微纳VO_2薄膜特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高灵敏度的非致冷红外焦平面的出现被认为是近二十多年来红外工程的最了不起的成就。相比于致冷型光子探测器,非致冷型探测器具有成本低、体积小、重量轻、功耗小、可靠性高等方面的优点,引起了红外成像应用方面的广泛的关注。
     氧化钒微测辐射热计是一种非致冷红外热探测器,它采用与标准的互补型金属氧化物半导体(Complementary Metal Oxide Semiconductor-CMOS)工艺兼容的表面微机械加工工艺,将阵列探测器与读出电路单片集成。目前已有像元面积25μm×25μm、阵列规模640×480的氧化钒微测辐射热计,其噪声等效温差接近12mk。但是微测辐射热计的性能改善还有很大的空间,特别是改善热敏材料的性能。
     本文围绕微测辐射热计通常使用的材料二氧化钒(Vanadium Dioxide-VO2)进行研究,制备了微米及纳米结构VO2薄膜,研究了两种材料的性能,重点对两种材料在红外探测方面的应用进行了研究。主要的研究成果如下:
     (1)进行了微米结构VO2薄膜研制工作。通过磁控溅射方法制备的该薄膜具有1~2μm平均晶粒度,相变温度为68℃,在半导体区的电阻温度系数(Temperature coefficient of Resistance-TCR)为-2.2%/K。
     (2)开展了纳米结构VO2薄膜研究工作。该薄膜通过离子束溅射和后退火工艺制备,对薄膜的特性研究表明:薄膜晶粒度为8nm,35℃发生相变,在材料的半导体相区TCR为-7%/K,较微米结构热敏VO2的TCR高3倍多。
     (3)制作了微米及纳米VO2线列128元红外探测器,并对两者的红外探测性能进行了对比测试。测试结果表明:纳米VO2线列探测器的红外响应性能较微米VO2线列探测器的红外响应性能得到了很大的提高,前者为后者的2~3倍。
     (4)研制了以微米VO2薄膜为传感材料,聚合物苯并环丁烯(Benzocyclobutene- BCB)为柔性衬底的柔性微测辐射热计。对器件的测试表明:在800K的黑体辐照、3Hz斩波频率下,器件的响应率和探测率分别为7.4×103V/W和6.9×107cmHz1/2/W。
     (5)完成了微米VO2阵列(32×32)微测辐射热计的研制工作,器件的制作工艺与CMOS工艺完全兼容。测试表明:在1V的偏压下,器件的像元响应率和噪声等效功率的典型值分别为1.47×104 W/K、4.14×10-10W。
     (6)研究了低温相变纳米VO2薄膜智能窗在可见光区低透过率的改善方法。通过在纳米VO2智能窗上镀SiO2减反膜的方法取得了较好的试验效果,使智能窗在VO2薄膜半导体相和金属相的可见光区透过率都有不同程度的改善。
The appearance of high-sensitivity uncooled infrared focal plane arrays is considered as the most significant achievement in IR engineering during the last twenty years. The devices have recently gained broad attention for infrared imaging applications, due to their advantages such as low cost, light weight, low power, wide spectral response, and long term operation compared to cooled photon detectors.
     Microbolometer is a type of uncooled infrared thermal detectors. It uses a surface-micromachined process to integrate heat-sensitive detector arrays with CMOS read-out IC. Currently, microbolometer arrays based on VOx heat-sensitive material have been fabricated with 640×480 array formats and 25μm×25μm pixel sizes, and the NETD approaches 12mk. However, there is still amounts of room to improve the performance of these devices through improving the properties of the heat-sensitive material.
     In this dissertation, the fabrication and performance of microstructure and nanostructure heat-sensitive VO2 thin films for microbolometer are presented. The major work is to investigate the applications of the two kinds of VO2 thin films on infrared detectors, described as followings.
     (1) Conventional microstructure VO2 thin films have been fabricated by DC magnetic sputtering. The phase transition temperature for as-fabricated heat-sensitive VO2 films with the grain size of 1~2μm is around 68℃, and the TCR of this heat-sensitive material is about -2.2%/K in the semiconductor region.
     (2) Novel nanostructure VO2 thin films are prepared using reactive ion beam sputtering and post annealing. The phase transition temperature for the nano-VO2 films with the grain size of 8~10 nm is 35℃. The TCR of this heat-sensitive material is about -7%/K in the semiconductor region, which is more than 3 times higher than that of the conventional microstructure VO2 thin films.
