. The origins of the EL emissions are discussed in comparison with the photoluminescence spectra,and it was supposed to be attributed to a radiative recombination in both n-ZnO and p-GaN layers. These results represent meaningful steps for developing ZnO-based optoelectronics devices. It is the first report of n-ZnO/p-GaN heterojunction LED grown by MOCVD and the phenomenon about radiative recombination in both n-ZnO and p-GaN layers.
引文
[1] Shuji Nakamura. The role of Structural Imperfectons in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes. Science Vol. 281 (1998) 956-961.
    [2] Yu P., Tang Z. K., Wong G. K. L., et al. 23rd Int Conf on the Physics of Semiconductors, World Scientific, Singapore. 1996, p1453-1456.
    [3] Robert F. Service, Science, 276 (1997) 895.
    [4] T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, et al. Radiative and nonradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells. J. Appl. Phys. 77 (2000) 1632.
    [5] S. Muthukumar, J. Zhong, Y. Chen, Y. Lu and T. Siegrist. Growth and structural analysis of metalorganic chemical vapor deposited (11-20) MgxZn1-xO films on (01-12) R-plane Al2O3 substrates. Appl. Phys. Lett. 82 (2003) 742.
    [6] R. Schmidt, B. Rheinlander, M. Schubert, et al. Dielectric functions (1 to 6 eV) of wurtzite MgxZn1-xO thin films. Appl. Phys. Lett. 82 (2003) 2260.
    [7] A. Valentini, F. Quaranta, M. Rossi and G. Battaglin. Preparation and characterization of Li-doped ZnO films. J. Vac. Sci. Technol. A, 9(1991) 286.
    [8] H.J. Ko, Y.F. Chen, S.K. Hong, and T. Yao. Doping effects in ZnO layers using Li3N as a doping source. J. Crystal Growth. 251 (2003) 628.
    [9] A.N. Gruzintsev, V.T. Volkov, I.I. Khodos and M.N.Koval’chuk. Luminescent properties of ZnO films doped with group-IB acceptors. Russ. Microelectron. 31(2002) 200.
    [10] K. Minegishi, Y. Koiwai, Y. Kikuchi, et al. Growth of p-type zinc oxide films by Chemical Vapor Deposition. Jpn. J. Appl. Phys. Part 2, 36 (1997) L1453.
    [11] D.C. Look, D.C. Reynolds, C.W. Litton, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 81 (2002) 1830.
    [12] T. Aoki, Y. Hatanaka and D.C. Look. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett. 76 (2000) 3257.
    [13] K.H. Bang, D.K. Hwang, M.C. Park, et al. Formation of p-type ZnO film on InPsubstrate by phosphor doping. Appl. Sur. Sci. 210 (2003) 177.
    [14] Y.R. Ryu, T.S. Lee and H.W. White. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett. 83 (2003) 87.
    [15] C.C. Lin, S.Y. Chen, S.Y. Cheng and H.Y. Lee. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering. Appl. Phys. Lett. 84 (2004) 5040.
    [16] T. Aoki, Y. Shimizu, A. Miyake, et al. p-type ZnO layer formation by excimer laser doping. phys. stat. sol. (b), 229 (2002) 911.
    [17] H.J. Lee, S.Y. Jeong, C.R. Cho and C.H. Park. Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81 (2002) 4020.
    [18] K. Sato and H.K. Yoshida. Material desigh for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. Part 2, 39 (2000) L555.
    [19] T. Fukumura, Z. Jin, A. Ohtomo, et al. An oxide-diluted magnetic semiconductor: Mn-doped ZnO films. Appl. Phys. Lett. 75 (1999) 3366.
    [20] S. Kolesnik, B. Dabrowski and J. Mais. Structural and magnetic properties of transition metal substituted ZnO. J. Appl. Phys. 95 (2004) 2582.
    [21] K.S. Kim, H.W. Kim. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Physica B. 328 (2003) 368.
