用户名: 密码: 验证码:
钛基种植体表面仿细胞外基质活性涂层的设计、构建及其生物学评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缩短种植体骨整合时间,达到种植体即刻负载或早期负载是种植体表面改性研究的主要目标。本研究从仿生的视角,采用层层自组装的方法(LbL technique),在纯钛片表面以设计、构建仿细胞外基质活性涂层为目标,进行了方法学探讨。在此基础上,对各种涂层进行了详细的生物学评价。
     首先,纯钛片表面经打磨抛光及氧化性混酸溶液处理,得到我们需要的基底面。研究表明这是一个富含羟基且具有良好生物活性的基底面,由于羟基与富含氨基的聚电解质生物大分子之间的氢键作用,为我们后续的组装提供了可能。接着选择了4种具有良好骨诱导性的生物大分子(Ⅰ型胶原、壳聚糖、透明质酸和多聚谷氨酸),根据它们等电点的不同配成带电荷的聚电解质溶液(Ⅰ型胶原和壳聚糖带正电荷,透明质酸和多聚谷氨酸负电荷),通过层层自组装技术将上述聚电解质两两配比组装到纯钛基底面上,共得到4种不同的涂层并进行表征。扫描电镜观察发现与纯钛基底面相比,涂层的表面形貌发生了改变,也是布满了各种不同大小的纳米级别的颗粒;AFM检测结果也证实了相同的变化趋势。X射线光电子能谱仪分析发现涂层表面元素成分氮的含量随着组装层数的增加而不断升高;而石英晶体微量天平检测的涂层厚度也在随着组装层数的增加而不断增厚;最后,接触角实验显示涂层表面的可湿性随着钛片表面聚电解质组装层数的变化而不断变化。以上结果证明我们所选择的有机质大分子被成功的组装到了纯钛表面。接着,在各种涂层上体外培养成骨前体细胞(MC3T3-E1),观察细胞的粘附、增殖和分化情况。结果我们发现以Ⅰ型胶原和透明质酸为骨架的涂层最有利于成骨前体细胞的生长。
     接下来,我们设计合成了GRGDSPC多肽序列,并将该多肽序列引入到透明质酸结构中,然后利用自组装的方法构建了胶原/透明质酸聚电解质复合层。由于该多肽序列中端基为半胱氨酸残基,该残基中有活泼的巯基,而巯基之间可以在温和的条件下进行交联形成双硫键,从而使得最后的胶原/透明质酸聚电解质复合膜稳定。这样,我们在引入RGD序列的同时,亦实现了聚电复合膜的交联。体外降解研究显示,该交联的胶原/透明质酸复合膜稳定性显著提高;不仅如此,该涂层对谷胱甘肽具有降解响应性,在谷胱甘肽模拟体液中的降解速度大大提高,暗示这种涂层可以在体内通过谷胱甘肽而加速降解。体外生物学评价显示:与胶原/透明质酸涂层相比,引入RGD的涂层显著不仅促进了成骨前体细胞的粘附,而且也促进了成骨前体细胞的增殖、分化和钙化。
     在此基础上,我们计划在种植体表面的涂层中引入活性生长因子。BMP-2分子由于具有强烈的骨诱导性而备受关注,本实验也选择BMP-2作为研究对象。首先将BMP-2溶入胶原溶液而带上正电荷,接着通过LBL技术将BMP-2引入到涂层中,接下来同样将涂层交联。体外降解实验表明,该涂层在增加稳定性的同时也实现了对BMP-2分子的缓释作用,而释放出来的BMP-2分子也没有丧失原有的活性。生物学评价结果也表明,与RGD功能化的胶原/透明质酸复合膜相比,该活性涂层显著促进了细胞的分化和功能表达。与细胞外基质的结构功能类似,该涂层不仅仅是作为成骨细胞的支架让其黏附生长,而且涂层中的RGD序列与缓释出来的生长因子能够通过与整合素或其它特定的细胞表面受体与成骨细胞直接或间接的作用,从而促进成骨细胞的生长、迁移和分化,因而具有明显的仿生特征。
     不仅如此,当以同样的策略在已经引入RGD的胶原/透明质酸复合膜中组装bFGF分子(最近的研究发现bFGF不仅能刺激血管的再生,也能明显促进成骨),也取得了成功,同样使涂层稳定性大大提高,也具有对bFGF分子的缓释功能。同样较RGD功能化的胶原/透明质酸复合膜促进了成骨细胞的分化和钙化,该活性涂层也具有仿生的特点。
     最后,我们在涂层中同时组装上BMP-2和bFGF分子,降解结果显示该涂层实现了对BMP-2和bFGF分子的缓释作用,而且BMP-2和bFGF它们之间能独立释放,互不干扰。生物学评价结果显示,组装了多个生长因子的活性涂层与分别组装BMP-2或bFGF或RGD功能化的涂层相比较,该涂层显著促进了成骨细胞的黏附增殖和分化,而且BMP-2和bFGF分子之间具有明显的协同作用。这种用有机质来改性的新型的仿生的种植体表面能显著促进MC3T3-E1细胞的黏附、增殖和分化,有助于种植体的早期骨整合。
     显然,以上研究显示可以通过自组装的方法进行仿细胞外基质活性涂层的构建,而且该表面可以既可以极大促进成骨前体细胞的黏附,又显著促进了成骨前体细胞的增殖和分化;显而易见,如果用于种植体的表面,该表面有望促进新骨的早期形成,并增强种植体-骨组织之间的结合强度。
The main purpose of surface modification of dental implant is to shorten the time of osseointegration, and as to reach immediately or early loading. From the aspect of biomimetics, this investigation focused on the detailed methodology research of designing and constructing a biomimetic ECM bioactive coating on pure commercial titanium implant surface. Based on this, biological evaluation of different coatings was undertaken.
