CdS和CdSe在TiO_2薄膜表面的可控沉积及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为太阳电池光阳极的半导体材料TiO_2由于带隙宽、量子效率低而限制了其实际应用。本文制备了ITO/TiO_2多孔纳米晶薄膜,然后以ITO/TiO_2多孔纳米晶薄膜为基底,利用阴极恒电位沉积法,分别沉积窄带隙半导体CdS和CdSe,制备出ITO/TiO_2/CdS和ITO/TiO_2/CdSe纳米半导体复合薄膜,并研究了不同实验条件对半导体复合薄膜中沉积物粒子的平均粒径、组成及薄膜表面形貌的影响,同时将以上各半导体复合薄膜制备成太阳电池的光阳极,考察了各半导体复合薄膜电极的光电性能。
     研究中分别以TiO_2溶胶、TiO_2纳米粒子、TiO_2溶胶与TiO_2纳米粒子混合的分散体系为前躯体,利用浸渍-提拉技术或涂敷技术制备了TiO_2溶胶膜、TiO_2粒子膜和TiO_2溶胶-粒子膜三类薄膜。通过XRD和Raman光谱确定了所制备TiO_2的晶相结构,利用SEM和AFM观察了TiO_2薄膜的表面形貌,计算了TiO_2粒子尺寸,通过氮气吸附-脱附实验表征了TiO_2溶胶-粒子薄膜的孔道结构及薄膜的比表面积,并使用紫外吸收光谱及光电性能测试手段分析了各类TiO_2薄膜的光吸收特征及光电化学性能。结果表明,TiO_2溶胶-粒子薄膜是一类多孔纳米晶薄膜,由锐钛矿相的TiO_2粒子构成,TiO_2粒子的平均粒径约10 nm,且粒子分布均匀,薄膜表面具有较高的粗糙度,比表面积为123 m 2 ? g?1,薄膜中较丰富的孔道结构,增加了光生载流子的分离效率,该类薄膜对紫外光有较强的吸收,其光电化学性能明显好于TiO_2溶胶膜和TiO_2粒子膜。
     采用阴极恒电位沉积方法,以ITO/TiO_2多孔纳米晶薄膜为基底,在含有CdCl2和Na2S3O2的酸性混合水溶液中沉积CdS,制备了ITO/TiO_2/CdS纳米半导体复合薄膜,并利用XRD和XPS表征了沉积物CdS的晶相结构与组成,通过SEM观察薄膜的表面形貌、粒子尺寸及膜厚。根据本文实验数据及前人研究工作讨论了CdS的电沉积过程与机理。实验中,也研究了沉积电位、沉积时间、电解液的组成、实验温度等实验条件对CdS平均粒径及ITO/TiO_2/CdS纳米半导体复合薄膜表面形貌的影响。研究结果表明,在ITO/TiO_2表面沉积的CdS粒子具有六方结构为主的混合晶相结构,球形粒子均匀沉积于ITO/TiO_2多孔纳米晶薄膜的内部及表面。在40℃、-1.00 V、沉积20 min条件下制备的ITO/TiO_2/CdS薄膜形成菜花状的表面形貌,CdS粒子的平均粒径约8 ~ 10 nm,沉积层厚度约为1.885μm,薄膜中镉硫元素的原子比接近1:1。通过控制实验的沉积电位由-0.80 V负移至-1.40 V,CdS粒子的平均粒径由15.0 nm减小至6.2 nm,薄膜中硫镉元素的原子含量也由硫富集变为镉富集,且薄膜厚度增加。沉积时间为5 min的薄膜中CdS的平均粒径约5 nm,形成网络状的表面形貌,薄膜厚度约为1.40μA。
     实验中,还利用光电流-电势曲线与光电流作用谱考察了ITO/TiO_2/CdS半导体复合薄膜电极的光电化学性能及实验条件的改变对薄膜电极光电性能的影响。借助于表面光电压谱和瞬态光电流谱探讨了ITO/TiO_2/CdS薄膜电极中电荷传输过程。实验结果表明,窄带隙半导体CdS与宽带隙半导体TiO_2的复合有效地促进了光电子与空穴的分离,增大了薄膜电极的光电流,改善了ITO/TiO_2薄膜电极初始光电流响应,ITO/TiO_2/CdS半导体复合薄膜电极的光电响应拓宽至500 nm的可见光区,在400 nm单色光照射下半导体复合薄膜电极具有约45%的光电转换效率。
     此外,实验中还利用了阴极恒电位沉积法将窄带隙半导体CdSe沉积于ITO/TiO_2多孔纳米晶薄膜中。通过XRD、SEM等测试手段表征了沉积物CdSe的晶相结构与粒子尺寸、分析了所制备的ITO/TiO_2/CdSe的组成及表面形貌。讨论了在不同沉积电位下CdSe的沉积机理。利用紫外-可见吸收光谱、表面光电压谱、电流-电势曲线及瞬态光电流谱等考察了ITO/TiO_2/CdSe薄膜的光电性能。实验结果表明,窄带隙半导体CdSe纳米粒子以球体较均匀地分布形成较致密、平整的表面形貌,粒子的粒径分布较宽,控制CdSe沉积电位不同时CdSe的沉积按不同的沉积机理进行;窄带隙半导体CdSe与宽带隙半导体TiO_2的复合有效抑制了光生电子与空穴复合的机会,将ITO/TiO_2薄膜的光吸收和光电响应范围覆盖了400 nm至700 nm的可见光区。
The semiconductor TiO_2 was restricted in the application as solar cell materials because of its wide band gap and low quantum efficiency. In present study, porous ITO/TiO_2 nanostructural thin films were prepared, which were further used as substrates for the deposition of narrow band gap semiconductors CdS and CdSe by means of cathode potentiostatic electrodeposition technique for obtaining ITO/TiO_2/CdS and ITO/TiO_2/CdSe nanostructural composite thin film. Furthermore, the effect of different experimental conditions on the composition and surface appearances were investigated. Also, the photoelectric performance of the prepared ITO/TiO_2/CdS and ITO/TiO_2/CdSe thin films was studied as photoanodes of solar cells.