    [22] B.P. Zhang, N.T. Binh, Y. Segawa, et al. Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11-20) substrates. Appl. Phys. Lett. 84 (2004) 586.
    [23] X. Liu, X.H. Wu, H. Cao and R.P.H. Chang. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95 (2004) 3141.
    [24] W.I. Park, G.G. Yi, J.W. Kim and S.M. Park. Schottky nanocontacts on ZnO nanorod arrays. Appl. Phys. Lett. 82 (2003) 4358.
    [25] S. F. Yu, C. Yuen, S.P. Lau, et al. Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl. Phys. Lett. 84 (2004) 3241.
    [26] J.W. Chiou, J.C. Jan, H.M. Tsai, et al. Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanningphotoelectron microscopy. Appl. Phys. Lett. 84 (2004) 3462.
    [27] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 292 (2001) 1897.
    [28] Q.H. Li, Q. Wan, Y.X. Liang and T.H. Wang. Electronic transport through individual ZnO nanowires. Appl. Phys. Lett. 84 (2004) 4556.
    [29] Q. Wan, Q.H. Li, Y.J. Chen, et al. Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl. Phys. Lett. 84 (2004) 3085.
    [30] X. Wang, Q. Li, Z. Liu, et al. Low-temperature growth and properties of ZnO nanowires. Appl. Phys. Lett. 84 (2004) 4941.
    [31] Z.W. Pan, Z.R. Dai and Z.L. Wang. Nanobelts of semiconducting oxides. Science, 291 (2001) 1947.
    [32] X.Y. Kong and Z.L. Wang. Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanospings, and nanospirals. Appl. Phys. Lett. 84 (2004) 975.
    [33] Y.W. Zhu, H.Z. Zhang, X.C. Sun, et al. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83 (2003) 144.
    [34] Y.B. Li, Y. Bando and D. Golberg. ZnO nanoneedles with tip surface perturbations: Excellent field emitters. Appl. Phys. Lett. 84 (2004) 3603.
    [35] S.W. Kim, M. Ueda, T. Kotani, et al. Self-tailored one-dimensional ZnO nanodot arrays formed by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. Part 2, 42 (2003) L568.
    [36] X.L. Guo, J.H. Choi, H. Tabata and T. Kawai. Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. Jpn. J. Appl. Phys. Part 2, 40 (2001) L177.
    [37] Y. Liu, C.R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J. Electron. Mater. 29 (2000) 69.
    [38] P.F. Carcia, R.S. Mclean, M.H. Reilly and G. Nunes. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 82 (2003) 1117.
    [39] R.L. Hoffman. ZnO-channel thin-film transistors: Channel mobility. J. Appl.Phys. 95 (2004) 5813.
    [40] Q. Wan, Q.H. Li, Y.J. Chen, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84 (2004) 3654.
    [41] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 292 (2001) 1897.
    [42] A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4 (2005) 42.
    [43] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S.F. Chichibu and M. Kawasaki. Blue light-emitting diode based on ZnO. Jpn. J. Appl. Phys. 44 (2005) L643.
    [44] Z.W. Pan, Z.R. Dai and Z.L. Wang. Nanobelts of semiconducting oxides. Science, 209 (2001) 1947.
    [45] X.Y. Kong, Y. Ding, R.S. Yang, Z.L. Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts. Science, 303 (2004) 1348.
    [46] Y. Qin, X.D. Wang and Z.L. Wang. Microfibre–nanowire hybrid structure for energy scavenging. Nature, 451 (2008) 809.
    [47] Y.W. Zhu, H.Z. Zhang, X.C. Sun, et al. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83 (2003) 144.
    [48] Katsumi Maeda, Mitsuru Sato, Ikuo Niikura and Tsuguo Fukuda. Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semicond. Sci. Technol. 20 (2005) S49.
    [49] D.C. Look, J.W. Hemsky, J.R. Sizilove. Residual native shallow donor in ZnO. Phys. Rev. Lett. 82 (1999) 2552.
