PPV及PPV-N型纳米晶体异质结纳米纤维的可控电纺与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维半导体纳米材料,将在光电纳米器件方面有广泛的应用前景。文献报导了大量的有关纳米纤维、纳米线、纳米棒、纳米带、纳米管、纳米螺旋和纳米环的合成和制备技术。在这些技术中,静电纺丝法被认为是最简便的制备实体或中空纳米纤维的技术。并且,所制备的纳米纤维长度长,直径均匀,成分可变。电纺纤维具有比表面积大等优点,这使它们适合多方面的应用,如:过滤、传感器、催化、组织工程和防护服。目前,已有多于50多种高分子通过溶液电纺或熔融电纺被成功的制成超细纳米纤维。但很多共轭高分子受到分子量和/或溶解度的限制而很难直接电纺。
     在共轭高分子中,PPV因为其优良的光致发光、电致发光、光伏转换、光电导和非线性光学特性而受到广泛关注。另外,PPV光电器件的性能可通过与无机纳米粒子复合来改进。因此,如果能将PPV制备为高度取向和规整的结构,它将是纳米科学和技术中最吸引人的有机材料之一。PPV可以通过电纺它的聚电解质前驱物,再经热处理得到纳米纤维。但是,由于前驱物的聚电解质性质,电纺射流会经历更强烈的不稳定性。
     在本文中,我们展示了PPV的控制电纺,其中包括控制纤维的形貌、成分和功能。另外,我们制备了具有高光电转换特性的PPV/CdSe体异质结复合纳米纤维和具有超顺磁性能和良好光电性能的PPV/Fe3O4复合纳米纤维(单根或阵列形式),并将其组装成了模型器件,测试了相关性能。进一步的深入研究以及其它成分的体异质结单纤维模型器件的研制正在进行中。
     (1)以对氯苄和四氢噻吩为原料,制备了各种浓度的聚对苯乙炔前驱高分子的乙醇溶液,并系统探究了其物理参数(粘度、电导率和表面张力等)对所得纤维形态的影响,从而揭示了溶液本身物理性质对纤维形态影响的相关信息,为进一步控制电纺PPV纤维奠定了基础。
     (2)通过调控前驱物的溶液性质(粘度、电导率和表面张力)和电纺参数(纺丝电压、电纺距离和收集板种类),我们制备了不同形貌的PPV纤维,如纱线形、螺旋形和直线形。并且,通过改进电纺装置,我们得到了PPV纤维阵列和PPV核壳纤维。另外,将电纺与器件组装相结合制备基于单根电纺纤维的模型器件。
     (3)利用现代分析测试手段(扫描电子显微镜、透射电子显微镜和荧光光谱等)对所得纤维进行表征。研究了影响PPV纤维形貌和性质的因素。同时,揭示了高分子纳米纤维材料在设计合成以及在发光、光电转换应用过程中存在的关键基础科学问题。
     (4)将CdSe纳米晶或Fe3O4纳米粒子与PPV复合制备体异质结或多功能的纳米纤维(单根或阵列形式),并将其组装成模型器件。测试研究纤维的光电转换、磁学等性能。此项研究展示了PPV基电纺纤维可以直接简便的组装成单根及阵列纤维模型器件,推进了具有光电特性的共轭高分子纳米材料的实用化进程。
One-dimensional (1D) semiconductor nanomaterials, which represent a unique system for exploring phenomena at the nanometer scale, are opening up substantial opportunities for novel photonic and electronic nanodevices. A large number of synthetic and fabrication methods have already been demonstrated for generating 1D nanostructures in the form of fibers, wires, rods, belts, tubes, spirals, and rings from various materials. Among these methods, electrospinning (a drawing process based on electrostatic interactions) seems to provide the simplest approach to nanofibers with both solid and hollow interiors that are exceptionally long in length, uniform in diameter, and diversified in composition. The high surface area-to-volume ratio of the electrospun fibers makes them suitable for many applications such as filtration, sensing, catalysis, tissue engineering, and protective clothing. Currently, more than 50 different polymers have been electrospun into ultrafine fibers in solvent solution or in melt form. Many conjugated polymers are difficult to be directly electrospun as limited by their molecular weights and/or solubilities.
     Among the conjugated polymers, poly(p-phenylene vinylene) (PPV) is particularly attractive in that the polymer exhibits excellent photo- and electroluminescence, photovoltaic, photoconductive, and nonlinear optical properties. Additionally, the performance of photovoltaic devices based on PPV can be enhanced by incorporating of inorganic nanoparticles. Therefore, PPV could be one of the most interesting organic materials in nanoscience and technology if it is possible to fabricate PPV into well-aligned and highly ordered architectures. PPV can be fabricated into nanofibers by electrospinning its polyelectrolyte precursor solution and subsequently with thermal conversion. However, the electrospinning precursor jets undergo intense instability due to its polyelectrolyte nature. In this work, we describe the controlling electrospinning of PPV nanofibers, witch including the controllment of the morphology and compositon of PPV nanofibers. In addition, we prepared PPV/Fe3O4 and PPV/CdSe nanofibers, and assembled them into devices. The properties of these fibers and devices were investigated. The deep investigation and the preparation of individual fiber devices based on other components (such as PPV/TiO2) are under way.
     Detailed content:
     (1) The precursory PPV solutions in ethanol with different concentration were synthesized from alpha, alpha’s-dichloro-p-xylene and tetrahydrothiophene. Moreover, in order to establish basic for preparing composite nanofibers, the physical parameters (concentration, conductivity, surface tension, etc.) affecting the morphology of ultrafine fibers was explored. As a result, the relational information about the effect of solutions’physical properties on the morphology of nanofibers was opened out.
     (2) By tuning precursor solution properties (viscosity, conductivity and surface tension) and processing variables (voltage, distance between the tip and collector, the kind of collector), we obtained uniform PPV fibers with various morphologies, such as yarns, helix and linear. In addition, by modifying the electrospinning process, we obtained the PPV fiber arrays and core-shell fibers. The individual electrospinning nanofibers were obtained, and were assembled into devices directly.
     (3) The fiber samples were characterized by using modern analysis and testing means (SEM, TEM, PL, etc.). In addition, the tropism mechanism and affecting factors of the morphology and properties of the fibers were researched completely. Simultaneously, the basic science problems obout the design and preparation of polymer nanofibers, as well as theluminescence and photoelectricity conversion in practical applications were opened out.