     We produced a basal surface by the following treatments:first grinding and polishing, then acid-etching with a mixture of H2SO4/H2O2. Previous studies indicated it is a basal surface with plenty of hydroxy group and owns quite good biological activity. The interaction of hydrogen bonds, between hydroxy group and polyelectrolyte with lots of amino group, provides the feasibility of the following self-assembly. Then four biomacromolecules with good osteoinductive, collagen typeⅠ, chitosan, hyaluronic acid and polyglutamic acid were choosed. and four polyelectrolyte solutions with disparity charge were prepared according to their different isoelectric point. Four different coatings were prepared on pure titanium basal surface with layer by layer technique and were sent for characterization. SEM analysis demonstrated that surface morphology of the coatings was changed compared with that of basal surface, and were also covered with different granules in nano size. The results of AFM examination also proved almost the same tendancy. XPS analysis showed that the element nitrogen content of the coating surface was dramatically increased with deposition number. On the other hand, the results of quartz crystal microbalance measurement indicated that the thickness of coating was also increased with approximately linearly with the deposition number. Finally, contact angle measurement showed that surface wettability of the coating was dramatically altered along the deposition number. Taken together, we can draw a conclusion that organic biomacromolecules we applied have been successfully constructed on the titanium surface. After that, we cultured pre-osteoblasts (MC3T3-E1) on different coatings in order to evaluate cell attachment, cell proliferation and cell differentiation. The biological evaluation results suggested that the coating based on collagen type I and hyaluronic acid promote cell growth at mostly.
     Next, GRGDSPC polypeptide sequence was designed and synthesized, and was then tointroduced to hyaluronic acid. Finally, collagen/hyaluronic acid PEM was constructed on titanium surface by LBL technique. Owing to the high activity of sulfhydryl group from aminothiopropionic acid reside of the polypeptide; the sulfhydryl group can change into disulfide bond with cross linkage reaction under moderate condition, which makes the collagen/hyaluronic acid PEM more stable. Thus, the RGD sequence was introduced to the PEM and the PEM was cross linked at the same time. The in vitro degradation experiment showed, the stability of collagen/hyaluronic acid PEM, which was cross linked, was significantly promoted. Furthermore, the degradation rate of this coating was largely elevated in GSH fluid, which suggested the degradation rate of this coating could be accelerated with the action of in vivo glutathion. In vitro biological evaluation demonstrated, compared with collagen/hyaluronic acid PEM, the RGD functionalized PEM significantly promoted the attachmen, proliferation, differentiation and calcification of preosteoblasts.
     Still on this base, we plan to introduce growth factors to this coating. BMP-2 has been extensively explored because of its strong osteoinductivity, for the same reason BMP-2 was choosed in this experiment. So BMP-2 was dissolved in collagen solution and thus positively charged, and was introduced to the coating by LBL technique, then cross linkage reaction was also carried out. Degradation test manifestated BMP-2 bioactive molecules could be slowly released from the treated coating, which also shared a higher stability. Biological evaluation results suggested that the released BMP-2 molecules do not loss any activity. Compared with RGD functionalized COL/HA PEM, this bioactive coating significantly improved the differentiation and function expression of preosteoblasts. Similar to the unique structure and function of ECM, that coating serves not only as a passive scaffold for preosteoblasts, but RGD sequence and several growth factors slowly released from this coating can interact with presosteoblasts via integrins or other specific cell surface receptors, thus directly and indirectly promoting growth, migration and differentiation of these cells.