     (3) Linear infrared sensors with 128 elements based on both the nanostructure VO2 thin films and the conventional microstructure VO2 thin films are fabricated with the same design, respectively. The comparative tests of the two kinds of sensors are conducted. The results of the tests show that the performance of the device based on the nanostructure VO2 thin film is improved greatly compared with the device based on the conventional microstructure VO2 film. The former is 2~3 times better than the latter.
     (4) The flexible microbolometers based on the microstructure VO2 thin film are fabricated on bisbenzocyclobutene (BCB) substrates. The test results show that the responsivity and the detectivity of the device at the black body temperature of 800K and with the chopper frequency of 3Hz are 7×103V/W and 7×107cmHz1/2/W, respectively.
     (5) The 32×32 microbolometer array are fabricated based on the microstructure VO2 thin films. The responsivity of 1.47×104 V/W and the NEP of 4.14×10-10 W are obtained at a pulse bias of 1V.
     (6) The improvement of the low transmittance in the visible region of the smart window based on the low-temperature phase transition nanostructure VO2 thermochromic thin films is studied. A decent result is obtained by coating a SiO2 anti-reflection layer on nanostructure VO2 smart window. The transmittances of the smart window of the VO2 thermochromic thin films at both the semiconductor phase and the metallic phase are improved to some degree.
引文
[1] R. S. Balcerak. Uncooled IR imaging: Technology for the next generation. Proc. SPIE, 1999, 3698: 110-118
    [2] T. W. Case. Notes on the change of resistance of certain substrates in light. Physics Reviews B, 1917, 9: 305-310
    [3] R. J. Cushman. Film-type infrared photoconductors. Proc. IRE, 1959, 47: 1471-1475
    [4] D. Figler. Uncooled microbolometer thermal imaging sensors for unattended ground sensor applications. Proc. SPIE, 2001, 4393: 78-88
    [5] C. Hornberger. Application of military uncooled infrared sensors to homeland defense. Proc. SPIE, 2002, 4708: 201-211
    [6] T. Breen, M. kohin, C.A. Marshall, et al. Even more applications of uncooled microbolometer sensors. Proc. SPIE, 1999, 3698: 308-319
    [7] R. J. Kyle, D. Van, K. S. Douglas. Uncooled infrared thermal imaging systems for law enforcement. Proc. SPIE, 1995, 2497: 98-104
    [8] H. Geoffray, A. Bardoux, M. Laporte, et al. Uncooled infrared microbolometer arrays for Earth remote sensing. Proc. SPIE, 2000, 4130: 527-536
    [9] T. White, C. Marshall, N. Butler. Uncooled infrared sensor with digital focal plane array for medical applications. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 1996, 5: 2081-2082
    [10]李琼花,杨家德.非致冷凝视红外焦平面阵列的特定及应用.重庆工学院学报, 2003, 17(1): 48-50
    [11]金伟其,侯光明.非致冷焦平面热成像技术及其应用.红外技术, 1998, 20(6): 6-11
    [12] A. Rogalski. Infrared photon detectors versus thermal detectors. Proc. SPIE, 1998, 3316: 754-761
    [13] A. Rogalski. Infrared detectors: Status and trends. Progress in Quantum Electronics, 2003, 27(3): 59-210
    [14] A. Rogalski. Infrared detectors: An overview. Infrared Physics and Technology, 2002, 43(6): 187-210
    [15] P. W. Kruse. Uncooled IR focal plane arrays. Opto-Electronics Review, 1999, 7(2): 253-258
    [16] C. M. Hanson. Hybrid pyroelectric-ferroelectric bolometer arrays. Semiconductors and Semimetals, 1997, 47(45): 123-174