     Anatase TiO_2 nanoparticles were prepared by hydrothermal method, in which Ti(OBu)4 was used as precursor, while TiO_2 colloids were obtained by Sol-Gel technique. And finally, using obtained nanoparticles and colloids, TiO_2 colloid thin film, TiO_2 particle thin film, and TiO_2 colloid-particle thin film were prepared by as-dipped and coating methods. Subsequently, the crystal structures of the prepared films were characterized by XRD and Raman spectra, and the surface morphologies of thin films were further observed by SEM and AFM techniques. Also, the particle size of TiO_2 was determined based on the XRD and SEM results. Porous structure and specific surface area of the prepared thin films were characterized by means of N2 adsorptiondesorption analysis, while photoelectric performances of different TiO_2 films were investigated by UV absorption spectrum and other photoelectrochemistry measure techniques. The experimental results indicate that the prepared TiO_2 colloid-particle thin films with homogeneous distribution of particles and rough surface as well as large specific surface area possess uniform porous structure, leading to strong absorption for UV radiation. Furthermore, we believe that the better photoelectric performance of the colloid-particle thin films results from the large specific surface area which can effectively decrease the grain boundary resistance and increase the contract district.
     By means of cathode electrodeposition technique, the ITO/TiO_2/CdS composite films were prepared using the ITO/TiO_2 colloid-particle films as substrate in acid water solution including CdCl2 and Na2S3O2 followed by the characterization for the crystal structures and compositions by XRD and XPS methods and for the surface morphologies, particles sizes, and film thickness by SEM technique. In our experiments, the effects of different experimental conditions, such as deposition potentials and times, electrolyte composition including electrolyte concentrations and addition of EDTA, experimental temperatures, etc., on the sizes of CdS particles and surface morphologies of ITO/TiO_2/CdS films were also evaluated. The results demonstrate that the spherical CdS particles with mixed crystal phase but hexagonal structure as the primary phase were uniformly deposited not only on the ITO/TiO_2/CdS film surface but also inside the ITO/TiO_2 substrate. At the conditions of deposition potential of -1.00 V and deposition time of 20 min, the prepared ITO/TiO_2/CdS thin films possess cauliflower-like morphology and Cd/S atom ratio of near 1:1. By controlling deposition potential and time, the deposition rate can be adjusted, results in high controllabilities for particle size and film thickness.
     In experiments, the photoelectric performance of the ITO/TiO_2/CdS composite semiconductor thin films and the effect of experimental condition on the photoelectric performance were also discussed photocurrent-potential curve and photocurrent action spectrum techniques, while SPS spectrum was used to estimate charge transfer mechanism of semiconductor film electrodes. The experimental results show that the sensitization of CdS for TiO_2 effectively improves the separation of photogenerated electrons and holes, increases photocurrent, and ameliorates initial photocurrent response, which will result in a high photoelectric transition efficiency within the absorption range of 400 ~ 500 nm.
     Furthermore, we also deposited narrow band gap semiconductor CdSe on the porous ITO/TiO_2 substrate by cathode potentiostatic deposition technique. Whereafter, the crystal structures and particle sizes as well as the film compositions and surface morphologies were analyzed by XRD and SEM techniques. The photoelectric performance of ITO/TiO_2/CdSe films was investigated in detail by UV-Vis, SPS, current-potential, and transient state photocurrent spectra. The results indicate that the sensitization of CdSe for TiO_2 effectively improves the photoabsorption and expand the photoelectric response to the range from 400 nm to 700 nm.
引文
1雷永泉.新能源材料.天津:天津大学出版社, 2000: 222~242
    2 M. V. Yakusheva, A. V. Mudryib, V. F. Gremenokb et al. Optical Properties and Band Gap Energy of CuInSe2 Thin Filmsprepared by Two-Stage Selenization Process. J. Phys. Chem. Solids. 2003, 64(9~10): 2005~2009