     Moreover, bFGF can also be incorporated into the RGD functionalized COL/HA PEM successfully with the same strategy. However, recently reseach has verified that bFGF can not only stimulate vascularization, but also promote osteogenesis. The constructed coating also shares several advantages such as stability and drug delivery. This bioactive coating also shares some character of biomimetics, and significantly increased the differentiation and calcification of preosteoblasts than RGD functionalized COL/HA PEM.
     Finally, we try to introduce both BMP-2 and bFGF to the coating at the same time, and in vitro degradation test also indicated that BMP-2 and bFGF could be slowly released from the coating respectively, without any intervention. Compared with all the coatings mentioned above, this special coating which incorporated with both BMP-2 and bFGF could significantly promote cell attachment, cell proliferation and cell differentiation, however, there exists conspicuous synergistic effect between BMP-2 and bFGF. This newly biomimetic ECM bioactive coating on dental surface, which was modified with organic macromolecules, could encourage attachment, proliferation and differentiation of MC3T3-E1 cells, and might facilitate early bone integration to dental implant surface.
     Obviously, from this investigation, we can get a conclution that biomimetic ECM bioactive coating could be constructed on dental implant surface successfully by LBL technique, and this coating remarkably enhance preosteoblasts attachment, proliferation and differentiation, and might facilitate better integration with bone.
引文
1. Branemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl.1977; 16:1-132.
    2. Branemark PI, Hansson BO, Adell R, et al. [Intraosseous implants]. Odontostomatol Implantoprotesi. Jan-Feb 1980(1):24-25.
    3. Albrektsson T, Wennerberg A. Oral implant surfaces:Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int. J Prosthodont. Sep-Oct 2004;17(5):536-543.
    4. Esposito M, Coulthard P, Thomsen P, Worthington HV. The role of implant surface modifications, shape and material on the success of osseointegrated dental implants. A Cochrane systematic review. Eur J Prosthodont Restor Dent. Mar 2005:13(1):15-31.
    5. Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am. Jul 2006;50(3):323-338, v.
    6. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. Jul 2007;23(7):844-854.
    7. Barrere F, van der Valk CM, Meijer G, Dalmeijer RA, de Groot K, Layrolle P. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B Appl Biomater. Oct 15 2003;67(1):655-665.
    8. Tavares MG, de Oliveira PT, Nanci A, Hawthorne AC, Rosa AL, Xavier SP. Treatment of a commercial, machined surface titanium implant with H2SO4/H2O2 enhances contact osteogenesis. Clin Oral Implants Res. Aug2007;18(4):452-458.
    9. Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF. The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials. Dec 2007;28(36):5418-5425.
    10. Park JW, Jang IS, Suh JY. Bone response to endosseous titanium implants surface-modified by blasting and chemical treatment:a histomorphometric study in the rabbit femur. J Biomed Mater Res B Appl Biomater. Feb 2008;84(2):400-407.
    11. Kunzler TP. Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. Apr 2007;28(13):2175-2182.
    12. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface:a histometric study in the canine mandible. J. Biomed Mater Res. Apr 1998:40(1):1-11.
    13. Ronold HJ, Lyngstadaas SP, Ellingsen JE. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials. Nov 2003;24(25):4559-4564.
    14. Scheideler L, Rupp F, Wendel HP, Sathe S, Geis-Gerstorfer J. Photocoupling of fibronectin to titanium surfaces influences keratinocyte adhesion, pellicle formation and thrombogenicity. Dent Mater. Apr 2007;23(4):469-478.
    15. Petrie TA, Reyes CD. Burns KL, Garcia AJ. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J Cell Mol Med. Aug 2009;13(8B):2602-2612.
    16. Middleton CA, Pendegrass CJ, Gordon D, Jacob J, Blunn GW. Fibronectin silanized titanium alloy:a bioinductive and durable coating to enhance fibroblast attachment in vitro. J Biomed Mater Res A. Dec 15 2007;83(4):1032-1038.
    17. Abarrategi A, Garcia-Cantalejo J, Moreno-Vicente C. et al. Gene expression profile on chitosan/rhBMP-2 films:A novel osteoinductive coating for implantable materials. Acta Biomater. Sep 2009;5(7):2633-2646.
    18. Liu Y, Huse RO, de Groot K, Buser D, Hunziker EB. Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res. Jan 2007;86(1):84-89.
    19. Schliephake H, Aref A, Scharnweber D, Bierbaum S, Roessler S, Sewing A. Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clin Oral Implants Res. Oct 2005;16(5):563-569.