    [17] N. R. Butler, R. Blackwell, R. Murphy, et al. Low-cost uncooled microbolometer imaging system for dual use. Proc. SPIE, 1995, 2552: 583-591
    [18] J. L. Tissot, F. Rothan, C. Vedel, et al. LETI/LIR's uncooled microbolometer development. Proc. SPIE, 1998, 3436: 605-610
    [19] J. Brady, T. Schiment, D. Ratcliff, et al. Advances in amorphous silicon uncooled IR systems. Proc. SPIE, 1999, 3698: 161-167
    [20] R. A. Wood, N. A. Foss. Micromachined bolometer arrays achieve low-cost imaging. Laser Focus World, 1993, 6(3): 101-106
    [21] D. Murphy, M. Ray, R. Wyles, et al. High sensitivity 25μm microbolometer FPAs. Proc. SPIE, 2002, 4820: 208-219
    [22] P. E. Howard, J. E. Clarke, W. J. Parrish, et al. Advanced high-performance 320×240 VOx microbolometer uncooled IR focal plane. Proc. SPIE, 1999, 3698: 131-136
    [23] R. Murphy, M. Kohin, B. Backer, et al. Recent developments in uncooled IR technology. Proc. SPIE, 2000, 4028: 12-16
    [24] N. Oda, Y. Tanake, T. Sasaki, et al. Performance of 320×240 bolometer-type uncooled infrared detector. NEC Research and Development, 2003, 44(2): 170-174
    [25] E. M. Wormser. Properties of thermistor infraredd etectors. Journal of Optics Society of American. 1953, 43(12): 15-21
    [26] M. N. Guree, M. Kohin, R. Blackwell. Developments in uncooled IR technology at BAE system. Proc. SPIE, 2001, 436: 287-296
    [27] E. Mottin, J. L Martin, B. Ouvrier, et al. 320×240 microbolometer uncooled IRFPA. Proc. SPIE, 2000, 4028: 40-46
    [28] A. Rogalski. Infrared photon detectors versus thermal detectors. Proc. SPIE, 1998, 3316: 754-761
    [29] A. Rogalski. Infrared detectors: Status and trends. Progress in Quantum Electronics, 2003, 27(23): 59-210
    [30] A. Rogalski. Infrared detectors: An overview. Infrared Physics and Technology, 2002,43(15): 187-210
    [31] H. Beratan, C. Hanson, E. G. Meissner. Low-cost uncooled ferroelectric detector. Proc. SPIE, 1994, 2274: 147-156
    [32] R. J. Herring, P. E. Howard. Design and performance of the ULTRA 320×240 uncooled focal plane array and sensor. Proc. SPIE, 1996, 2746: 2-12
    [33] H. Jerominek, F. Picard, N. R. Swart, et al. Micromachined uncooled VO2–based IR bolometer arrays. Proc. SPIE, 1996, 2746: 60-71
    [34] W. Meyer, R. Cannata, A. Stout, et al. Ambers’s uncooled microbolometer LWIR camera. Proc. SPIE, 1996, 2746: 13-22
    [35] K. C. Liddiard. Thin-film resistance bolometer IR detectors. Infrared Phys. 1984, 24(1): 57-64
    [36] S. Sedky, P. Fiorini, K. Baert, et al. Characterization and optimization of infrared poly Si-Ge bolometers. IEEE Trans. Electron Devices, 1999, 46(4): 675-681
    [37] J. Wauters. Doped silicon creates new bolometer material. Laser Focus World, 1997, 33(11): 145-149
    [38] A. Jahanzeb, C. M. Travers, Z. Celik-Butler. A semiconductor YBaCuO microbolometer for room temperature IR imaging. IEEE Trans. Electron Devices, 1997, 44(10): 1795-1801
    [39] A. Tanaka, S. Matsumoto, N. Tsukamoto, et al. Infrared focal plane array incorporating silicon IC process compatible bolometer. IEEE Trans. Electron Devices, 1996, 43(11): 1844-1848
    [40] A. Goyal, M. Rajeswari, R. Shreekala, et al. Material characteristics of perovskite manganese oxide thin film for bolometric applications. Appl. Phys. Lett, 1997, 71(17): 2535-2537
    [41] J. Coey, M. Viret, S. V. Molnár. Mixed-valence manganites. Advances in Physics, 1999, 48(2): 167-293