    3 B. Li, J. Zhao, K. Onda et al. Ultrafast Interfacial Proton-Coupled Electron Transfer. Science. 2006, 311(5766): 1436~1440
    4 W. Erik, K. V. Ebbe, S. Renald et al. Electron Transfer-Induced Dynamics of Oxygen Molecules on the TiO2(110) Sur. Sci. 2004, 303(5657): 511~513
    5 I. B. Martini, E. R. Barthel, B. J. Schwartz. Optical Control of Electrons During Electron Transfer. Science. 2001, 293(5529): 462~465
    6 A. Bauer, F. Westkamper, S. Grimme et al. Catalytic Enantioselective Reactions Driven by Photoinduced Electron Transfer. Nature. 2005, 436(7054): 1139~1140
    7 S. Santra, H. S. Yang, P. H. Holloway et al. Synthesis of Water-Dispersible Fiurescent Tadio-Opaque and Paramagnetic CdS:Mn/ZnS Quanturn Dots: A Multifunctional Probe for Bioimaging. J. Am. Chem. Soc. 2005, 127(6): 1656~1657
    8李明玉,熊林,陈芸芸等.光电化学催化降解水中酸性大红3R染料的研究.中国科学(B). 2005, 35(2): 144~150
    9 K. Singh, S. D. Sameer. Photoelectrochemical Studies on Galvanostati- cally Formed Multiple Band Gap Materials Based on CdSe and ZnSe. Sol. Energy Mater. Sol. Cells. 2002, 71(1): 115~129
    10 Y. P. Sun, E .C. Hao, X. Zhang et al. Bulidup of Composite Film Containing TiO2/PbS Anopartixles and Polyelectrolytes Based on Electrostatic Interaction. Langmuir. 1997, 13(9): 5168~5174
    11 S. M. Yang, Z. S. wang, C. H. Huang. The Photoelectronxhemical Propertyes of TiO2 Electrodes Modified by Quantum Sized PbS and Thiols. Syn. Metals. 2001, 123(2): 267~272
    12 A. Zaban, O. I. Micic, B. A. Gregg et al. Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots. Langmuir. 1998, 14(12):3153~3156
    13 M. P. Laurence, K. G. Upul. Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used to Photosensitize Nanocrystatline TiO2. J. Phys. Chem. B. 2003, 107(33): 8378~8381
    14 R. Lstvan, S. Vaidyanathan, K. Masaru et al. Quantum Dot Solar Cells Harvesting Light Enrgy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Film. J. Am. Chem. Soc. 2006, 128(7): 2385~2393
    15郑晓虹,陈力勤,陈日耀等. Fe2O3-TiO2复合晶膜的制备及光催化特性的研究.分子催化. 2003, 17(2): 91~94
    16吴锦雷.纳米光电功能薄膜.北京:北京大学出版社, 2006: 13~18
    17韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望.化学物理学报. 2003, 16(5): 329~347
    18 A. Fujishima, K. Honda. A Theoretical Basis to Water Photosplitting Cells of Optimal Efficiency on TiO2. Nature. 1972, 37(2): 238~242
    19李芳柏,古国榜,李新军等. WO3/TiO2纳米材料的制备及光催化性能.物理化学学报. 2000, 16(11): 997~1001
    20 K. R. Murali, A. Austine, B. Jayasutha et al. Trivedi.Photoelectrochemical Cells Based on CdSe Films Brush Plated on High-Temperature Substrates. Sol. Energy Mater. Sol. Cells. 2006, 90(6): 753~759
    21 H. B. Bao, Y. J. Gong, Z. Li et al. Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core-Shell Structure. Chem. Mater. 2004, 16(20): 3853~3859
    22岳林海,徐铸德.半导体的表面修饰与其光电化学应用.化学通报. 1998, 9(2): 28~31
    23 G. C. Li, G. H. Li. Theoretical Investigation On New Materials for Raising Energy Conversion Efficiency in PEC Solar Cells. Sol. Energy Mater. Sol. Cells. 1993, 30(1): 61~65
    24 A. Heller, K. C. Chang, B. Mitter. Kinetics Model of Photoelectrolysis in Single Crystal GaAs in Solution. J. Am. Chem. Soc. 1977, 124(2): 225~228
    25 P. A. Kohl, S. N. Frank, A. J. Bard. High Efficiency Solarcell Based on Dye-Sentized Colloidal Arsenical Gallium. J. Electrochem. Soc. 1977, 124(4): 525~530.
    26 R. S. Singh, V. K. Rangari, S. Sanagapalli et al. Nano-Structured CdTe, CdS and TiO2 for Thin Film Solar Cell Applications. Sol. Energy Mater. Sol. Cells. 2004, 82(1~2): 315~330
    27闫俊萍,张中太,唐子龙等.半导体基纳米复合材料光催化研究进展.无机材料学报. 2003, 18(5): 980~986
    28 T. I. Maris, S. Kourtesi, L. Ekonomou et al. Modeling of a single-pHase pHotovoltaic inverter. Sol. Energy Mater. Sol. Cells, 2007, 91(18): 1713-1725
    29 D. M. Chepin, C. S. Fuller, G. L. Pearson. A New Silicomn p-n Junction Photocell for Converting Solar Radiateon Electrical Power. J. Appl. Phys. 1954, 8(4): 676~679
    30赵玉文. 21世纪我国光伏产业发展战略思考.北京:中国言实出版社. 2003: 116~118
    31 A. Goetzberger, C. Hebling, H. W. Schock. Photovoltaic materials, history, status and outlook. Mater. Sci Engineering R. 2003, 40(1): 1~46
    32赵玉文.太阳电池新进展.物理学与新能源材料专题. 2004, 33(2): 99~104
    33庄大明,张弓. CISG薄膜太阳电池研究现状及发展前景.新材料产业. 2005, 9(4): 43~48
    34邓志杰,郑安生.半导体材料.北京:化学工业出版社. 2004: 228~233
    35张静全,蔡伟,郑家贵等. CdTe太阳电池研究进展.半导体光电. 2000, 21(2): 88~92
    36 T. Aramoto, S. Kumazawa, H. Higuchi et al. Effi-Cient Thin Film CdS/CdTe solar cells. J. Appl. Phys. 1997, 36(10): 6304~6305