    [50] W.T. Gregory, L.R. Jules, O.R. Tohoms. Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide. J. Appl. Phys. 87 (2000) 117.
    [51] O. Fumiyasu, R.N. Shigeto, I. Seiji, et al. Energetics of native defects in ZnO. J.Appl. Phys. 90 (2001) 824.
    [52] C.G.V. Walle. Phys. Rev. Lett. Hydrogen as a cause of doping in zinc oxide. 85 (2000) 1012.
    [53] H. Fabricius, T. Skettrup and P. Bisgaard. Ultraviolet detector in thin sputtered ZnO films. Appl. Optics. 25 (1986) 2764.
    [54] Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, et al. Observation of 430nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 83 (2003) 2943.
    [55] Qing-Xuan Yu, Bo Xu, Qi-Hong Wu, et al. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode. Appl. Phys. Lett. 83 (2003) 2943.
    [56]《元协简报》,1999年第9期。
    [57] Hideaki Nakahata, Kenjiro Higaki, Akihiro Hachigo, et al. High Frequency Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure. Jpn. J. Appl. Phys. 33 (1994) 324.
    [58] H. Nakahata, A. Hachigo, S. Fujii and S. Shikata. Equivalent circuit parameters of surface-acoustic-wave inerdigital transducers for ZnO/diamond and SiO2/ZnO/diamond structures. Jpn. J. Appl. Phys. 41 (2002) 3489.
    [59] H. Nakahata, S. Fujii, K. Higaki, et al. Diamond-based surface acoustic wave devices, Semicond. Sci. Technol. 18 (2003) 596.
    [60] Z. K. Tang, G. K. L.Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films. Appl. Phys. Lett. 72 (1998) 3270.
    [61] D.C. Look, D.C. Reynolds, C.W. Litton, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 81 (2002) 1830.
    [62] S. K. Hong, Y. Chen, H. J. Ko, H. Wenisch, T. Hanada, T. Yao. ZnO and related materials: plasma-assisted Molecular Beam Epitaxial growth, characterization, and application. J. Electron. Mater. 30 (2001) 647.
    [63] Y. Ma, G.T. Du, S.R. Yang, et al. Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy. J. Appl. Phys. 95 (2004)6268.
    [64] W. I. Park, Gyu-Chui Yi, and H. M. Jang, Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO(0≤x≤0.49) thin films. Appl. Phys. Lett. 79 (2001) 2022.
    [1] H. M. Manasevit. Single crystal gallium arsenide on insulating substrates. Appl. Phys. Lett. 12 (1968) 156.
    [2]杨树人,丁墨元著.外延生长技术.北京:国防工业出版社,1992.
    [3] G. B. Stringfellow. Organometallic Vapor-Phase Epitaxy: Theory and Practice. Second Edition. Academic Press, 1999.
    [4] M. H. Abraham. Organometallic compounds. Part I. The autoxidation of dialkylzincs. J. Chem. Soc. (1960) 4130.
    [5]沈学础.半导体光学性质.北京:科学出版社,1992.
    [6] L. J. Van de Pauw. Philips Research Reports. 13 (1958) 1.
    [1] Masanobu KASUGA and Masami MOCHIZUKI. Orientation relationships of ZnO on sapphire in heteroepitaxial chemical vapor deposition. J. Crystal Growth. 54 (1981) 185.
    [2] C. R. Gorla, et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO film grown on (0112) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys. 85 (1999) 2595.
    [3]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,2003.
    [4] W. I. Park and G. C. Yi. Photoluminescent properties of ZnO thin films grown on SiO2/Si(100) by metal-organic chemical vapor deposition. J. Electron. Mater. 30 (2001) L32.
    [5] N. Ohashi, T. Sekiguchi, K. Aoyama, et al. Band-edge emission of undoped and doped ZnO single crystals at room temperature. J. Appl. Phys. 91 (2002) 3658.