     (4) We prepared PPV/Fe3O4 and PPV/CdSe nanofibers, and assembled them into devices. The properties of these fibers and devices were investigated. Our results indicated that PPV-based nanofibers can be directly assembled into photoconductor devices using the simple and low-cost method.
引文
[1] Wang Z L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J]. Science, 2006, 312: 242-246.
    [2] Morn-Mirabal J M, Slinker J D, DeFranco J A, et al. Electrospun Light-Emitting Nanofibers[J]. Nano. Lett. 2007, 7(2): 458-463.
    [3] Fan X, Chu Z, Wang F, et al. Wire-Shaped Flexible Dye-sensitized Solar Cells[J]. Adv. Mater. 2008, 20(3): 592-595.
    [4] Fan X, Chu Z, Chen L, et al. Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide[J]. Appl. Phys. Lett., 2008, 92(11): 113510-113512.
    [5] Liu H, Edel J B, Bellan L M, et al. Electrospun Polymer Nanofibers as Subwavelength Optical Waveguides Incorporating Quantum Dots[J]. Small, 2006, 2(4), 495-499.
    [6] Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel?[J].Adv. Mater., 2004, 16 (14): 1151-1170.
    [7] Greiner A, Wendorff J H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers Angew Chem Int Ed, 2007, 46 (30): 5670–5703.
    [8] Burroughes J H, Bradley D D C, Brown A R, et al.Light-emitting diodes based on conjugated polymers[J].Nature, 1990, 347: 539-541.
    [9] Hang Z H, Yang J H, Chen L C, et al.Study on EL emission region of polymer thin film in PPV LED[J].Synth. Met., 1997, 91(1-3): 315-316.
    [10] Pistor P, Chu V, Prazeres D M F et al. pH sensitive photoconductor based on poly(para-phenylene-vinylene)[J]. Sens. Actuators B: Chem. 2007, 123(1): 153-157.
    [11] Parad P E, Williams D J, Introduction to Nonlinear Optical Effects in Molecules and Polymer, New York: Willey, 1991, 284. [12 ] Koski A, Yim K, Shivkumar S,et al. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Mater Lett, 2004 ,58(3-4): 493~4971。
    [13]黄春辉,李富有,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005.
    [14] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature,1996, 370 (4):354-357.
    [15] Salafsky J S. Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites[J]. Phys. Rev. B, 1999, 59(16): 10885-10894.
    [16] Zhang J, Wang B J, Liu X, et al. New observations on the optical properties of PPV/TiO nanocomposites2[J]. Polymer, 2001, 42(8): 3697-3702. [17 ] Casper C L , Stephens J S , Tassi N G, et al . Phase Behavior of Partially Miscible Blends of Linear and Branched Polyethylenes [J].Macromolecules, 2003, 36(8): 2733~2741. [18 ] Young J R, Hak Y K, et al . Transport properties of electrospun nylon 6 nonwoven mats [J]. Eur Polym J, 2003 , 39(9): 1883~1889. [19 ] Liu H Q , Hsich YL. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate [J]. J Polym Sci , Part B: Polym Phys, 2002 ,40(18): 2119~21291。[20 ] Deitzel J M, Kleinmeyer J , Harris D T. The effect of processing variables on the morphology of electrospun nanofibers and textiles [J]. Polymer, 2001 ,42(1): 261~2721.
    [21] Demir M M, Yilgor I , Yilgor E , Erman B. Electrospinning of polyurethane fibers [J]. Polymer, 2002 , 43(11): 3303~33091.
    [22] Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning [J]. Polymer, 1999 , 40(16): 4585~45921.
    [23] Lei L,Hsieh Y. Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid) [J]. Polymer, 2005, 46(14): 5133-5139.
    [24] Frenot A , Chronakis I S. Polymer nanofibers assembled by electrospinning [J]. Curr Opin Colloid and Interface Sci, 2003 , 8(1): 64~751.
    [25] Boland E D , WnekG E , Simpson D G, et al . TAILORING TISSUE ENGINEERING SCAFFOLDS USING ELECTROSTATIC PROCESSING TECHNIQUES: A STUDY OF POLY(GLYCOLIC ACID) ELECTROSPINNING [J].J Macromol Sci Pur Appl Chem 2001 , A38 (12) : 1231 - 1243.
    [26] Matthews J A , WnekG E , Simpson D G, et al . Electrospinning of Collagen Nanofibers [J ]. Biomacromolecules 2002, 3(2): 232 - 238.
    [27] Dan Li, Yuliang Wang, Younan Xia. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays,[J ]. Nano Letters 2003, 3(8),1167 -1171.
    [28] Zhang D, Chang J. Patterning of Electrospun Fibers Using Electroconductive Templates Adv. Mater.,2007, 19(21), 3664–3667.
    [29] Zhang D, Chang J. Electrospinning of Three-Dimensional Nanofibrous Tubes with Controllable Architectures Nano Lett., 2008, 8 (10), 3283–3287.
    [30] Huang ZM, Zhang Y Z , Kotakic M, et al . A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology [J ] . 2003 , 63 :2223 - 2253.
    [31] Dan Li, Yuliang Wang, Younan Xia. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays,[J ]. Nano Letters 2003, 3(8),1167 -1171.
    [32] Zhang D, Chang J. Patterning of Electrospun Fibers Using Electroconductive Templates Adv. Mater.,2007, 19(21), 3664–3667.
    [33] Zhang D, Chang J. Electrospinning of Three-Dimensional Nanofibrous Tubes with Controllable Architectures Nano Lett., 2008, 8 (10), 3283–3287
    [34]黄争鸣,张彦中.共轴复合连续纳/微米纤维及其制备方法[P].中国发明专利, 200310108130.2003-09.
    [35]黄争鸣,董国华.制备共轴复合连续纳/微米纤维的多喷头静电纺丝装置[ P] .中国发明专利, 20031010922219.2003-12.
    [36]黄争鸣.一种有效包含功能材料的涂装层及其制备方法[ P].中国发明专利, 20041001650618.2004-02.
    [37]黄争鸣,张彦中.药物和蛋白质与聚己内酯分层复合纳米纤维的微观结构与力学特性[ J ].高等学校化学学报, 2005, 26 (5): 968 - 972.