    37李长健,朱践知,飞海东.蒸发硒化法制备太阳电池研究.太阳能学报. 1996, 17(4): 297~302
    38李文漪,陈秋龙. CIS光伏材料的发展.机械工程材料. 2003, 27(6): 1~3
    39 H. M. Gratzel. Light-Induced Redox Reaction in Nanocrystalline System. Chem. Rev. 1995, 95(1): 49~53
    40 Z. S. Wang, H. Kawauchi. Significant Influence of TiO2 Photoelectrode MorpHology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell. Coord. Chem. Rev. 2004, 248(13~14): 1381~1389
    41 N. Robertson. Optimizing Dyes for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2006, 45(7): 2338~2345
    42 F. Odobel, E. Blart, M. Lagree et al. PorpHyrin Dyes for TiO2 Sensitization. J. Mater. Chem. 2003, 13(3): 502~510
    43 S. Ferrere, B. A. Gregg. New Perylenes for Dye Sensitization of TiO2. New J. Chem. 2002, 26(9): 1155~1160
    44 H. Yi, J. A. Crayston, T. S. John. Irvine Ruthenium Complexes of 2-(2-pyridyl) Benzimidazole AspHotosensitizers for Dye-Sensitized Solar Cells. Dalton Trans. 2003, (4), 685~691
    45高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社. 2003, 1~20
    46 M. Asilturk, F. Say?lkan, S. Erdemoglu et al. Characterization of the Hydrothermally Synthesized Nano-TiO2 Crystallite and the Photocatalytic Degradation of Rhodamine B. J. Hazardous Mater. B. 2006, 129(1~3): 164~170
    47 H. M. Sung-Suh, J. R. Choi, H. J. Hah et al. Comparison of Ag Deposition Effects on the Photocatalytic Activity of Nanoparticulate TiO2 under Visible and UV Light Irradiation. J. Photochem. Photobiol. A Chem. 2004, 163(1~2): 37~44
    48 J. Y. Li, W. H. Ma, C. C. Chen et al. Photodegradation of Dye Pollutants on One-Dimensional TiO2 Nanoparticles Under UV and Visible Irradiation. J. Mol. Cata. A Chem. 2006, 261(1): 131~138
    49 D. Z. Yu, R. X. Cai, Zh. H. Liu. Studies on the Photodegradation of Rhodamine Dyes on Nanometer-Sized Zinc Oxide. Spectrochim. Acta Part A. 2004, 60(7): 1617~1624
    50 E. M. Wankhede, S. K. Haram. Synthesis and Characterization of Cd-DMSO Complex Capped CdS Nanoparticles. Chem. Mater. 2003, 15(6): 1296~1301
    51 L. L. Amy, G. G. L, T. Y. John. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95(3): 735~758
    52李大成,周大利,任成军等.纳米TiO2的修饰改性.材料学报. 2003, 17(12): 52~55
    53 K. R. Gopidas, M. Boherguez, P. V. Kamat. Photo-Physical and Potichemical Aspects of Coupled Semiaonducters. Charge-Kramsfer Processes in Colloid as CdS-TiO2 and CdS-AgI System. J. Phys. Chem. 1990, 94(8): 6535~6538
    54 C. Nasr, P. V. Kamat, S. Hotchandani. Photoelectrochemistry of CompositeSemiconductor Thin Films. Photosensitization of the SnO2/TiO2 Coupled System with a Ruthenium Polypyridyl Complex. J. Phys. Chem. B. 1998, 102(49): 10047~10052
    55 R. Vogel, P. Hoyer, H. Weller. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. J. Phys. Chem. 1994, 98(12): 3183~3188.
    56 H. Fujii, M. Qhtaki, K. Eguchi et al. Preparation and Photocatalytic Activities of a Semiconductor Composite of CdS Embedded in a TiO2 Gel as a Stable Oxide Semiconducting Matrix. J. Mol. Cata. A Chem. 1998, 129(1): 61~68
    57 S. G. Hickey, D. J. Riley, E. J. Tuhh. Photoelectrochemical Studies of CdS Nanoparticle Modified Electrodes: Absorption and Photocurrent Investigations. J. Phys. Chem. B. 2000, 104(32): 7623~7630
    58 S. Drouard, S. G. Hickey, D. J. Riley. CdS Nanoparticle-Modified Electrodes for Photoelectrochemical Studies. Chem. Commun. 1999, (1): 67~68
    59 G. A. Ilchuk, V. O. Ukrainets, Y. V. Rud. Electrochemical Synthesis of Thin CdS Films. Tech. Phys. Lett. 2004, 30(46): 628~636
    60 A. V. Feitosa, M. A. R. Miranda, J. M. Sasaki et al. A New Route for Preparing CdS Thin Films by Chemical Bath Deposition Using EDTA as Ligand. J. Phys. Chem. B. 2004, 34(3): 656~662
    61 D. Robert. Assembly of Alternating TiO2/CdS Nanoparticle Composite Films. Today Catal. 2007, 122(1): 20~23
    62 R. Vogel, K. H. P. Weller. Sensitization of Highly Porous, Polycrystalline TiO2 Electrodes by Quantum Sized CdS. Chem. Phys. Lett. 1990, 174(3~4): 241~246
    63 S. Kohtani, A. Kudo, T. Sakata. Spectral Sensitization of a TiO2 Semiconductor Electrode by CdS Microcrystals and Its Photoelectrochemical Properties. Chem. Phys. Lett. 1993, 206(1~4): 166~172
    64 R. Flood, B. Enright, M. Allen et al. Detemination of Band Edge Energies for Transparent Nanocrystalline TiO2-CdS Sandwich Electrodes Prepared by Electrodeposition. Sol. Energy Mater. Sol. Cells. 1995, 39(1): 83~89