    [6] G. H. Lee, Y. Yamamoto, M. Kourogi and M. Ohtsu. Blue shift in room temperature photoluminescence from photo-chemical vapor deposited ZnO films. Thin Solid Films. 386 (2001) 117.
    [7] Z. Y. Xue, D. H. Zhang, Q. P. Wang and J. H. Wang. The blue photoluminescence emitted from ZnO films deposited on glass substrates by rf magnetron sputtering. Appl. Surf. Sci. 195 (2002) 126.
    [8] T. Makino, K. Tamura, C. H. Chia, et al. Temperature quenching of exciton luminescence intensity in ZnO/(Mg,Zn)O multiple quantum wells. J. Appl. Phys. 93 (2003) 5929.
    [9]陈治明,王建农.半导体器件的材料物理学基础.北京:科学出版社,1999.
    [10] F. H. Leiter, H. R. Alevs, A. Hofstaetter, D. M. Hofmann, B. K. Meyer. The oxygen vacancy as the origin of a green emission. phys. stat. sol. (b), 226 (2001) R4.
    [11] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt. Correlation between photoluminescence and oxygen vacancies. Appl. Phys. Lett.68 (1996) 403.
    [12] C. M. Mo, Y. H. Li, Y. S. Lin, et al. Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels. J. Appl. Phys. 84 (1998) 1371.
    [13] L. Guo, S. H. Yang, C. L. Yang, et al. Synthesis and characterization of poly-modified zinc oxide mamoparticles. Chem. Mater. 12 (2000) 2268.
    [14] S. A. Studenikin, N. Golego, M. Cocivera. Fabrication of green and orange photoluminescent, undoped ZnO films usingspray pyrolysis. J. Appl. Phys. 84 (1998) 2287.
    [15] M. Liu, A. H. Kitai and P. Mascher. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54 (1992) 35.
    [16] B. Guo, Z. R. Qiu and K. S. Wong. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon. Appl. Phys. Lett. 82 (2003) 2290.
    [17] E. G. Bylander. Surface effects on the low-energy cathodoluminescence of zinc oxide. J. Appl. Phys. 49 (1978) 1188.
    [18] B. Lin, Z. Fu and Y. Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79 (2001) 943.
    [19] T. Makino, T. Yasuda, Y. Segawa, A. Ohtomo, K. Tamuraa, M.Kawasaki, H.Koinuma. Strain effects of exciton resonance energies of ZnO epitaxial layers. Appl. Phys. Lett. 79 (2001) 1282.
    [20]林碧霞,傅竹西,廖桂红.氧气后处理对氧化锌薄膜性质的影响.发光学报. 25 ( 2004) 129.
    [21] J. M. Bian, W. F. Liu, J. C. Sun, and H. W. Liang. Synthesis and defect-related emission of ZnO based light emitting device with homo- and heterostructure. J. Mater. Proc. Tech. 184 (2007) 451.
    [22] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, A. I. Belogorokhov, E. A. Kozhukhova, A. V. Markov, A. Osinsky, J. W. Dong, and S. J. Pearton. Persistent photoconductivity in p-type ZnO(N) grown by molecular beam epitaxy. Appl. Phys. Lett. 90 (2007) 132103.
    [23] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen. Deposition andelectrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl. Phys. Lett. 84 (2004) 541.
    [24] A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4 (2005) 42.
    [25] D. C. Look. Electrical and optical properties of p-type ZnO. Semicond. Sci. Technol. 20 (2005) S55.
    [26] D. C. Look, B. Claflin, Ya. I. Alivov, and S. J. Park. The future of ZnO light emitters. Phys. Stat. Sol.(a), 201 (2004) 2203.
    [27] Z. Z. Ye, J. G. Lu, Y. Z. Zhang, Y. J. Zeng, L. L. Chen, F. Zhuge, G. D. Yuan, H. P. He, L. P. Zhu, J. Y. Huang, and B. H. Zhao. ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers. Appl. Phys. Lett. 91 (2007) 113503.