    20. Elmengaard B, Bechtold JE, Soballe K. In vivo effects of RGD-coated titanium implants inserted in two bone-gap models. J Biomed Mater Res A. Nov 1 2005;75(2):249-255.
    21. Ferris DM, Moodie GD, Dimond PM, Gioranni CW,Ehrlich MG, Valentini RF. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials. Dec 1999;20(23-24):2323-2331.
    22. Le Guillou-Buffello D, Bareille R, Gindre M, Sewing A. Laugier P. Amedee J. Additive effect of RGD coating to functionalized titanium surfaces on human osteoprogenitor cell adhesion and spreading. Tissue Eng PartA. Aug 2008:14(8):1445-1455.
    23. Noshi T, Yoshikawa T, Dohi Y. et al. Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artif Organs. Mar 2001;25(3):201-208.
    24. Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials. May 2002;23(9):2079-2087.
    25. Jones AA, Buser D, Schenk R. Wozney J, Cochran DL. The effect of rhBMP-2 around endosseous implants with and without membranes in the canine model. J Periodontol. Jul 2006;77(7):1184-1193.
    26. Liu Y, de Groot K, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. May 2005;36(5):745-757.
    27. G.Decher. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science.1991;277:1232-1237.
    28. Mao Z, Ma L, Zhou J, Gao C, Shen J. Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjug Chem. Sep-Oct 2005;16(5):1316-1322.
    29. Constantine CA, Mello SV, Dupont A, et al. Layer-by-layer self-assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J Am Chem Soc. Feb 19 2003;125(7):1805-1809.
    30. Zhong Y, Li B, Haynie DT. Fine tuning of physical properties of designed polypeptide multilayer films by control of pH. Biotechnol Prog. Jan-Feb 2006;22(1):126-132.
    31. Ren K. Ji J, Shen J. Tunable DNA release from cross-linked ultrathin DNA/PLL multilayered films. Bioconjug Chem. Jan-Feb 2006;17(1):77-83.
    32. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. Dec 1999;20(23-24):2311-2321.
    33. Xie YB, Li XZ. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. J Hazard Mater. Dec 1 2006;138(3):526-533.
    34. Lin A, Wang CJ, Kelly J, Gubbi P, Nishimura I. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Int J Oral Maxillofac Implants. Sep-Oct 2009;24(5):808-816.
    35. Maitz MF, Pham MT, Matz W, Reuther H, Steiner G, Richter E. Ion beam treatment of titanium surfaces for enhancing deposition of hydroxyapatite from solution. Biomol Eng. Aug 2002;19(2-6):269-272.
    36. Vasanthan A. Kim H, Drukteinis S, Lacefield W. Implant surface modification using laser guided coatings:in vitro comparison of mechanical properties. J Prosthodont. Jul 2008; 17(5):357-364.
    37. Wan T, Aoki H, Hikawa J, Lee JH. RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates. Biomed Mater Eng.2007:17(5):291-297.
    38. Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol. Dec 2000;5(1):22-31.
    39. Keller JC. Tissue compatibility to different surfaces of dental implants:in vitro studies. Implant Dent.1998:7(4):331-337.
    40. Lavos-Valereto IC, Wolynec S, Deboni MC, Konig B, Jr. In vitro and in vivo biocompatibility testing of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating. J Biomed Mater Res. 2001;58(6):727-733.
    41. Petrie TA, Raynor JE, Reyes CD, Burns KL; Collard DM:Garcia AJ. The
    effect of integrin-specific bioactive coatings on tissue healing and implant osseointegration. Biomaterials. Jul 2008;29(19):2849-2857.
    42. Sohn SH, Jun HK, Kim CS, et al. Biological responses in osteoblast-like cell line according to thin layer hydroxyapatite coatings on anodized titanium. J Oral Rehabil. Dec 2006;33(12):898-911.
    43. Steflik DE, Corpe RS, Young TR, Sisk AL, Parr GR. The biologic tissue responses to uncoated and coated implanted biomaterials. Adv Dent Res. Jun1999;13:27-33.
    44. Avila G, Misch K, Galindo-Moreno P, Wang HL. Implant surface treatment using biomimetic agents. Implant Dent. Feb 2009; 18(1):17-26.
    45. Johansson JA, Halthur T, Herranen M, Soderberg L. Elofsson U, Hilborn J. Build-up of collagen and hyaluronic acid polyelectrolyte multilayers. Biomacromolecules. May-Jun 2005;6(3):1353-1359.