    65 Y. G. Guo, J. S. Hu, H. P. Liang et al. TiO2-Based Composite Nanotube Arrays Prepared via Layer-by-Layer Assembly. Adv. Func. Mater. 2005,15(5): 196~207
    66 X. M. Qian, D. Q. Qin, Y. B. Bai et al. Photosensitization of TiO2 Annoparticulate Thin Film Electrodes by CdS Nanoparticles. J. Solid State Electrochem. 2001, 5(4): 562~570
    67 X. M. Qian, D. Q. Qin, Q. Song et al. Surface Photovoltage Spectra and Photoelectrochemical Properties of Emiconductor-Sensitized Nanostructured TiO2 electrodes. Thin Solid Films. 2001, 385(1~2): 152~161
    68 R. S. Mane, M. Y. Yoon, H. Chung, et al. Co-deposition of TiO2/CdS Films Electrode for Photo-Electrochemical Cells. Sol. Energy. 2007, 81(26): 290~293
    69 R. S. Singh, V. K. Rangari, S. Sanagapalli et al. Nano-structured CdTe, CdS and TiO2 for Thin Film Solar Cell Applications. Sol. Energy Mater. Sol. Cells. 2004, 82(1~2): 315~330
    70 Y. J. Hsu, S. Y. Lu. Preparation of Nanosized ZnS-Passivated CdS Particle Films via the MOCVD Process with Co-fed Single Source Precursors. Langmiur. 2004, 20(1): 194~201
    71 M. G. Kang, H. E. Han, K. J. Kim. Enhanced Photodecomposition of 4-Chlorophenol in Aqueous Solution by Deposition of CdS on TiO2. J. Photochem. Photobiol. A Chem. 1999, 125(1~3): 119~125
    72 L. M. Peter, D. J. Riley, E. J. Tull et al. Photosensitization of Nanocrystalline TiO2 by Self-Assembled Layers of CdS Quantum Dots. Chem. Commun. 2002, (9): 1030~1033
    73 C. Y. Wang, H. M. Shang, Y. Tao et al. Photosensitization of TiO2 by MxOy and MxSy Nanoparticles for Heterogeneous Photocatalysis Applications. Sep. Purif. Technol. 2003, 32(2): 357~359
    74 E. C. Hao, B. Yang, H. Ren, X. Q. Qian et al. Fabrication of Momposite Film Comprising TiO2/CdS and Polyelectrolytes Based on Ionic Attraction. Mater. Sci. Engineering C. 1999, 10(1~2): 119~122
    75 A. Kumar, A. K. Jain. Photophysics and Photocatalytic Properties of Ag+-Activated Sandwich Q-CdS–TiO2. J. Photochem. Photobiol. A Chem. 2003, 156(1~3): 207~218
    76 H. Y. Si, Z. H. Sun, H. L. Zhang. Photoelectrochemical Response from CdSe-Sensitized Anodic Oxidation TiO2 Nanotubes. Coll. Sur. APhysicochem. 2008, 313~314(2): 604~607
    77 Q. Shen, K. Katayama, M. Yamaguchi et al. Study of Ultrafast Carrier Dynamics of Nanostructured TiO2 Films with and withoutt CdSe Quantum Dot Deposition Using Lens-Free Heterodyned Etection Transient Grating Technique. Thin Solid Films. 2005, 486(1~2): 15~19
    78 M. E. Rincon, O. Gomez-Daza, C. Corripio et al. Sensitization of Screen-Printed and Spray-Painted TiO2 Coatings by Chemically Deposited CdSe Thin Films. Thin Solid Films. 2001, 389(1~2): 91~98
    79 R. S. Mane, S. J. Roh, O. S. Joo et al. Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process. Electrochim. Acta. 2005, 50(12): 2453~2459
    80 C. M. Shen, X. G. Zhang, H. L. Li. Influence of Different Deposition Potentials on Morphology and Structure of CdSe Films. Appl. Sur. Sci. 2005, 240(1~4): 34~41
    81 M. E. Rincón, A. Jiménez, A. Orihuela et al. Thermal Treatment Effects in the Photovoltaic Conversion of Spray-Painted TiO2 Coatings Sensitized by Chemically Deposited CdSe Thin Films. Sol. Energy Mater. Sol. Cells. 2001, 70(2): 163~173
    82 J. H. Fang, X. M. Lu, X. F. Zhang et al. CdSe/TiO2 Nanocrystalline Solar Cells. Supramol. Sci. 1998, (5): 709~711
    83 Y. Bessekhouad, D. Robert., J. V. Weber. Bi2S3/TiO2 and CdS/TiO2 Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant. J. Photochem. Photobiol. A Chem. 2004, 163(3): 569~580
    84 O. Niitsoo, S. K. Sarkar. Chemical Bath Deposited CdS/CdSe-Sensitized PorousTiO2 Solar Cells. J. Photochem. Photobiol. A Chem. 2006, 181(2~3): 306~313
    85李芳柏,古国榜,李新军,万洪富.纳米复合Sb2O3/TiO2的光催化性能研究.无机化学学报. 2001, 17(1): 37~41
    86蔡红,张莉,卓馨等. TiO2/CdS/Ru (bpy)2(NCS)2作为太阳电池光阳极的探讨.应用化学. 2002, 19(1): 38~42
    87桑丽霞,钟顺和,肖秀芬等. MoO3-TiO2/SiO2上光促表面催化甲烷和水合成甲醇和氢气.高等学校化学学报. 2004, 25(6): 1115~1119
    88王艳芹,程虎民,马季铭.二氧化钛和三氧化二铁复合纳米晶电极的光电化学性质.物理化学学报. 1999, 15(3):222~227
    89赵高凌,宋斌,韩高荣等.禁带宽度梯度化的半导体薄膜的光电极研究.科学通报. 2001, 46(1): 28~31
    90刘平,周廷云,林华香,傅贤智. TiO2/SnO2复合光催化剂的耦合效应.物理化学学报. 2001, 17(3): 265~269
    91赵春,钟顺和. Cu/ZnO-TiO2复合半导体光催化材料的制备与表征.无机化学学报. 2004, 20(9): 1132~1135
    92 W. Choi, A. Termin, M. R. Haffmsnn. The Role of Ion Dopants in Quantum-Sized TiO2:Correlation Between Photortactivity and Charge Carrer Recombination Dymamincs. J. Phys. Chem. 1994, 98(51): 13669~13678