    [28] J. H. Lim, C. K. Kang, K. K. Kim, K. Park, D. K. Hwang, and S. J. Park. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv. Mater. 18 (2006) 2720.
    [29] Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang. Room temperature p-n ZnO blue-violet light-emitting diodes. Appl. Phys. Lett. 90 (2007) 042113.
    [30] Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, and C. J. Youn. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 88 (2006) 241108.
    [31]ü. ?zgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H.Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301.
    [32] C. H. Park, S. B. Zhang, and S. H. Wei. Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B 66 (2002) 073202.
    [33] L.G. Wang, A. Zunger. Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-Type ZnO. Phys. Rev. Lett. 90 (2004) 256401.
    [34] J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu, and X. D. Gao. p-type ZnO films bymonodoping of nitrogen and ZnO-based p–n homojunctions. Appl. Phys. Lett. 85 (2004) 4070.
    [35] K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki. Nitrogen-induced defects in ZnO : N grown on sapphire substrate by gas source MBE. J. Cryst. Growth 209 (2000) 526.
    [36] X. L. Guo, H. Tabata, and T. Kawai. p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma. J. Cryst. Growth, 544 (2002) 237.
    [37] X. Li, Y. Yan, T. A. Gessert, C. L. Perkins, D. Young, C. DeHart, M.Young, and T. J. Coutts. Chemical vapor deposition-formed p-type ZnO thin films. J. Vac. Sci. Technol. A, 21 (2003) 1342.
    [38] D.C. Look, D.C. Renolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Canwell. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 81 (2002) 1830.
    [39] J. L. Zhao, X. M. Li, J. M. Bian , W. D. Yu, and C. Y. Zhang. Growth of nitrogen-doped p-type ZnO films by spray pyrolysis and their electrical and optical properties J. Cryst. Growth 280 (2005) 495.
    [40] M. Joseph, H. Tabata, H. Saeki, K. Ueda, T. Kawai. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B, 302 (2001) 140.
    [41] P. Zu, Z.K. Tang, G.K. Wong, L.M. Kawasaki, A. Ohotomo, H. Koinuma, Y. Segawa. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103 (1997) 459.
    [42] Y. Ma, G.T. Du, T.P. Yang, D.L. Qiu, X. Zhang, H.J. Yang, Y.T. Zhang, B.J. Zhao, X.T. Yang, and D.L. Liu. Effent of the oxygen partial pressure on the properties of ZnO thin films grown by metalorganic vapor phase epitaxy. J. Cryst. Growth. 255 (2003) 303.
    [43] Xinqiang Wang, Shuren Yang, Jinzhong Wang, Mingtao Li, Xiuying Jiang and Guotong Du, Xiang Liu, R. P. H. Chang. Nitrogen doped ZnO film grown by the plasma-assisted Metal-organic Chemical Vapor Deposition. J. Cryst. Growth.226 (2001) 123.
    [44] Guotong Du, Jinzhong Wang, Xinqiang Wang, Xiuying Jiang, Shuren Yang, Yan Ma, Wei Yan, Dingsan Gao. Influence of annealing on ZnO thin film grown by plasma-assisted MOCVD. Vacuum. 69 (2003) 473.
    [1] W. I. Park and G. C. Yi. Photoluminescent properties of ZnO thin films grown on SiO2/Si(100) by metal-organic chemical vapor deposition. J. Electron. Mater. 30 (2001) L32.
    [2] B. Guo, Z. R. Qiu and K. S. Wong. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon. Appl. Phys. Lett. 82 (2003) 2290.
    [3] Xinqiang Wang, Shuren Yang, Xiaotian Yang, Dan Liu, Yuantao Zhang, Jinzhong Wang, Jingzhi Yin, Dali Liu, H. C. Ong, Guotong Du. ZnO thin film grown on silicon by metal-organic chemical vapor deposition. J. Cryst. Growth, 243 (2002) 13.