    [42] R. A. Wood. Uncooled thermal imaging with monolithic silicon focal planes. Proc. SPIE, 1993, 2020: 322-329
    [43] R. A. Wood, C. J. Han, P. W. Kruse. Integrated uncooled infrared detector imaging array. Technical Digest-IEEE Solid-State Sensor and Actuator Workshop, 1992, 22(7): 132-135
    [44] R. A. Wood. Monolithic silicon microbolometer arrays. Semiconductors and Semimetals. 1997, 47(5): 45-119
    [45] B. Cole, R. Horning, B. Johnson, et al. High performance infrared detector arrays using thin film microstructures. IEEE International Symposium on Applications of Ferroelectrics. 1994, 1847(6): 653-656
    [46] B. Cole, S. Weeres, R. Higashi, et al. Honeywell resistor array development and future directions. Proc. SPIE, 1999, 3697: 188-196
    [47] P. E. Howard, J. E. Clarke, A. C. Ionescu, et al. DRS U6000 640×480 VOX uncooled IR focal plane. Proc. SPIE, 2002, 4721: 48-55
    [48] C. Li, P. Howard. One-mil uncooled array has low noise and high fill factor. Laser Focus World, 2005, 41(7): 98-100
    [49] J. L. Heath, G. T. Kincaid, J. T. Woolaway, et al. 160×128 uncooled FPA performance review. Proc. SPIE, 1999, 3698: 256-63
    [50] T. William, J. Frank, T. Fitzgibbons, et al. Expendable infrared sensors. Proc. SPIE, 2000, 4130: 263-270
    [51] D. F. Murphy, M. Ray, R. Wyles, et al. High-sensitivity 25μm microbolometer FPAs. Proc. SPIE, 2003, 4820: 208-219
    [52] D. F. Murphy, M. Ray, J. Wyles, et al. Performance improvements for VOx microbolometer FPAs. Proc. SPIE, 2004, 5406: 531-40
    [53] D. Murphy, M. Ray, R. Wyles, et al. High sensitivity (25μm pitch) microbolometer FPAs and application development. Proc. SPIE , 2001, 4369: 222-234
    [54] D. Murphy, M. Ray, R. Wyles, et al. High sensitivity 25μm microbolometer FPAs. Proc. SPIE, 2002, 4721: 99-110
    [55] W. A. Radford, R. Wyles, J. Wyles, et al. Microbolometer uncooled infrared camera with 20mK NETD. Proc. SPIE, 1998, 3436: 636-46
    [56] W. Radford, D. Murphy, A. Finch, et al. Sensitivity improvements in uncooled microbolometer FPAs. Proc. SPIE, 1999, 3698: 119-130
    [57] D. Murphy, A. Kennedy, M. Ray, et al. Resolution and sensitivity improvements for VOx microbolometer FPAs. Proc. SPIE, 2003, 5074: 402-413
    [58] K. Grealish, B. Backer, B. Murphy, et al. Technology advancements for small, light-weight, low-power uncooled IR imagers for homeland defense. Proc. SPIE,2004, 5488: 804-810
    [59] S. Miller, B. Backer, M. Kohin et al. Test methods and technology for uncooled imaging systems. Proc. SPIE, 2004, 5407: 30-37
    [60] B. Backer, T. Breen, N. Hartle, et al. Improvements in state of the art uncooled microbolometer system performance based on volume manufacturing experience. Proc. SPIE, 2003, 5074: 500-510
    [61] B. Brian, K. Margaret, L. Arthur, et al. Advances in uncooled technology at BAE SYSTEMS. Proc. SPIE, 2003, 5074: 548-556
    [62] T. D. Pope, C. Alain, L. Le Noc, et al. Performance of 512×3 pixel microbolometer detector for space imaging applications. Proceedings-2005 International Conference on MEMS, NANO and Smart Systems, 2005, 34: 275-276
    [63] T. D. Pope, C. Alain, A. Bergeron, et al. Microbolometer detector array for satellite-based thermal infrared imaging. Proceedings-2004 International Conference on MEMS, NANO and Smart Systems, 2004, 56: 310-314
    [64] T. D. Pope, H. Jerominek, C. Alain, et al. Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs. Proc. SPIE, 2002, 4721: 64-74