    93 Y. Q. Wang, H. M. Cheng, Y. Z. Hao et al. Photoelectrochemical Properties of Metal-Ion-Doped TiO2 Nanocrystalline Electrodes. Thin Solid Films. 1999, 349(1~2): 120~125
    94刘恺,沈淑引,许慧君.酞菁与TiO2超微粒间的光诱导电子转移相互作用.物理化学学报. 2000, 16(12): 1103~1109
    95柳闽生,詹寿发,帅敏等.敏化剂修饰纳米晶TiO2多孔膜电极的光电化学行为.高分子材料科学与工程. 2003, 19(25): 172~179
    96李晨松,徐廷献.无机薄膜的制备技术.硅酸盐通报. 2003, 19(1): 21~25
    97 X. H. Wu, Z. H. Jiang, H. L. Liu, et al. TiO2 Ceramic Films Prepared by Micro-Plasma Oxidation Method for Photodegradation of Rhodamine B. Mater. Chem. Phys. 2003, 80(1): 39~43
    98 W. W. So, K. J. Kim, S. J. Moon. Photo-Production of Hydrogen Over the CdS-TiO2 Nano-Composite Particulate Flms Treated with TiCl4. Int. J. Hydrogen Energy. 2004, 29(3): 229~234
    99 A. Matsuda, Y. Kotani, T. Kogure, et al. Transparent Anatase Nanocomposite Films by the Sol–Gel Process at Low Temperatures. Ceram. Soc. 2000, 83(2): 229~236
    100 S. Gorer, G. Hodes, Y. Sorek et al. Crystal Phase Transformation in Sol-Gel Films of Nanocrystalline CdSe and CdS. Mater. Lett. 1997, 31(2): 209~214
    101 S. Juodkazis, E. Bernstein, J. C. Plenet et al. Waveguiding Properties of CdS-Doped SiO2–TiO2 Films Prepared by Sol–Gel Method. Thin Solid Films. 1998, 322(1~2): 238~244
    102 P. Fonsa, K. Sakurai, A. Yamada et al. The Chemical Environment About Cd Atoms in Cd Chemical Bath Treated CuInSe2 and CuGaSe2. J. Phys. Chem. Solids. 2003, 64(9~10): 1733~1735
    103 M. Dhanam, R. Rajeev. Investigations on Chemical Bath Deposited Cadmium Selenide Thin Films. Mater. Chem. Phys. 2008, 107(2~3): 289~296
    104周绍民.金属电沉积.上海:上海科学技术出版社. 1987: 156~168
    105邓姝皓,龚竹青,陈文泪.电沉积纳米晶体材料的研究现发展. 2001, 20(4): 35~41
    106刘庆,陆文雄,印仁和.电化学法制备纳米材料的研究现状.材料保护. 2004, 37(2): 33~36
    107 P. Němec, M. ?imurda, I. Němec et al. Highly Luminescent CdSe Nanocrystalline Films Prepared by Chemical Bath Deposition, J. Crystal Growth. 2006, 291(1): 78~86
    108 M. ?imurda, P. Nìmec, F. Trojánek et al. Single-Step Light-Assisted Patterning of Photonic Properties of Chemical-Bath-Deposited CdSe Nanocrystalline Films. Thin Solid Films. 2005, 480~481: 457~461
    109 V. M. Bhuse. Chemical Bath Deposition of Hg Doped CdSe Thin Films and Their Characterization. Mater. Chem. Phys. 2005, 91(1): 60~66
    110李永祥,樊玉薇,吴冲若.功能薄膜电化学沉积技术的新进展.功能材料. 1996, 27(5): 475~477
    111 N. W. Duffy, D. Lane, M. E. Ozsan et al. Strural and Spectroscopic Studies of CdS/CdTe Heterojuntion Cells Fabricated by Electrodeposition. Thin Solid Films. 2000, 361~362: 314~320
    112 I. Gorelikov, E. Kumacheva. Electrodeposition of Polymer-Semiconductor Nano- composite Films. Chem. Mater. 2004, 16(21): 4122~4127
    113 M. Simurda, P. Němec, P. Formánek, et al. Morphology of CdSe Films Prepared by Chemical Bath Deposition: The Role of Substrate. Thin Solid Films, 2006, 511~512: 71~75
    114 D. S. Albin, Y. Yan, M. M. Al-Jassim. The Effect of Oxygen on Interface Icrostructure Evolution in CdS/CdTe Solar Cells. Prog. Photovolt. Res. 2002, 10(5): 309~322
    115 R. S. Mane, M. Y. Yoon, H. Chung et al. Co-Deposition of TiO2/CdS FilmsElectrode for Photo-Electrochemical Cells. Sol. Energy. 2007, 81(2): 290~293
    116 D. S. Dhawale, A. M. More, S. S. Latthe et al. Room Temperature Synthesis and Characterization of CdO Nanowires by Chemical Bath Deposition (CBD) Method. Appl. Sur. Sci. 2008, 254(11): 3269~3273
    117 J. G. Vazquez-Luna, F. R. B. Lopez, M. Rubin-Falfan et al. CdS Thin Films Deposited by a Modified Chemical Bath Deposition Method. J Crystal Growth. 1998, 187(3~4): 380~386
    118 M. A. Martinez, C. Guillen, J. Herrenro. Cadmium Sulphide Growth Investigations on Different SnO2 Substrates. Appl. Sur. Sci. 1999, 140(1~2): 182~189
    119 R. Castro-Rodriguez, A. I. Oliva, S. Victor et al. Effect of Indium Tin Oxide Substrate Roughness on the Morphology, Structural and Optical Properties of CdS thin films. Appl. Sur. Sci. 2000, 161(3~4): 340~346.
    120 J. Herrero, M. T. Gutierrez, C. Guillen et al. Photovoltaic Windows by Chemical Bath Deposition. Thin Solid Films. 2000, 361~362(1): 28~33
    121 G. Sasikala, P. Thilakan, C. Subramannian. Modification in the Chemical Bath Deposition Apparatus, Growth and Characterization of CdS Semiconducting Thin Films for Photovoltaic applications. Sol. Energy Mater. Sol. Cells. 2000, 62(3): 275~293.