    [38] Liu G, Qiao L , Guo A. Diblock copolymer nanofibers[ J ]. Macromolecules , 1996 , 29(16): 5508 - 5510.
    [39] Morales A M , Lieber C M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires [ J ]. Science , 1998, 279 : 208 - 211.
    [40] J ang J , Lim B , Lee J , et al . Fabrication of a novel polypyrrole/ poly (met hyl met hacrylate) coaxial nanocable using mesoporous silica as a nanoreactor [ J ] . Chemical Communications , 2001 , 1 : 83 - 84.
    [41] Bognitzki M , Hou H , Ishaque M , et al . Polymer , metal, and hybrid nano2 and mesotubes by coating degradable polymer template fibers ( TUFT process) [J ] . A dvanced Materials, 2000 , 12 (9) : 637 - 640.
    [42] Dong H , Nyame V , MacDiarmid A G, et al . Polyaniline/poly (methyl met hacrylate) coaxial fibers : The fabrication and effect s of t he solution properties on the morphology of electrospun core fibers [J ] . JPolym Sci Part B : Polym Phys, 2004 , 42 (21) : 3934 - 3942.
    [43] Sun Z , Zussman E , Yarin A L , et al1 Compound core-shell polymer nanofibers by co-electrospinning [ J ] . Advanced Materials , 2003 , 15(22) : 1929 - 1932.
    [44] Li D , Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by elect rospinning [J ] . Nano Lett , 2004, 4 (5): 933 - 938.
    [45] Zhang Y Z, Huang Z M, Xu X, et al . Preparation of core-shell st ructured PCL2r2Gelatin bi-component nanofibers by coaxial elect rospinning [ J ] . Chem Mater, 2004 , 16 ( 18): 3406 - 3409.
    [46] Zhang Y Z, Ouyang H W, Lim C T, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds [ J ] . J Biomed Mater Res Part B: Appl Biomater, 2005, 72B: 156 - 165.
    [47] Huang Z M , Zhang Y Z , Ramakrishna S , et al . Elect rospinning and mechanical characterization of gelatin nanofibers[J ] . Polymer , 2004 , 45(15) : 5361 - 5368.
    [48] Huang Z M , He C L , Yang A Z , et al . Encapsulating drug in biodegradable ult rafine fibers t hrough coaxial elect rospinning [J ]. J Biomed Mater Res Part A (in press) .
    [49] GIBSON P, SCHREUDER2GIBSON H, R IV IN D. Transport properties of porous membranes based on electrospun nanofibers[ J ]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188(31): 469 - 481.
    [50]万倩华.静电纺导电MWNTs/尼龙复合纳米纤维的制备[ J ].国外丝绸, 2007, 22(5) : 4 - 6.
    [51]龚华俊,杨小平,陈国强.电纺丝法制备聚乳酸/多壁碳纳米管/羟基磷灰石杂化纳米纤维的研究[ J ].高分子学报, 2005, 2(2): 297 - 300.
    [52] KO F, GOGOTSIY, A L IA, et al. Electrosp inning of continuous carbon nanotube filled nanofiber yarns [ J ]. Advanced Materials, 2003, 15 (14) : 1161 - 1165.
    [53] YANG Q B, L I D M, HONG Y L, et al. Preparation and characterization of a PAN nanofibre containing Ag nanoparticles via electrosp inning[ J ]. Synthetic Metals, 2003, 137(1-3): 973 - 974.
    [54] XU X Y, YANG Q B, WANG Y Z, et al. Biodegradable electrospun p loy (L2lactide) fibers containing antibacterial silver nanoparticles[ J ]. European Polymer Journal, 2006, 42(9) : 2081 - 2087.
    [55]朱英,张敬畅,郑咏梅,等.浸润性可调的导电聚苯胺/聚丙烯腈同轴纳米纤维[ J ].高等学校化学学报, 2006, 27(1): 196-198.
    [56]盛冰冰,孔庆山,纪全,等.静电纺丝法制备PVP /PVDF复合微纳米纤维[ J ].化工新型材料, 2008, 36 ( 2) : 79- 80.
    [57] Madhugiri S, Dalton A, Gutierrez J, et al. Electrospun MEH-PPV/SBA-15 Composite Nanofibers Using a Dual Syringe Method J. AM. CHEM. SOC. 2003, 125(47), 14531-14538.
    [58]周险峰,赵勇,曹新宇,等.静电纺丝法制备SrTiO3多晶微纳米纤维[ J ].高等学校化学学报, 2007, 28 ( 7 ): 1220 - 1222.
    [59]邵长路,关宏宇,温尚彬,等.静电纺丝法制备NiO纳米纤维及其表征[ J ].高等学校化学学报, 2003, 25 ( 6 ) : 1013 - 1015.
    [60]赵冬梅,张贞浴,杜宇红,等.基于静电纺丝技术制备Zn2 +掺杂TiO2纳米纤维[ J ].黑龙江大学自然科学学报, 2007, 24 (3) : 407 - 410.
    [61]赵一阳,王海鹰,李响,等.静电纺丝法制备硫酸化的二氧化锆/二氧化硅复合纤维[ J ].高等学校化学学报,2007, 28 (2) : 382 - 384.
    [62] Wang N, Sun C, Zhao Y, et al. Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process, J. Mater. Chem., 2008, 18 (33): 3909–3911.
    [63] Li D, McCann J T, Gratt M, et al. Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania Chemical Physics Letters, 2004, 394(4-6): 387–391.
    [64] W.JOHN, G.MECULLOC, PETER P.TSAI.非织造布技术发展新趋势[J].产业用纺织品,2002,20(1): 6-9.
    [65] PIKE. Richard Daniel(Norcross,ga)[P].美国专利:5935883, 1997-10-23.
    [66]陈桉,朱宏伟,等.平衡压力对碳纳米材料储氢的影响[J].清华大学学报:自然科学版, 2002,42(5): 659-661.
    [67] X.X.ZHANG, X.M.TAO, Y.F.FAN. Research and application of polymer nanofiber[J]. Journal of Donghua University(Eng.Ed.), 2003,20(1): 32-38.
    [68]安林红,王跃.纳米纤维技术的开发及应用[J].当代石油石化, 2002,10(1): 41-45.