    [65] P. Topart, C. Alain, L. LeNoc, et al. Hybrid micropackaging technology for uncooled FPAs. Proc. SPIE, 2005, 5783: 544-550
    [66] P. Topart, S. Leclair, C. Alain, et al. Wafer-Level Vacuum Packaging Technology Based on Selective Electroplating .Proc. SPIE, 2004, 5342: 26-34
    [67] O. Nesher; P. C. Klipstein. High-performance IR detectors at SCD present and future. Proc. SPIE, 2005, 5957: 786-790
    [68] U. Mizrahi, A. Fraenkel, L. Bykov, et al. Uncooled Detector Development Program at SCD. Proc. SPIE, 2005, 5783: 438-442
    [69] V. G. Malyarov, I. A. Khrebtov, Y. V. Kulikov, et al. Comparative investigations of bolometric properties of thin-film structures based on vanadium dioxide and amorphous hydrated silicon. Proc. SPIE, 1999, 3819: 136-142
    [70] I. B. Chistokhin, M. A. Demjanenko. Determination of thermal parameters of microbolometers from electrical measurements. Proc. SPIE, 2005, 5834: 304-311
    [71] V. N. Ovsyuk, V. V. Shashkin. Uncooled microbolometer IR FPA based on sol-gel VOX. Proc. SPIE, 2005, 5834: 47-54
    [72] O. Nesher, P. C. Klipstein. High-performance IR detectors at SCD present and future. Proc. SPIE, 2005, 5957: 786-790
    [73] U. Mizrahi, A. Fraenkel, L. Bykov, et al. Uncooled Detector Development Program at SCD. Proc. SPIE, 2005, 5783: 438-442
    [74] Y. Tanaka, A. Tanaka, I. Kiyoshi, et al. Performance of 320×240 uncooled bolometer-type infrared focal plane arrays. Proc. SPIE, 2003, 5074: 414-424
    [75] M. kanzaki, T. Sasaki, A. Kawahara. Fabrication Process for 256×256 Bolometer- Type Uncooled Infrared Dector. Proc. SPIE, 1997, 3224: 286-292
    [76] T. Shigeru, M. Masaru, K. Seiji, et al. Thermally Isolated Pixel Structure for High-resolution Uncooled Infrared FPAS. Proc. SPIE, 2004, 5406: 134-139
    [77]刘世建,徐重阳.非致冷红外焦平面用探测材料.信息记录材料, 2003, 4(1): 56-58
    [78]周进,茹国平.氧化钒热敏薄膜的制备及其性质的研究.红外与毫米波学报, 2001, 20(4): 291-295
    [79]陈长虹,易新建.基于VOx薄膜8元线列非致冷微测辐射热红外探测器的制备.中国激光, 2001, 28(12): 1082-1084
    [80]汪涛,贾功贤.非致冷微测辐射热计阵列的设计.半导体光电, 2001, 22(2): 78-81
    [81]顾文韵,皮德富.非致冷测辐射热计的研制方案.红外技术, 2000, 22(5): 10-14
    [82]李庆林,皮德富.非致冷测辐射热计的数学模型.红外技术, 2000, 22(3): 16-18
    [83]李尚俊.非致冷测辐射热计红外焦平面阵列.半导体光电, 2000, 21(2): 73-76
    [84]刘西钉,梁平治.非致冷红外微测辐射热计的自热效应分析及重要参数测定.红外与毫米波学报, 1999, 18(1): 37-40
    [85]周士源,皮德富.非致冷红外热成像系统的性能理论值.红外技术, 1998, 20(4): 23-26
    [86]周少波,易新建,陈四海等.反应离子束溅射沉积和还原退火工艺制备VOx多晶薄膜.材料开发与应用, 2004, 19(6): 21-29
    [87]王宏臣,易新建,陈四海等. 128元非致冷氧化钒红外探测器的制作.红外与毫米波学报, 2004, 23(2): 99-102
    [88]王宏臣,易新建,陈四海等.非致冷红外探测器用氧化钒多晶薄膜的制备.红外与毫米波学报, 2004, 23(1): 64-66
    [89]陈长虹,易新建.基于VO2薄膜非致冷红外探测器光电响应研究.物理学报, 2001, 50(3): 450-452
    [90]徐淦卿,陈钰,程东杰.红外物理与技术.西安:电子科技大学出版社, 1989. 7-9
    [91] P. W Kruse. Principles of uncooled infrared focal plane arrays. Semiconductors and Semimetals, 1997, 47(3): 17-40
    [92] F. J. Morin. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett, 1959, 34(3): 34-36
    [93] C. Yind, Z. Xunk, Y. J, et al. Vanadium dioxide films with good electrical switching property. J Phys D-Appl Phys, 1996, 29(4): 1051-1057
    [94] M. Tazawa, P. Jin, K. Yoshimura, et al. New material design with V1-xWxO2 film for sky radiator to obtain temperature stability. Solar Energy, 1998, 64(1-3): 3-7
    [95] J. Verkelis, Z. Bliznikas, K. Breive. Vanadium oxides thin films and fixed-temperature heat sensor with memory. Sensors and Actuators, 1998, A68(6): 338-343