    [4] Yuantao Zhang, Guotong Du, Dali Liu, Xinqiang Wang, Yan Ma, Jinzhong Wang, Jingzhi Yin, Xiaotian Yang, Xiaoke Hou, Shuren Yang. Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions. J. Cryst. Growth, 243 (2002) 439.
    [5] K.S. Kim, H.W. Kim. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Physica B, 328 (2003) 368.
    [6] C.C. Lin, S.Y. Chen, S.Y. Cheng and H.Y. Lee. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering. Appl. Phys. Lett. 84 (2004) 5040.
    [1] Ya. I. Alivov, D. C. Look, B. M. Ataev, M. V. Chukichev, et al. A. Agafonov and A. N. Pustovit. Fabrication of ZnO-based metal–insulator–semiconductor diodes by ion implantation. Solid-State Electron. 48 (2004) 2343.
    [2] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen. Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl. Phys. Lett. 84 (2004) 541.
    [3] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 81 (2002) 1830.
    [4] C. Klingshirn. ZnO: Material, Physics and Applications. Chem. Phys. Chem. 8 (2007) 782.
    [5] D. C. Look, B. Claflin, Ya. I. Alivov, and S. J. Park. The future of ZnO light emitters. Phys. Stat. Sol., 10 (2004) 2203.
    [6]ü. ?zgür, Ya. I. Alivov, et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98 (2005) 041301.
    [7] H. Ohta, M. Orita, M. Hirano, and H. Hosono. Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO. J. Appl. Phys. 89 (2001) 5720.
    [8] A. E. Tsurkan, N. D. Fedotova, et al. Injection Electroluminescence in n-ZnO/p-ZnTe Heterojunctions. Semiconductors, 6 (1975) 1183.
    [9] I. T. Drapak. Alloyed ZnO-Cu2O heterojunction. Semiconductors, 2 (1968) 624.
    [10] B. M. Ataev, Ya. I. Alivova, V. A. Nikitenkob, M. V. Chukichevc, V. V. Mamedov, S. Sh. Makhmudov. n-ZnO/p-GaN/α-Al2O3 Heterojunction as a promising blue light emitting system. J. Optoelectron. Adv. Mater. 5 (2003) 899.
    [11] Ya. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl.Phys. Lett. 83 (2003) 4719.
    [12] D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung and M. Razeghi. Electroluminescence at 375 nm from a ZnO/GaN:Mg/c-Al2O3 heterojunction light emitting diode. Appl. Phys. Lett. 88 (2006) 141918.
    [13] S. K. Hong, T. Hanada, H. Makino, Y. F. Chen, H. J. Ko, T. Yao, A. Tanaka, H. Sasaki and S. Sato. Band alignment at a ZnO/GaN (0001) heterointerface. Appl. Phys. Lett. 78 (2001) 3349.
    [14] G. T. Du, Y. Ma, Y. T. Zhang, and T. P. Yang. Preparation of intrinsic and N-doped p-type ZnO thin films by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87 (2005) 213103.
    [15] W. Liu, S.L. Gu, J.D. Ye, S.M. Zhu, et al. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Appl. Phys. Lett. 88 (2006) 092101.
    [16] A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4 (2005) 42.
    [17] A. Tsukazaki, M. Kubota, et al. Blue light-emitting diode based on ZnO. Jpn. J. Appl. Phys. 44 (2005) L643.
    [18] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He and S. B. Zhang. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett. 88 (2006) 173506.
    [19] S. Nakamura, T. Mukai and M. Senon. High-Power GaN P-N Junction Blue-Light-Emitting Diodes. Jpn J. Appl. Phys. 30 (1991) L1998.
    [20] M. Asif Khan, Qchen, R. A. Skogman and J. N. Kuznia. Violet-blue GaN homojunction light emitting diodes with rapid thermal annealed p-type layers. Appl. Phys. Lett. 66 (1995) 2046.
    [21] P. Zu, Z. K. Tang, G. K. Wong, L. M. Kawasaki, A. Ohotomo, H. Koinuma and Y. Segawa. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103 (1997) 459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700