    [69] H.SCHREUDER-GIBSON, P.GIBSON. Use of electrospun nanofibers for aerosol filtration in Textile Structures[J]. iber Society. Symposium (Abstracts), 2002: 52-54. [70 ] Peter P Tsai , Heidi Schreuder2Gibsonb , Phillip Gibson. Different electrostatic methods for making elect ret filters [J ]. Journal of Elect ro statics , 2002 , 54 : 3332341.
    [71] Zhang C X , Yuan X Y, Wu L L , et al. Drug2loaded ult rafine poly (vinyl alcohol) fibre mat s p repared by elect ro spinning [ J ] . E2POL YMERS, 2005 : Art . No. 072.
    [72] J ing Z , Xu X Y, Chen X S , et al. Biodegradable elect ro spun fibers for drug delivery [J ]. Journal of Cont rolled Release , 2003 , 92 (3) : 2272-231.
    [73] Zeng J , Yang L X , Liang Q Z , et al. Influence of the drug compatibility with polymer solution on the release kinetics of elect ro spun fiber formulation[J ] . Journal of Cont rolled Release, 2005, 105 (122): 43251.
    [74] Zong X H , Bien H , Chung C Y, et al. Elect ro spun fine2textured scaffolds for heart tissue const ruct s[J ] . Biomaterials , 2005 , 26 (26) : 53302-5338. .
    [75] Venugopal J , Ma L L , Yong T , et al. In vit ro study of smooth muscle cells on polycap rolactone and collagen nanofibrous mat rices[J ]. Cell Biology International , 2005 , 29 (10): 8612867.
    [76] Chu Benjamin,Benjamin S,Fang Dufei,et a1.Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles in medical applications[P],US Pat Appl,US 6685956,2002
    [77] Smith Daniel,Reneker Darrell,Kataphinan Woraphon.Electrospun skin masks and Uses thereof[P].US Pat Appl,US 879386,2000
    [78] Li Wan Ju,Laurencin,Caterson,et al,Electrospun nanofibers structure:A novel scaffold for tissue engineering[J].Journal of Biomedical Materials Research,2002,6O(4):613—621
    [79] Audrey Frenot,Ioannis,Chronakis.电子纺丝法制备功能性纳米纤维[J].尹桂波编泽,贾永堂校.国外丝绸,2003,18(6):31-33.
    [80] Dubson Alexander,Bar Eli. Improved vascular prosthesis and method for production thereof[P]us Pat Appl,US 326559,200l
    [81] Chu Benjamin,Hsiao Benjamin S,Hadjiargymu,et a1.Cell starage and delivery[P].us Pat Appl,US 953114,2003.
    [82]吴卫星,段斌,袁晓燕.静电纺丝制备高分子超细纤维的研究及应用[J].材料导报.2005,19(2):72~75
    [83] Bergshoef M M,Vancso G J.Transparent nanocomposites with ultrathin,electrospun nylon一4,6 fiber reinforcement[J].Adv Mater,1999,11(16):1362.
    [84] Ramakrishna S, Fujihara K, Teo W-E, et al. Materials today, Electrospun nanofibers:solving global issues: 2006, 9 (3): 40-50
    [85]王策,李振宇,杨清彪.电纺丝法制备带有塑料绝缘皮的纳米级铜导线:中国,1545103[ P] . 2004211210.
    [86] Ding B , Kim J H , Miyazaki Y, et al. Elect ro spun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection[J ]. Sensors and Actuators B2chemical , 2004 , 101 (3) : 3732380.
    [1] Bliznyuk V, Ruhstalle r B, Brock P J, et al.Self-Assembled Nanocomposite Polymer Light-Emitting Diodes with Improved Efficiency and Luminance[J].Adv. Mater., 1999, 11(15), 1257-1261.
    [2] Ago H, Retritsch K, Shaffer M S P, et al.Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices[J]. Adv. Mater., 1999, 11(15), 1281-1285.
    [3] Kong J, Franklin N R, Zhou C, et al.Nanotube Molecular Wires as Chemical Sensors[J]. Science, 2000, 287, 622-625.
    [4] Burroughes J H, Bradley D D C, Brown A R, et al.Light-emitting diodes based on conjugated polymers[J].Nature, 1990, 347, 539-541.
    [5] Park J Y, Lee S B, Park Y S, et al.Doping effect of viologen on photoconductive device made of poly (p-phenylenevinylene)[J].Appl. Phys. Lett., 1998, 72(22), 2871-2873.
    [6] Blom P W M, H. F. Schoo, M. Matters, et al.Growth of highly oriented Pb(Zr, Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors[J].Appl. Phys. Lett., 1998, 73(26), 3914-3916.
    [7] Mochizuki H, Mizokuro T, Tanigaki N, et al.Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method[J].Appl. Phys. Lett., 2004, 85(22), 5155-5157.
    [8] Kim K, J. I. Jin, et al.Preparation of PPV Nanotubes and Nanorods and Carbonized Products Derived Therefrom[J].Nano Lett., 2001, 1(11), 631-636.
    [9] Li D, Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel?[J].Adv. Mater., 2004, 16(14), 1151-1170.
    [10] Macdirmid A G, Jones W E, Norris I D, et al.Electrostatically-generated nanofibers of electronic polymers[J].Synth. Met., 2001, 119(1-3), 27-30.
    [11] Pinto N J, Johnson A T, MacDiamid A G, et al. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor[J].Appl. Phys. Lett., 2003 83(20), 4244-4246.
    [12] Kong X Y, Wang Z L, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts[J].Nano Lett., 2003, 3(12), 1625-1631.
    [13] Amelinckx S, Zhang X B, Bernaerts D, et al. A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes[J].Science, 1994, 265, 635-639.
    [14] Kessick R, Tepper G, Microscale polymeric helical structures produced by electrospinning[J].Appl. Phys. Lett., 2004, 84(23), 4807-4809.
    [15] Lenz R W, Han C C, Smith J S, et al. Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers[J].J. Polym. Sci. Part A, 1988, 26(12), 3241-3249.
    [16] Muthukumar M, Dynamics of polyelectrolyte solutions[J].J. Chem. Phys., 1997, 107(7), 2619-2635.