    [96] R. J. Herring, P. E. Howard. Design and performance of the ultra 320×240 uncooled focal plane array and sensor. Proc. SPIE, 1996, 2746: 2-12
    [97] H. Jerominek, F. Picard, NR Swart, et al. Micromachined uncooled VO2-based IR bolometer arrays. Proc. SPIE, 1996, 2746: 60-71
    [98]陈长虹.非致冷VOX红外传感器的研究: [博士学位论文].武汉:华中科技大学, 2002
    [99] C. Griffiths, H. Eastwood. Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide. J. Appl. Phys., 1974, 45(5): 2201-2206
    [100] P. Jin, K. Yoshimura, S. Tanemura. Dependence of microstructure and thermochromism on substrate temperature for supper-deposited VO2 epitaxial films. J Vac Sci Technol, 1997, A15(6): 1113-1118
    [101] M. Benmoussa, E. Ibnouelghazi, A. Bennouna, et al. Structural, electrical and optical properties of sputtered vanadium pentoxide thin films. Thin Solid Films, 1995, 265(1): 22-25
    [102] G. Rozgonyi, W. Polito. Preparation of thin film of vanadium oxide. J Electrochem Soc, 1968, 115(23): 56-58
    [103] F. C. Case. Low temperature deposition of VO2 thin films. J. Vac. Sci. Technol, 1990, 8(3): 1395-1398
    [104] M. Borek, F. Qian, V. Nagabushnam, et al. Pulsed laser deposition of oriented VO2 thin films on R-cut saphire substrates. Appl Phys Lett, 1993, 63(3): 3288
    [105] S. Deki, Y. Aoi, A. Kajinami. Novel wet process for the preparation of vanadium dioxide thin film. J. Mater. Sci, 1997, 32 (16): 4269-4273
    [106] K. R. Speck, H. S. W Hu, M. E. Sherwin, et al. Vanadium dioxide films grown from vanadium tetraisoproxide by the sol-gel process. Thin Solid Films, 1988, 165(2): 317-322
    [107] M. G. Krishna, Y. Debauge, A. K. Bhattacharya. X-ray photoelectron spectroscopy and spectral transmittance study of stoichiometry in sputtered vanadium oxide films. Thin Solid Films, 1998, 312(3): 116-122
    [108] M. G. Krishna, A. K. Bhattacharya. Effect of thickness on the optical absorption edge sputtered vanadium oxide films. Mater. Sci. Eng, 1997, 49(2): 166-171
    [109] R. Lopez, L. A. Boatner, T. E. Haynes, et al. Enhanced hysteresis in the semiconductor-to-metal phase transition of VO2 precipitates formed in SiO2 by ion implantation. Applied Physics Letters, 2001, 79(19): 3161-3163
    [110] R. Lopez, L. A. Boatner, T. E. Haynes, et al. Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix. Journal of Applied Physics, 2002, 92(7): 4031-4036
    [111] R. Lopez, L. C. Feldman, R. F. Haglund Jr. Size-dependent optical properties of VO2 nanoparticle arrays. Physical Review Letters, 2004, 93(17): 177401-177404
    [112] J. Y. Suh, R. Lopez, L. C. Feldman, et al. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. Journal of Applied Physics, 2004, 96(2): 1209-1213
    [113] K. Oazaki, H. Wadati, A. Fujimori, et al. Photoemission study of the metal-insulator transition in VO2/TiO2(001): Evidence for strong electron-electron and electron- phonon interaction. Phys. Rev. B, 2004, 69(6): 165-170
    [114] K. Nagashima, T. Yanagida, H. Tanaka, et al. Stress relaxation effect on transportproperties of strained vanadium dioxide epitaxial thin films. Phys. Rev. B, 2006, 74(1): 172-176
    [115] X. J. Yi, Y. Li, S. Chen, et al. Nanostructure and dropping phase transition temperature in vanadium dioxide thin films. Nanoscience, 2005, 4(1): 99-106
    [116] E. Y. Ma, S. D. Theiss, M. H. Lu, et al. Thin film transistors for foldable displays, IEEE IEDM Tech. Dig, 1997, 3(1): 535-538
    [117] H. Gleskova, S. Wagner. Failure resistance of amorphous silicon transistors under extreme in-plane strain. Appl. Phys. Lett, 1999, 75(3): 3011-3013