    122 J. M. Dona, J. Herero. Chemical Bath Deposition of CdS Thin Films: an Approach to the Chemical Mechanism Through Study of the Film Microstructure. J. Electrochem. Soc. 1997, 144(11): 4081~4098
    123 R. Orlega-Borges, D. Lincol. Mechanism of Chemical Bath Deposition of Cadmium Sulfide Thin Films in the Ammonia-Thiourea System. J. Electrochem. Soc. 1993, 140(12): 3464~3473
    124 R. Henriquez, H. Gimez, G. Riveros et al. Eletrochemicai-deposition of ZnSe from Dimethyl Sulfoxide Solution and Characterization of Epitaxial Growth. J. Phys. Chem. B. 2004, 108(35): 13191~13199
    125 S. J. Lade, M. D. Uplane, C. D. Lokhande. Photoelectrochemical Properties of CdX (X = S, Se, Te) Films Electrodeposited from Aqueous and Non-Aqueous Baths. Mater. Chem. Phys. 2001, 68(1~3): 36~41
    126 M. Martinez, J. Herrero, M. Gutieerrez. Chemical Studies of Solar CellStructures based on Electrodeposited CuInSe2. Sol. Energy Mater. Sol. Cells. 1999, 58(2): 219~224
    127 A. Hermanna, M. Mansour, V. Badri. Deposition of Smooth Cu(In,Ga)Se2 Films from Binary Multilayers. Thin Solid Films. 2000, 361~362: 74~78
    128芬德勒著,项金钟,吴兴惠译.纳米粒子与纳米结构薄膜.北京:化学化工出版社, 1998: 50-64
    129安茂忠,王久林,杨哲龙等.电沉积方法制备功能性金属化合物薄膜.功能材料. 1999, 6(30): 585~587
    130 J. S. Suh, J. S. Lee. Surface Enhanced Raman Scattering for CdS Nanowires Deposited in Anodic Aluminum Oxide Nanotemplate. Chem. Phys. Lett. 1997, 281(4~6): 384~388
    131 D. S. Xu, Y. J. Xu, D. P. Chen et al. Preparation and Characterization of CdS Nanowire Arrays by Electrideposit in Porous Anodic Aluminum Oxide Templates. Chem. Phys. Lett. 2000, 325(4): 340~344
    132 P. Zhang, P. S. Kim, T. K. Sham. XANES Studies of CdS Nano-Structures on Porous Silicon. J. Electro. Spectro. Rel. Phenom. 2001, 119(2): 229~233
    133 T. Yoshida, K. Yamaguchi, T. Kazitani et al. Minoura Atom-by-Atom Growth of Cadmium Sulfide Thin Films Byelectroreduction of Aqueous Cd2+–SCN- Complex. J. Electroanal. Chem. 1999, 473(1~2): 209~216
    134 J. Nishino, S. Chatani, Y. Nosaka et al. Electrodeposition Method for Controlled Formation of CdS Films from Aqueous Solutions. J. Electroanal. Chem. 1999, 473(1~2): 217~222
    135 M. Rami, E. Benamar, M. Fahoume et al. Growth Analysis of Electrodeposited CdS on ITO Coated Glass Using Atomic Force Microscopy. Phys. Stat. Sol. A. 1999, 172(2): 137~142
    136 M. Sasagawa, Y. Nosaka. The Effect of Chelating Reagents on the Layer-by-Layer Formation of CdS Films in the Electroless and Electrochemical Deposition Processes. Electrochim. Acta. 2003, 48(5): 483~488
    137 W. B. Yang, Z. Wu, Z. Y. Lu et al. Template-Electrodeposition Preparation and Structural Properties of CdS Nanowire Arrays. Microelectro. Engineer. 2006, 83(11): 1971~1974
    138 H. Cachet, R. Cortès, M. Froment. Etcheberry.Electrodeposition of EpitaxialCdSe on (111) Gallium Arsenide. Thin Solid Films. 2000, 361~362: 84~87
    139 G. Sasikala, R. D. hnasekaran, C. Subramanian. Electrodeposition and Optical Characterization of CdS Thin Films on ITO Coated Glass. Thin Solid Films. 1997, 302(1~2): 71~76
    140 L. K. Teh, V. Furin, A. Martucci et al. Electrodeposition of CdSe on Nano- patterned Pillar Arrays for Photonic and Photovoltaic Applications. Thin Solid Films. 2007, 515(15): 5787~5791
    141 S. M. Pawar, A. V. Moholkar, C. H. Bhosale. Influence of pH on Electrochemically Deposited CdSe Thin Films. Mater. Lett. 2007, 61(4-5): 1034~1038
    142 M. Bouroushian, D. Karoussos, T. Kosanovic. Photoelectrochemical Properties of Electrodeposited CdSe and CdSe/ZnSe Thin Films in Sulphide-Polysulphide and Ferro-Ferricyanide Redox Systems. Solid State Ionics. 2006, 177(19-25): 1855~1859
    143 A. V. Kokate, U. B. Suryavanshi, C. H. Bhosale. Structural, Compositional, and Optical Properties of Electrochemically Deposited Stoichiometric CdSe Thin Films From Non-Aqueous Bath. Sol. Energy. 2006, 80(2): 156~160
    144 J. B. Zhang, Y. Lin, X. R. Xiao et al. Characterization of Nanocrystalline Porous CdSe Thin Films by Electrolyte Electroabsorption Spectroscopy. Thin Solid Films. 2005, 479(1~2): 188~192
    145 C. M. Shen, X. G. Zhang, H, L. Li. Effect of pH on the Electrochemicall Deposition of Cadmium Selenide Nanocrystal Film. Mater. Sci. Engineer. B. 2001, 84(2): 265~270
    146 S. N. Sarangi, S. N. Sahu. CdSe Nanocrystalline Thin Film: Composition Structure and Optical Properties. Phys. E. 2004, 23(2): 159~167
    147 S. M. Pawar, A. V. Moholkar, K. Y. Rajpure et al. Electrosynthesis and Characterization of CdSe Thin Films: Optimizationof Preparative Parameters by Photoelectrochemical Technique. J. Phys. Chem. Solids. 2006, 67(11): 2386~2391
    148 C. D. Lokhande, E. H. Lee, K. D. Jung et al. Electrosynthesis of Cadmium Selenide Films from Sodium Citrate–Selenosulphite Bath. Mater. Chem. Phys. 2005, 91(2~3): 399~403
    149 V. Kris, D. Marcus, D. Lay et al. Stickney. Formation of the FirstMonolayers of CdTe on Au(111) by Electrochemical Atomic Layer Epitaxy (EC-ALE): Studied by LEED Auger, XPS, and in-Situ STM. J. Electroanal. Chem. 2002, 522(1): 104~114