    [17] Bordi F, Colby R H, Cametti C, et al. Electrical Conductivity of Polyelectrolyte Solutions in the Semidilute and Concentrated Regime: The Role of Counterion Condensation[J].J. Phys. Chem. B, 106, 2002, 6887-6893.
    [18] Sekhon S S, Arora N, Singh H P, Effect of donor number of solvent on the conductivity behaviour of nonaqueous proton-conducting polymer gel electrolytes[J].Solid State Ionics, 2003, 160(3-4), 301-307.
    [19] Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets ofpolymer solutions in electrospinning[J].J. Appl. Phys., 2000, 87(9), 4531-4547.
    [20] Yang Q, Li Z, Hong Y, et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning[J].J. Polym. Sci. Part B: Polym. Phys., 2004, 42(20), 3721-3726.
    [1] Huang Z-M, Zhang Y-Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Comp Sci Technol, 2003, 63(15): 2223–2253.
    [2] Li D, Xia Y, Electrospinning of Nanofibers: Reinventing the Wheel?[J].Adv. Mater., 2004, 16(14): 1151-1170.
    [3] Greiner A, Wendorff J H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers[J]. Angew Chem Int Ed, 2007, 46(30): 5670–5703.
    [4] Zhao Q, Xin Y, Huang Z H, et al. Using poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] as shell to fabricate the highly fluorescent nanofibers by coaxial electrospinning[J]. Polymer, 2007, 48(15): 4311-4315.
    [5] Kuo C C, Lin C H, Chen W C. Morphology and Photophysical Properties of Light-Emitting Electrospun Nanofibers Prepared from Poly(fluorene) Derivative/PMMA Blends[J]. Macromolecules, 2007, 40(19): 6959-6966.
    [6] Reneker D H, Yarin A L, Fong H, et al.Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J].J. Appl. Phys., 2000, 87(9): 4531-4547.
    [7] Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning of nanofibers[J]. J Appl Phys, 2001, 89(5): 3018-3026.
    [8] Li L, Hsieh Y L. Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid)[J]. Polymer, 2005, 46(14): 5133-5139.
    [9] Ding B, Li C R, Miyauchi Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006, 17(15): 3685-3691.
    [10] Shin Y M, Hohman M M, Brenner M P, et al.Experimental characterization of electrospinning: the electrically forced jet and instabilities[J].Polymer, 2001, 42(25): 09955-09967.
    [11] McKee M G, Hunley M T, Layman J M, et al. Macromolecules 2006, 39, 575.
    [12] Burroughes J H, Bradley D D C, Brown A R, et al.Light-emitting diodes based on conjugated polymers[J].Nature, 1990, 347: 539-541.
    [13] Hang Z H, Yang J H, Chen L C, et al.Study on EL emission region of polymer thin film in PPV LED[J].Synth. Met., 1997, 91(1-3): 315-316.
    [14] Parad P E, Williams D J, Introduction to Nonlinear Optical Effects in Molecules and Polymer, New York: Willey, 1991, 284.
    [15] Chang W P, Wang W T. A study of the relationship between the electroluminescence characteristics and compositions of PPV-PVA-based polymers[J]. Polymer, 1996, 37(16): 3493-3499.
    [16] Zhang J, Wang B, Ju Xin, et al. New observations on the optical properties of PPV/TiO nanocomposites2[J]. Polymer, 2001, 42(8): 3697-3702.
    [17] Morn-Mirabal J M, Slinker J D, DeFranco J A, et al. Electrospun Light-Emitting Nanofibers[J]. Nano Lett, 2007, 7(2): 458-463.
    [18] Camposeo A, Di Benedetto F, Stabile R, et al. Electrospun dye-doped polymer nanofibers emitting in the near infrared[J]. Appl Phys Lett, 2007, 90(14): 143115-143117.
    [19] Tomczak N, Gu S, Han M, et al. Single light emitters in electrospun polymer nanofibers: Effect of local confinement on radiative decay[J]. Eur Polym J, 2006, 42(10): 2205-2210.
    [20] Liu H, Edel J B, Bellan L M, et al. Electrospun Polymer Nanofibers as Subwavelength Optical Waveguides Incorporating Quantum Dots[J]. Small, 2006, 2(4): 495-499.
    [21] Li M, Zhang J, Zhang H, et al. Electrospinning: A Facile Method to Disperse Fluorescent Quantum Dots in Nanofibers without F?rster Resonance Energy Transfer[J]. Adv Funct Mater, 2007, 17(17): 3650-3656.
    [22] Lenz R W, Han C C, Smith J S, et al. Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers[J].J. Polym. Sci. Part A, 1988, 26(12): 3241-3249.
    [23] Gagnon D R, Capistran J D, Karasz F E. Synthesis, doping, and electrical conductivity of high molecular weight poly(p-phenylene vinylene)[J]. Polymer, 1987, 28(4) : 567-573.
    [24] Kim K, Jeoung S C, Lee J, et al.Optical absorption and photoluminescence properties of the PPV nanotubes and nanowires[J].Macromol. Symp. 2003, 201(1): 119-126.
    [25] Baraton M I, Merhari L, Wang J Z, et al. Investigation of the TiO2/PPV nanocomposite for gas sensing applications[J]. Nanotechnology, 1998, 9(4): 356-359.
    [1] Li D, Xia Y, Electrospinning of Nanofibers: Reinventing the Wheel?[J].Adv. Mater., 2004, 16(14): 1151-1170.
    [2] Melosh N A, Boukai A, Diana F, et al.Ultrahigh-Density Nanowire Lattices and Circuits[J].Science, 2003, 300: 112-115.
    [3] Kim F, Kwan S, Akana J, et al.Langmuir?Blodgett Nanorod Assembly[J].J. Am. Chem. Soc. 2001, 123(18): 4360-4361.
    [4] Li D, Wang Y, Xia Y, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays[J].Nano Lett. 2003, 3(8): 1167-1171.
    [5] Matthews J A, Wnek G E, Simpson D G, et al . Electrospinning of Collagen Nanofibers[J].Biomacromolecules, 2002, 3(2): 232-238.
    [6] Burroughes J H, Bradley D D C, Brown A R, et al.Light-emitting diodes based on conjugated polymers[J].Nature, 1990, 347: 539-541.