    46. Cai K, Wang Y. Polysaccharide surface engineering of poly(D, L-lactic acid) via electrostatic self-assembly technique and its effects on osteoblast growth behaviours. J Mater Sci Mater Med. Oct 2006;17(10):929-935.
    47. Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique:characterization and cell behaviour aspects. Biomaterials. Oct 2005;26(30):5960-5971.
    48. Inane B, Eser Elcin A, Koc A, Balos K, Parlar A, Murat Elcin Y. Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-hydroxyapatite microspheres. J Biomed Mater Res A. Sep 15 2007;82(4):917-926.
    49. Graf HL, Stoeva S, Armbruster FP, Neuhaus J, Hilbig H. Effect of bone sialoprotein and collagen coating on cell attachment to TICER and pure titanium implant surfaces. Int J Oral Maxillofac Surg. Jul 2008;37(7):634-640.
    50. de Jonge LT, Leeuwenburgh SC, van den Beucken JJ, et al. The osteogenic.effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials. Mar;31(9):2461-2469.
    51. Hilbig H, Kirsten M, Rupietta R, et al. Implant surface coatings with bone sialoprotein, collagen, and fibronectin and their effects on cells derived from human maxillar bone. Eur J Med Res. Jan 31 2007;12(1):6-12.
    52. Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S. Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater. Apr 2005;73(1):88-96.
    53. Nishimura K. [Effect of extracellular matrix and serum components on cellular adhesion and growth in vitro and in vivo]. Nichidai Koko Kagaku. Jun 1990;16(2):237-260.
    54. Bumgardner JD, Chesnutt BM, Yuan Y, et al. The integration of chitosan-coated titanium in bone:an in vivo study in rabbits. Implant Dent. Mar 2007;16(1):66-79.
    55. Bumgardner JD, Wiser R, Gerard PD, et al. Chitosan:potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J Biomater Sci Polym Ed.2003;14(5):423-438.
    56. Schneider A, Vodouhe C, Richert L. et al. Multifunctional polyelectrolyte multilayer films:combining,mechanical resistance, biodegradability, and bioactivity. Biomacromolecules. Jan 2007;8(1):139-145.
    57. Richert L, Lavalle P, Vautier D, et al. Cell interactions with polyelectrolyte multilayer films. Biomacromolecules. Nov-Dec 2002;3(6):11-70-1178.
    58. Shiratori SSaMFR. pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes. Macromolecules. 2000;33:4213-4219.
    59. Steitz R; Leiner V; Siebrecht R; Klitzing R. Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids and Surfaces.2000.
    60. 聂利华;姚守拙.《分析化学》.Vol 24;1996.
    61. Sauerbrey GS. Physical use of a quartz vibrator for weighing thin layers on a microbalance. Phys.1959;155:206.
    62. Lvov Y. Electrostatic Layer-by-Layer Assembly of Proteins and Polyions. New York:Marcel Dekker; 2000.
    63. Nanci A, Wuest JD, Peru L, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res. May 1998;40(2):324-335.
    64. de Oliveira PT, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials. Feb 2004;25(3):403-413.
    65. Yu DG, Lin WC, Lin CH, Yeh YH, Yang MC. Construction of antithrombogenic polyelectrolyte multilayer on thermoplastic polyurethane via layer-by-layer self-assembly technique. J Biomed Mater Res B Appl Biomater. Oct 2007;83(1):105-113.
    66. Matsusaki M, Sakaguchi H, Serizawa T, Akashi M. Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J Biomater Sci Polym Ed. 2007;18(6):775-783.
    67. Zhang J, Senger B, Vautier D, et al. Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials. Jun 2005;26(16):3353-3361.
    68. Chua PH. Neoh KG, Kang ET, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. Apr 2008:29(10):1412-1421.
    69. Etienne O, Picart C, Taddei C, et al. Polyelectrolyte multilayer film coating and stability at the surfaces of oral prosthesis base polymers:an in vitro and in vivo study. J Dent Res. Jan 2006;85(1):44-48.
    70. Boulmedais F, Frisch B, Etienne O, et al. Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials. May 2004;25(11):2003-2011.
    71. Tryoen-Toth P, Vautier D, Haikel Y, et al. Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. J Biomed Mater Res. Jun 15 2002;60(4):657-667.
    72. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity:implications for gene transfer/therapy. Mol Ther. Jun 2005:11(6):990-995.
    73. Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials. Feb 2007;28(4):632-640.
    74. Nagai M, Hayakawa T, Fukatsu A, et al. In vitro study of collagen coating of titanium implants for initial cell attachment. Dent Mater J. Sep 2002;21(3):250-260.