    150 B. H. Flowers Jr, T. L. Wade, J. W. Garvey. Atomic Llayer Epitaxy of CdTe Using an Automated Electrochemical Thin-Layer Flow Deposition Reactor. J. Electroanal. Chem. 2002, 524~525(1~2): 273~285
    151郝彦虎,杨迈之,余赪等. TiO2纳米晶多孔膜的电荷传输特性.物理化学学报. 1998, 14(4): 309~313
    152朱志昂.近代物理化学(下册).北京:科学出版社. 2004: 331~338
    153姜月顺,李铁津.光化学.北京:化学工业出版. 2005: 92~94
    154 J. Wu, J. C. Yu, L. Z. Zhang et al. Preparation of a Highly Active Anocrystalline TiO2 Photocatalyst from Titanium Oxo Cluster Precursor. J. Solid State Chem. 2004, 177(7): 2584~2590
    155 D. Bersani, P. P. Lottici, X. Z. Ding. Phonon Confinement Effects in the Raman Scattering by TiO2 Nanocrystals. Appl. Phys. Lett. 1998, 72(1): 73~75
    156 A. Brioude, F. Lequevre, J. Mugnier et al. Raman Spectroscopy of Sol-Gel Ultrathin Films Enhanced by Surface Plasmon Polaritons. J. Appl. Phys. 2000, 88(11): 6187~6191
    157 Y. Djaoued, S. Badilescu, P. V. Ashrit et al. Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films. J. Sol-Gel Sci. Technol. 2002, 24(3): 255~264
    158 S. Y. Choi, M. Mamak, N. Coombs et al. Thermally Stable Two-Dimensional Hexagonal Mesoporous Nanocrystalline Anatase, Meso-nc-TiO2: Bulk and Crack-Free Thin Film Morphologies. Adv. Funct. Mater. 2004, 14(3): 335~344
    159 D. Y. Zhao, J. L. Feng, Q. S. Huo et al. Stucky G D. Triblock Copolymer Yntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998, 279(5350): 548~552
    160 J. A. Kumar, A. K. Jain. Photophysics and Photochemistry of Colloidal CdS-TiO2 Coupled Semiconductors-Photocatalytic Oxidation of Indole. J. Mol. Cata. A Chem. 2001, 165(1~2): 265~273
    161 K. Vinodgopal, S. Hotchandani, P. V. Kamat. Preparation and Photoelectro-chemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with bis(2,2'-bipyridine)(2,2'-bipyridine-4,4' -dicarboxylic acid)ruthenium(II) Complex. J. Phys. Chem. 1994, 98(15): 4133~4140
    162 D. Liu, P. V. Kamat. Electrochemical Rectification in CdSe + TiO2 Coupled Semiconductor Films. J. Electroanl. Chem. 1993, 347(5): 451~458
    163 V. Kumar, T. P. Sharma. Structural and Optical Properties of Sintered CdSxSe1-x Films. J. Phys. Chem. Solids. 1998, 59(8): 1321~1325
    164 S. Kudera, L. Carbone, M. F. Casula. Selective Growth of PbSe on One or Both Tips of Colloidal Semiconductor Nanorods. Nano Lett. 2005, 5(3): 445~449
    165 H. M. Cheng, J. M. Ma, L. M. Qi. Hydrothermal Preparation Uniform Nanosize Rutile and Anatase Particles. Chem. Mater. 1995, 7(4): 663~638
    166 K. Y. Jiang, Y. Wang, J. J. Dong et al. Electrodeposited Metal Sulfide Semiconductor Films with Ordered Nano Hole Array Structures. Langmuir. 2001, 17(12): 3635~3638
    167钱新明,宋庆,白玉白等. CdS敏化对TiO2纳米晶薄膜电极表面光生电荷转移特性的影响.高等学校化学学报. 2000, 21(3): 295~297
    168 A. Kay, H. B. Robin. M. Gratzel. Artificial Photosynthesis. 2. Investigations on the Mechanism of Photosensitization of Nanocrystalline TiO2 Solar Cells by Chlorophyll Derivatives. J. Phys. Chem. 1994, 98(3): 952~958
    169 Y. Q. Wang, H. M. Cheng, Y. Z. Hao et al. Photoelectrochemical Properties of Metal-Ion-Doped TiO2 Nanocrystalline Electrodes. Thin Solid Films. 1999, 349(1~2): 120~125
    170 S. M. Yang, C. H. Huang, J. Zhai et al. High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-sensitized with Capped Sulfides. J. Mater. Chem. 2002, 12(5): 1459~1464
    171 Q. L. Zhang, D. J. Wang, X. Wei et al. A Study of the Interface and the Related Electronic Properties in n-Al0.35Ga0.65N/GaN Heterostructure. Thin Solid Films. 2005, 491(1~2): 242~249
    172 L. Q. Jing, B. F. Xin, F. L. Yuan et al. Effects of Surface Oxygen Vacancies on Photophysical and Photochemical Processes of Zn-Doped TiO2 Nanoparticles and Their Relationships. J. Phys. Chem. B. 2006, 110(36):17860~17865
    173 B. H. Wang, D. J. Wang, Y. Cui et al. Electrochemical Fabrication and Photovoltaic Property of Size-Quantized Nanocrystalline CdS Film. Chinese Chem. Lett. 1994, 5(6): 627~ 630
    174 S. J. Lade, C. D. Lokhande. Electrodeposition of CdS from Non-Aqueous Bath. Mater. Chem. Phys. 1997, 49(2): 160~163
    175 M. Z. Torres, F. C. Lara, F. C. Briones et al. Effect of Annealing Temperature on the Crystalline Quality and Phase Transformation of Chemically Deposited CdSe Films. Phys. Stat. Sol. C . 2005, 2(10): 3742~3745
    176 V. Sivasubramanian, A. K. Arora, M. Premila et al. Optical Properties of CdS Nanoparticles upon Annealing. Phys. E. 2006, 31(1): 93~98
    177张含平,林原,周晓文等.化工新型材料. 2006, 34(11): 17~19
    178 M. Tamkiewiez, I. Ling, W. S. parsons. Morphology, Properties and Performance of Eleetrodeposited n-CdSe in Liquid Junction Solar Cells. J. Electrochem. Soc. 1982, 129(16): 2016~2021.
    179 M. S. Kazacos, B. Miller. Studies in Selenious Acid Reduction and CdSe Film Deposition. J. EIectrochem. Soc. 1980, 127(7): 869~875

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700