    [118] P. Hsu, M. Huang, S. Wagner, et al. Plastic deformation of thin foil substrates with amorphous silicon islands into spherical shapes. Mat. Res. Soc. Symp. Proc, 2000, 621: 861-866
    [119] J. Engel, J. Chen, C. Liu. Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng, 2003, 13(4): 359-366
    [120] P. W. Barth, S. L. Bernard, J. B. Angell. Flexible circuit and sensor arrays fabricated by monolithic silicon technology. IEEE Trans. Electron Dev, 1985, ED-32(9): 1202-1205
    [121] D. J. Beebe, D. D. Denton. A flexible polyimide-based package for silicon sensors. Sensors Actuators A, 1994, 44(8): 57-64
    [122] Y. Xu, Y. Tai, A. Huang, et al. IC-Integrated flexible shear-stresssensor skin. Solid State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, 2002, 23(5): 2-6
    [123] G. Lee, J. Wu, J. Miau. A new fabrication process for a flexible skin with temperature sensor array. J. Chin. Inst. Eng, 2002, 25(6): 619-625
    [124] N. K. S. Lee, R. S. Goonetilleke, Y. S. Cheung. A flexible encapsulated MEMS pressure sensor system for biomechanical applications. Microsyst. Technol, 2001, 7(3): 55-62
    [125] C. Bang, T. Pan. Flexible heat flux sensor arrays. AFOSR Contractor and Grantee Meeting on Turbulence and Internal Flows, Atlanta, Georgia, 1996, 23: 4-6
    [126] Ali. Yildiz, Donald P. Butler, Zeynep Celik-butler. Uncooled infrared microbolometer on a Flexible substrate. IEEE Transactions on electron devices, 2002, 49(7): 930-933
    [127] Shadi A. Dayeh, Donald P. Butler, Zeynep Celik-butler. Micromachined infraredbolometers on flexible polyimide substrates. Sensors and Actuators A, 2005, 118(12): 49-56
    [128] Dan Scheck. CYCLOTENE? (BCB) Resins for Bumping and Wafer Level Packaging. WLP Seminar, 2001, 11(12): 4-8
    [129] J. Simon, E. Zakel, H. Reichl. Electroless deposition of bumps for TAB technology. Metal Finish, 1990, 88(23): 23-26
    [130] R. Aschenbrenner, A. Ostmann, U. Beutler, et al. Electroless nickel/copper plating as a new bump metallization. IEEE Trans. Comp., Package. Manufact. Technol. B, 1995, 18(9): 334-338
    [131] G Qi, X Chen, Z Shao. Influence Of bath chemistry on Zincate morphology on aluminum bond pad. Thin Solid Film. 2002, 406(5): 204-209
    [132]国家质量技术监督局.红外焦平面阵列特性参数测试技术规范.中华人民共和国国家标准: GB/T 17444-1998, 1998. 2-4
    [133] K. A. Khan, C. G. Granqvist. Thermochromic sputter-deposited vanadium oxyfluoride coatings with low luminous absorptance. Appl. Phys. Lett, 1989, 55(1): 4-6
    [134] X. Gang, J. Ping, Ta. Masato, et al. Optimization of antireflection coating for VO2 based energy efficient window. Solar Energy M aterials & Solar Cells, 2004, 83(1): 29-37
    [135] W. Burhard, T. Christmann, B. Meyer. W-and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films, 1999, 345(2): 229-235
    [136] P. Jin, M. Tazawa, M. Keyama, et al. High quality vanadium dioxide films prepared by an inorganic sol-gel method. Materials Research Bulletin, 1996, 34(2): 335-340
    [137] Lee M. H, Cho J. S. Better thermochromic glazing of windows with anti-reflection coating. Thin Solid Film, 2000, 365(1): 5-6
    [138] E. Sovero, D. Deakin, J. A. Higgins, et al. Fast thin film vanadium dioxide microwave switches. Technical Digest-GaAs IC Symposium (Gallium Arsenide Integrated Circuit), 1990, 34(5): 101-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700