    75. Balazs EA, Denlinger JL. Viscosupplementation:a new concept in the treatment of osteoarthritis. J Rheumatol Suppl. Aug 1993:39:3-9.
    76. Vercruysse KP, Prestwich GD. Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst.1998:15(5):513-555.
    77. West DC, Hampson IN. Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science. Jun 14 1985;228(4705):1324-1326.
    78. Werner S, Huck O, Frisch B, et al. The effect of micro structured surfaces and laminin-derived peptide coatings on soft tissue interactions with titanium dental implants. Biomaterials. Apr 2009;30(12):2291-2301.
    79. Park JW, Jang JH, Lee CS, Hanawa T. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomater. Jul 2009;5(6):2311-2321.
    80. Richert L, Lavalle P, Payan E, et al. Layer by layer buildup of polysaccharide films:physical chemistry and cellular adhesion aspects. Langmuir. Jan 20 2004;20(2):448-458.
    81. Puleo DA, Holleran LA, Doremus RH,Bizios R. Osteo.blast responses to orthopedic implant materials in vitro. J Biomed Mater Res. Jun 1991;25(6):711-723.
    82. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. Apr 2000;21(7):667-681.
    83. Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res A. Jun 12004;69(3):462-468.
    84. Masaki C, Schneider GB, Zaharias R, Seabold D, Stanford C. Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Implants Res. Dec 2005;16(6):650-656.
    85. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. Sep-Oct 1998:11(5):391-401.
    86. Berglundh T, Abrahamsson I, Lang NP. Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. Jun 2003;14(3):251-262.
    87. Papadopoulos GK, Ouzounis C, Eliopoulos E. RGD sequences in several receptor proteins:novel cell adhesion function of receptors? Int J Biol Macromol. Feb 1998;22(1):51-57.
    88. Kratzschmar J, Lum L, Blobel CP. Metargidin, a membrane-anchored metalloprotease-disintegrin protein with an RGD integrin binding sequence. J Biol Chem. Mar 1 1996;271(9):4593-4596.
    89. Lu M, Munger JS, Steadele M, Busald C, Tellier M, Schnapp LM. Integrin alpha8betal mediates adhesion to LAP-TGFbetal. J Cell Sci. Dec 1 2002;115(Pt 23):4641-4648.
    90. Susan J. McCarthy, J, Kaolan, L, et al. Functionalized silk protein biomaterials for bone regeneration. Paper presented at:Sixth World Biomaterials Congress Transactions,2000; Hawaii, U.S.A.
    91. Vella F, Hernandez JF, Molla A, Block MR, Arlaud GJ. Grafting an RGD motif onto an epidermal growth factor-like module:chemical synthesis and functional characterization of the chimeric molecule. J Pept Res. Nov 1999;54(5):415-426.
    92. Senyah N, Hildebrand G, Liefeith K. Comparison between RGD-peptide-modified titanium and borosilicate surfaces. Anal Bioanal Chem. Nov 2005;383(5):758-762.
    93. Hayashibara T, Hiraga T, Yi B, et al. A synthetic peptide fragment of human MEPE stimulates new bone formation in vitro and in vivo. J Bone Miner Res. Mar 2004;19(3):455-462.
    94. Elmengaard B, Bechtold JE, Soballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials. Jun 2005;26(17):3521-3526.
    95. Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H. Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med. Dec 1997;8(12):867-872.
    96. De Giglio E, Sabbatini L, Zambonin PG. Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Pt-and Ti-substrates as precursors of bioactive interfaces. J Biomater Sci Polym Ed.1999; 10(8):845-858.
    97. De Giglio E, Sabbatini L, Colucci S, Zambonin G. Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates. J Biomater Sci Polym Ed. 2000;11(10):1073-1083.
    98. Bearinger JP, Castner DG, Healy KE. Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression. J Biomater Sci Polym Ed.1998;9(7):629-652.
    99. Zreiqat H, Akin FA, Howlett CR, et al. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res A. Jan 1 2003;64(1):105-113.
    100. Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials. Dec 1998:19(23):2101-2127.
    101. Kuo JW, D.A.Swann, and G.D.Prestwich. Chemical modification of hyaluronic acid by carbodiimides. Bioconjug Chem.1991;2:232-241.
    102. Kishida F, Azuma T, Hamaguchi K. Formation of interchain disulfide bonds in Bence Jones proteins and immunoglobulins. J Biochem. Jan 1976;79(1):91-105.
    103. Zapun A, Bardwell JC, Creighton TE. The reactive and destabilizing disulfide bond of DsbA, a protein required..for protein disulfide bond formation in vivo. Biochemistry. May 18 1993;32(19):5083-5092.