    [7] Hang Z H, Yang J H, Chen L C, et al.Study on EL emission region of polymer thin film in PPV LED[J].Synth. Met., 1997, 91(1-3): 315-316.
    [8] Parad P E, Williams D J, Introduction to Nonlinear Optical Effects in Molecules and Polymer, New York: Willey, 1991, 284.
    [9] Reneker D H, Yarin A L, Fong H, et al.Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J].J. Appl. Phys., 2000, 87(9): 4531-4547.
    [10] Lenz R W, Han C C, Smith J S, et al. Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers[J].J. Polym. Sci. Part A, 1988, 26(12): 3241-3249.
    [11] Muthukumar M, Dynamics of polyelectrolyte solutions[J].J. Chem. Phys., 1997, 107(7): 2619-2635.
    [12] Bordi F, Colby R H, Cametti C, et al.Electrical Conductivity of Polyelectrolyte Solutions in the Semidilute and Concentrated Regime: The Role of Counterion Condensation[J].J. Phys. Chem., B, 2002, 106(27): 6887-6893.
    [13] Shin Y M, Hohman M M, Brenner M P, et al.Experimental characterization of electrospinning: the electrically forced jet and instabilities[J].Polymer, 2001, 42(25): 09955-09967.
    [14] Gagnon D R, Capistran J D, Karasz F E. Synthesis, doping, and electrical conductivity of high molecular weight poly(p-phenylene vinylene) [J].Polymer, 1987, 28(4): 567-573.
    [15] Kim K, Jeoung S C, Lee J, et al.Optical absorption and photoluminescence properties of the PPV nanotubes and nanowires[J].Macromol. Symp. 2003, 201(1): 119-126.
    [16] Li D, Babel A, Jenekhe S A, et al.Nanofibers of Conjugated Polymers Prepared by Electrospinning with a Two-Capillary Spinneret[J].Adv. Mater. 2004, 16(22): 2062-2066.
    [1] Huang Z-M, Zhang Y-Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Comp Sci Technol, 2003, 63 (15): 2223–2253.
    [2] Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel?[J].Adv. Mater., 2004, 16 (14): 1151-1170.
    [3] Greiner A, Wendorff J H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers Angew Chem Int Ed, 2007, 46 (30): 5670–5703.
    [4] Tomczak N, van Hulst N F, Vancso G J. Beaded Electrospun Fibers for Photonic Applications[J]. Macromolecules 2005, 38 (18): 7863-7866.
    [5] Kessick R, Tepper G, Microscale polymeric helical structures produced by electrospinning[J].Appl. Phys. Lett., 2004, 84 (23): 4807-4809.
    [6] Burroughes J H, Bradley D D C, Brown A R, et al.Light-emitting diodes based on conjugated polymers[J].Nature, 1990, 347: 539-541.
    [7] Hang Z H, Yang J H, Chen L C, et al.Study on EL emission region of polymer thin film in PPV LED[J].Synth. Met., 1997, 91(1-3): 315-316.
    [8] Parad P E, Williams D J, Introduction to Nonlinear Optical Effects in Molecules and Polymer, New York: Willey, 1991, 284.
    [9] Lenz R W, Han C C, Smith J S, et al. Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers[J].J. Polym. Sci. Part A, 1988, 26(12): 3241-3249.
    [10] Xinhua Z, Kim K, Shaofeng R, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J].Polmer, 2002, 43 (16): 4403-4412.
    [11] Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning[J].Polymer, 1999, 40 (16): 4585-4592.
    [12] Baraton M I, Merhari L, Wang J Z, et al. Investigation of the TiO2/PPV nanocomposite for gas sensing applications[J].Nanotechnology, 1998, 9 (4): 356-359.
    [13] Gagnon D R, Capistran J D, Karasz F E, Synthesis, doping, and electrical conductivity of high molecular weight poly(p-phenylene vinylene)[J].Polymer, 1987, 28 (4): 567-573.
    [14] Peeters E, Ramos A M, Mesker S C J, et al. Singlet and triplet excitations of chiral dialkoxy-p-phenylene vinylene oligomers[J].J Chem Phys 2000, 112 (21): 9445-9454.
    [1] Huang Z-M, Zhang Y-Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Comp Sci Technol, 2003, 63 (15): 2223–2253.
    [2] Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel?[J].Adv. Mater., 2004, 16 (14): 1151-1170.
    [3] Greiner A, Wendorff J H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers Angew Chem Int Ed, 2007, 46 (30): 5670–5703.
    [4] Tsai P, Schreuder-Gibson H L. Adv Filtration Sep Technol, 2003, 16: 340-353.
    [5] Wang X Y, Drew C, Lee S H, et al. Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors[J].Nano Lett, 2002, 2(11): 1273-1275.
    [6] Xie J, Hsieh Y-L. J Mater Sci 2003, 38: 2125-2133.
    [7] Matthews J A, Wnek G E, Simpson D G, et al. Electrospinning of Collagen Nanofibers[J].Biomacromolecules, 2002, 3(2): 232-238.
    [8] Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers[J].Colloids Surf A, 2001, 187-188: 469-481.
    [9] Tomczak N, van Hulst N F, Vancso G J. Beaded Electrospun Fibers for Photonic Applications[J]. Macromolecules 2005, 38(18): 7863-7866.
    [10] Kessick R, Tepper G, Microscale polymeric helical structures produced by electrospinning[J].Appl. Phys. Lett., 2004, 84 (23): 4807-4809.
    [11] Wang X, Kim Y-G, Drew C, et al. Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors[J]. Nano Lett, 2004, 4(2): 331-334.
    [12] Drew C, Liu X, Ziegler D, et al. Metal Oxide-Coated Polymer Nanofibers[J]. Nano Lett, 2003, 3(2): 143-147.
    [13] Sun Z C, Zussman E, Yarin A L, et al. Compound Core-Shell Polymer Nanofibers by Co-Electrospinning[J]. Adv Mater, 2003, 15(22): 1929-1932.
    [14] Yu J H, Fridrikh S V, Rutledge G C. Production of Submicrometer Diameter Fibers by Two-Fluid Electrospinning[J]. Adv Mater, 2004, 16(17): 1562-1566.
    [15] Li D, Xia Y N. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning[J]. Nano Lett 2004, 4(5): 933-938.