    104. Chang JY. Evidence for the underlying cause of diversity of the disulfide dolding pathway. Biochemistry.2004;43(15):4522-4529.
    105. Wedemeyer WJ, Welker E, Narayan M, Scheraga HA. Disulfide bonds and protein folding. Biochemistry. Jun 13 2000;39(23):7032.
    106.王幽香.超分子组装非病毒基因载体及其仿生特性的研究.杭州:浙江大学材料学高分子系,浙江大学;2007.
    107. Schonherr E, Hausser HJ. Extracellular matrix and cytokines:a functional unit. Dev Immunol.2000;7(2-4):89-101.
    108. Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. Jan 2006;20(1):9-22.
    109. Lee JW, Juliano R. Mitogenic signal transduction by integrin-and growth factor receptor-mediated pathways. Mol Cells. Apr 30 2004;17(2):188-202.
    110. Ruoslahti E. Proteoglycans in cell regulation. J Biol Chem. Aug 15 1989;264(23):13369-13372.
    111. Streuli C. Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol. Oct 1999; 11 (5):634-640.
    112. Rapuano BE, Wu C, MacDonald DE. Osteoblast-like cell adhesion to bone sialoprotein peptides. J Orthop Res. Mar 2004;22(2):353-361.
    113. Verrier S, Pallu S, Bareille R, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials. Jan 2002;23(2):585-596.
    114. Hersel U, Dahmen C, Kessler H. RGD modified polymers:biomaterials for stimulated cell adhesion and beyond. Biomaterials. Nov 2003;24(24):4385-4415.
    115. Michael J, Schonzart L, Israel I, et al. Oligonucleotide-RGD peptide
    conjugates for surface modification of titanium implants and improvement of osteoblast adhesion. Bioconjug Chem. Apr 2009;20(4):710-718.
    116. Gronowicz G, McCarthy MB. Response of human osteoblasts to implant materials:integrin-mediated adhesion. J Orthop Res. Nov 1996;14(6):878-887.
    117. Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K. Collagen type I-coating of Ti6A14V promotes adhesion of osteoblasts. J Biomed Mater Res. Sep 15 2000;51(4):752-760.
    118. Okamoto K, Matsuura T, Hosokawa R. Akagawa Y. RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite but not to titanium. J Dent Res. Mar 1998;77(3):481-487.
    119. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. Jan 2001;54(1):139-148.
    120. Wissink MJ, Beernink R, Scharenborg NM, et al. Endothelial cell seeding of (heparinized) collagen matrices:effects of bFGF pre-loading on proliferation (after low density seeding) and pro-coagulant factors. J Control Release. Jul 3 2000:67(2-3):141-155.
    121. Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. Feb 2002;23(4):1205-1212.
    122. Thornton JM. Disulphide bridges in globular proteins. J Mol Biol. Sep 15 1981;151(2):261-287.
    123. Thannhauser TW,.Konishi Y, Scheraga HA. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Anal Biochem. Apr 1984;138(1):181-188.
    124. Wu J, Watson JT. Optimization of the cleavage reaction for cyanylated cysteinyl proteins for efficient and simplified mass mapping. Anal Biochem. May 1 1998;258(2):268-276.
    125. Futami J, Tada H, Seno M, Ishikami S, Yamada H. Stabilization of human RNase 1 by introduction of a disulfide bond between residues 4 and 118. J Biochem. Aug 2000;128(2):245-250.
    126. Kadokura H, Katzen F, Beckwith J. Protein disulfide bond formation in prokaryotes. Annu Rev Biochem.2003:72:111-135.
    127. Brunette D M, Tengvall P, Textor M and Thomsen P. Titanium in Medicine. Berlin:Springer; 2001.
    128. Urist MR. Bone:formation by autoinduction. Science. Nov 12 1965;150(698):893-899.
    129. Wang EA, Rosen V, Cordes P, et al. Purification and characterization of other distinct bone-inducing factors. Proc Nail Acad Sci U S A. Dec 1988;85(24):9484-9488.
    130. Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation:molecular clones and activities. Science. Dec 16 1988;242(4885):1528-1534.
    131. de Groot K. Geesink R. Klein CP, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res. Dec 1987;21(12):1375-13-81.
    132. Klein CP, Wolke JG, de Blieck-Hogervorst JM, de Groot K. Features of calcium phosphate plasma-sprayed coatings:an in vitro study. J Biomed Mater Res. Aug 1994;28(8):961-967.
    133. de Groot K, Wolke JG, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H.1998;212(2):137-147.
    134. Lacefield WR. Current status of ceramic coatings for dental implants.
    Implant Dent.1998;7(4):315-322.