    [16] Song T, Zhang Y-Z, Zhou T-J, Lim C-T, et al. Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning[J]. Chem Phys Lett, 2005, 415(4-6): 317-322.
    [17] Burroughes J H, Bradley D D C, Brown A R, et al.Light-emitting diodes based on conjugated polymers[J].Nature, 1990, 347: 539-541.
    [18] Lenz R W, Han C C, Smith J S, et al. Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers[J].J. Polym. Sci. Part A, 1988, 26(12): 3241-3249.
    [19] Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene[J]. Polym Int, 2004, 53(11): 1851-1859.
    [20] McKee M G, Hunley M T, Layman J M, Long T E. Solution Rheological Behavior andElectrospinning of Cationic Polyelectrolytes[J]. Macromolecules, 2006, 39(2): 575-583.
    [21] Zhang W, Yan E Y, Huang Z H, et al. Preparation and study of PPV/PVA nanofibers via electrospinning PPV precursor alcohol solution[J]. European Polymer Journal, 2007, 43 (3): 802–807.
    [22] Reneker D H, Yarin A L, Fong H, et al.Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J].J. Appl. Phys., 2000, 87(9): 4531-4547.
    [23] Li D, Wang YL, Xia YN. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films[J]. Adv Mater, 2004, 16(4): 361-366.
    [24] Katta P, Alessandro M, Ramiser R D, et al. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector[J]. Nano Lett, 2004, 4(11): 2215-2218.
    [25] Matthews, J A, Wnek G E, Simpson D G, et al. Electrospinning of Collagen Nanofibers[J]. Biomacromolecules, 2002, 3(2): 232-238.
    [26] Chang W P, Wang W T. A study of the relationship between the electroluminescence characteristics and compositions of PPV-PVA-based polymers[J]. Polymer, 1996, 37(16): 3493-3499.
    [1] Dekker C, Carbon Nanotubes as Molecular Quantum Wires[J]. Phys. Today, 1999, 52: 22-28.
    [2] Wu H, Lin D, Pan W. Fabrication, assembly, and electrical characterization of CuO nanofibers[J]. Appl. Phys. Lett., 2006, 89(13): 133125-133127.
    [3] Cui Y, Zhong Z, Wang D, et al. High Performance Silicon Nanowire Field Effect Transistors Nano Lett., 2003, 3(2): 149-152.
    [4] Liu H, Reccius C H, Craighead H G. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor[J]. Appl. Phys. Lett., 2005, 87(25): 253106-253108.
    [5] Lao C, Li Y, Wong C P et al. Enhancing the Electrical and Optoelectronic Performance of Nanobelt Devices by Molecular Surface Functionalization[J]. Nano Lett., 2007, 7(5): 1323-1328.
    [6] Yang A, Tao X, Wang R, et al. Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers[J]. Appl. Phys. Lett., 2007, 91(13): 133110-133112.
    [7] D. Wang, C. Hao, W. Zheng, Q. Peng, T. Wang, Z. Liao, D. Yu, and Y. Li, Ultralong Single-Crystalline Ag2S Nanowires: Promising Candidates for Photoswitches and Room-Temperature Oxygen Sensors Adv. Mater., 2628-2632, 20(13) (2008).
    [8] Tang Q, Li L, Song Y, et al. Photoswitches and Phototransistors from Organic Single-Crystalline Sub-micro/nanometer Ribbons[J]. Adv. Mater., 2007, 19(18): 2624-2628.
    [9] Guo Y, Tang Q, Liu H, et al. Light-Controlled Organic/Inorganic P-N Junction Nanowires[J]. J. Am. Chem. Soc., 2008, 130: 9198–9199.
    [10] Kraft A, Grimsdale A C, Holmes A B. Electroluminescent Conjugated Polymers - Seeing Polymers in a New Light[J]. Angew. Chem. Int. Ed. 1998, 37, 402-428.
    [11] Low-Dimensional Semiconductor Structures: Fundamentals and Device Applications (Eds: K. Barnham, D. Vvedensky), Cambridge University Press, Cambridge, UK 2001.
    [12] Gangopadhyay R, De A, Conducting Polymer Nanocomposites: A Brief Overview[J]. Chem. Mater. 2000, 12(3), 608-622.
    [13] Burroughes J H, Bradley D D C, Brown A R, et al.Light-emitting diodes based on conjugated polymers[J].Nature, 1990, 347: 539-541.
    [14] Hang Z H, Yang J H, Chen L C, et al.Study on EL emission region of polymer thin film in PPV LED[J]. Synth. Met., 1997, 91(1-3): 315-316.
    [15] Pistor P, Chu V, Prazeres D M F et al. pH sensitive photoconductor based on poly(para-phenylene-vinylene)[J]. Sens. Actuators B: Chem. 2007, 123(1): 153-157.
    [16] Parad P E, Williams D J, Introduction to Nonlinear Optical Effects in Molecules and Polymer, New York: Willey, 1991, 284.
    [17] Lira-Cantu M, Krebs F C. Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2 , Nb 2 O5 , ZnO, CeO2 and CeO2– TiO2 ) : Performance improvement during long-time irradiation[J]. Sol. Energy Mater. Sol. Cells 2006, 90(14): 2076-2086.
    [18] Lira-Cantu M, Norrman K, Andreasen J W, et al. Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells[J]. Chem. Mater. 2006, 18(24): 5684.
    [19] Lira-Cantu M, Norrman K, Andreasen J W, et al. Detrimental effect of inert atmospheres on hybrid solar cells based on semiconductor oxides[J]. J. Electrochem. Soc. 2007, 154: B508.
    [20] Liu H, Edel J B, Bellan L M, et al. Electrospun Polymer Nanofibers as Subwavelength Optical Waveguides Incorporating Quantum Dots[J]. Small, 2006, 2(4): 495-499.
    [21] Lenz R W, Han C C, Smith J S, et al. Preparation of poly(phenylene vinylene) from cycloalkylenesulfonium salt monomers and polymers[J].J. Polym. Sci. Part A, 1988, 26(12): 3241-3249.
    [22] Tang A, Teng F, Jin H, et al. Investigation on photoconductive properties of MEH-PPV/CdSe-nanocrystal nanocomposites[J].Materials Letters, 2007, 61: 2178–2181.
    [23] Sun D, Chang C, Li S, et al. Near-Field Electrospinning[J].Nano Lett., 2006, 69 (4): 839-842.
    [1] Dekker C, Carbon Nanotubes as Molecular Quantum Wires[J]. Phys. Today, 1999, 52: 22-28.
    [2] Wu H, Lin D, Pan W. Fabrication, assembly, and electrical characterization of CuO nanofibers[J]. Appl. Phys. Lett., 2006, 89(13): 133125-133127.
    [3] Cui Y, Zhong Z, Wang D, et al. High Performance Silicon Nanowire Field Effect Transistors Nano Lett., 2003, 3(2): 149-152.
    [4] Liu H, Reccius C H, Craighead H G. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor[J]. Appl. Phys. Lett., 2005, 87(25): 253106-253108.
    [5] Lao C, Li Y, Wong C P et al. Enhancing the Electrical and Optoelectronic Performance of Nanobelt Devices by Molecular Surface Functionalization[J]. Nano Lett., 2007, 7(5): 1323-1328.
    [6] Yang A, Tao X, Wang R, et al. Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers[J]. Appl. Phys. Lett., 2007, 91(13): 133110-133112.
    [7] D. Wang, C. Hao, W. Zheng, Q. Peng, T. Wang, Z. Liao, D. Yu, and Y. Li, Ultralong Single-Crystalline Ag2S Nanowires: Promising Candidates for Photoswitches and Room-Temperature Oxygen Sensors Adv. Mater., 2628-2632, 20(13) (2008).
    [8] Tang Q, Li L, Song Y, et al. Photoswitches and Phototransistors from Organic Single-Crystalline Sub-micro/nanometer Ribbons[J]. Adv. Mater., 2007, 19(18): 2624-2628.
    [9] Guo Y, Tang Q, Liu H et al. Light-Controlled Organic/Inorganic P-N Junction Nanowires[J]. J. Am. Chem. Soc., 2008, 130(29): 9198.
    [10] Kim K, Kim B H, Joo S-H, et al. Photoconductivity of Single-Bilayer Nanotubes Consisting of Poly(p-phenylenevinylene) (PPV) and Carbonized-PPV Layers[J]. Adv. Mater., 2005, 17(4): 464.
    [11] Li D, Xia Y, Electrospinning of Nanofibers: Reinventing the Wheel?[J].Adv. Mater., 2004, 16(14): 1151-1170.
    [12] Greiner A, Wendorff J H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers[J]. Angew Chem Int Ed, 2007, 46(30): 5670–5703.
    [13] Hoppe H, Sariciftci N S. Morphology of polymer/fullerene bulk heterojunction solar cells[J]. J. Mater. Chem., 2006, 16(1): 45-61.
    [14] Bundgaard E, Krebs F C. Low band gap polymers for organic photovoltaics[J]. Sol. Energy Mater. Sol. Cells, 2007, 91(11): 954-985.
    [15] Günes S, Neugebauer H, Sariciftci, N S. Conjugated Polymer-Based Organic Solar Cells[J]. Chem. Rev., 2007, 107(4): 1324-1338.
    [16] J?rgensen M, Norrman K, Krebs F C. Stability/degradation of polymer Solar cells[J]. Sol. Energy Mater. Sol. Cells 2008, 92(7): 686-714.
    [17] Thompson B C, Fréchet J M J, et al. Polymer–Fullerene Composite Solar Cells[J]. Angew. Chem. Int. Ed., 2008, 47(1): 58-77.
    [18] Krebs F C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques[J]. Sol. Energy Mater. Sol. Cells, 2009, 93(4): 394 -412.
    [19] Burroughes J H, Bradley D D C, Brown A R, et al.Light-emitting diodes based on conjugated polymers[J].Nature, 1990, 347: 539-541.
    [20] Hang Z H, Yang J H, Chen L C, et al.Study on EL emission region of polymer thin film in PPV LED[J]. Synth. Met., 1997, 91(1-3): 315-316.
    [21] Pistor P, Chu V, Prazeres D M F et al. pH sensitive photoconductor based onpoly(para-phenylene-vinylene)[J]. Sens. Actuators B: Chem. 2007, 123(1): 153-157.
    [22] Parad P E, Williams D J, Introduction to Nonlinear Optical Effects in Molecules and Polymer, New York: Willey, 1991, 284.
    [23] Lira-Cantu M, Krebs F C. Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2 , Nb 2 O5 , ZnO, CeO2 and CeO2– TiO2 ) : Performance improvement during long-time irradiation[J]. Sol. Energy Mater. Sol. Cells 2006, 90(14): 2076-2086.
    [24] Lira-Cantu M, Norrman K, Andreasen J W, et al. Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells[J]. Chem. Mater. 2006, 18(24): 5684.
    [25] Lira-Cantu M, Norrman K, Andreasen J W, et al. Detrimental effect of inert atmospheres on hybrid solar cells based on semiconductor oxides[J]. J. Electrochem. Soc. 2007, 154: B508.
    [26] Xin Y, Huang Z H, Yan E Y et al. Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning[J]. Appl. Phys. Lett., 2006, 89(5): 053101-053103.
    [27] Li D, Wang Y, Xia Y, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays[J].Nano Lett. 2003, 3(8): 1167-1171.
    [28] Matthews, J A, Wnek G E, Simpson D G, et al. Electrospinning of Collagen Nanofibers[J]. Biomacromolecules, 2002, 3(2): 232-238.
    [29] Xin Y, Huang Z H, Chen J, et al. Fabrication of well-aligned PPV/PVP nanofibers by electrospinning[J]. Mater. Lett. 2008, 62(6-7): 991.
    [30] Massart R, IEEE. Preparation of aqueous magnetic liquids in alkaline and acidic media[J]. Trans. on Magn., 1981, 17(2): 1247-1248.
    [31] Lenz R W, Han C C, Smith J S, et al. Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers[J].J. Polym. Sci. Part A, 1988, 26(12): 3241-3249.
    [32] Yang D, Lu B, Zhao Y, et al. Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning Adv. Mater. 2007, 19(21): 3702-3706.
    [33] Yang M, Wang D, Peng L, et al. Photoelectric response mechanisms dependent on RuN3 and CuPc sensitized ZnO nanoparticles to oxygen gas Nanotechnology 2006, 17(18): 4567-4571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700