    135. Glass DA, Mellonig JT. Towle HJ. Histologic evaluation of bone inductive proteins complexed with coralline hydroxylapatite in an extraskeletal site of the rat. J Periodontol. Mar 1989:60(3):121-126.
    136. Yuan H, Zou P, Yang Z, Zhang X, De Bruijn JD, De Groot K. Bone morphogenetic protein and ceramic-induced osteogenesis. J Mater Sci Mater Med. Dec 1998;9(12):717-721.
    137. Miki T. Masaka K, Imai Y, Enomoto S. Experience with freeze-dried PGLA/HA/rhBMP-2 as a bone graft substitute. J Craniomaxillofac Surg. Oct 2000;28(5):294-299.
    138. Stanford CM, Brand RA. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J Prosthet Dent. May 1999;81(5):553-561.
    139. Yoo JU, Johnstone B. The role of osteochondral progenitor cells in fracture repair. Clin Orthop Relat Res. Oct 1998(355 Suppl):S73-81.
    140. Benayahu D, Fried A, Shamay A, Cunningham N, Blumberg S, Wientroub S. Differential effects of retinoic acid and growth factors on osteoblastic markers and CD10/NEP activity in stromal-derived osteoblasts. J Cell Biochem. Sep 1994;56(1):62-73.
    141. Fried A, Benayahu D. Dexamethasone regulation of marrow stromal-derived osteoblastic cells. J Cell Biochem. Sep 15 1996:62(4):476-483.
    142. Hu YS, Zhou H, Kartsogiannis V, Eisman JA, Martin TJ, Ng KW. Expression of rat homeobox gene, rHOX, in developing and adult tissues in mice and regulation of its mRNA expression in osteoblasts by bone morphogenetic protein 2 and parathyroid hormone-related protein. Mol Endocrinol. Nov 1998;12(11):1721-1732.
    143. Bunyaratavej P, Hullinger TG, Somerman MJ. Bone morphogenetic proteins secreted by breast cancer cells upregulate bone sialoprotein expression in preosteoblast cells. Exp Cell Res. Nov 1 2000:260(2):324-333.
    144. Sigurdsson TJ, Fu E, Tatakis DN, Rohrer MD, Wikesjo UM. Bone morphogenetic protein-2 for peri-implant bone regeneration and osseointegration. Clin Oral Implants Res. Oct 1997;8(5):367-374.
    145. Higuchi T, Kinoshita A, Takahashi K, Oda S, Ishikawa I. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling. J Periodontol. Sep 1999;70(9):1026-1031.
    146. Sykaras N, Triplett RG, Nunn ME, Iacopino AM, Opperman LA. Effect of recombinant human bone morphogenetic protein-2 on bone regeneration and osseointegration of dental implants. Clin Oral Implants Res. Aug 2001;12(4):339-349.
    147. Fiorellini JP, Buser D. Riley E, Howell TH. Effect on bone healing of bone morphogenetic protein placed in combination with endosseous implants:a pilot study in beagle dogs. lnt J Periodontics Restorative Dent. Feb 2001;21(1):41-47.
    148. Etienne O, Picart C, Taddei C, et al. Multilayer polyelectrolyte films functionalized by insertion of defensin:a new approach to protection of implants from bacterial colonization. Antimicrob Agents Chemother. Oct 2004;48(10):3662-3669.
    149. Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules. Nov-Dec 2003;4(6):1564-1571.
    150. Jewell CM, Zhang J, Fredin NJ, Lynn DM. Multilayered polyelectrolyte
    films promote the direct and localized delivery of DNA to cells. J Control Release. Aug 18 2005; 106(1-2):214-223.
    151. Jessel N, Oulad-Abdelghani M, Meyer F, et al. Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer. Proc Natl Acad Sci U S A. Jun 6 2006;103(23):8618-8621.
    152. Akagawa Y. Kubo T, Koretake K. et al. Initial bone regeneration around fenestrated implants in Beagle dogs using basic fibroblast growth factor-gelatin hydrogel complex with varying biodegradation rates. J Prosthodont Res. Jan 2009;53(1):41-47.
    153. Clarke SA, Brooks RA, Lee PT, Rushton N. The effect of osteogenic growth factors on bone growth into a ceramic filled defect around an implant. J Orthop Res. Sep 2004;22(5):1016-1024.
    154. Hayashi K, Kubo T, Doi K, Tabata Y, Akagawa Y. Development of new drug delivery system for implant bone augmentation using a basic fibroblast growth factor-gelatin hydrogel complex. Dent Mater J. Mar 2007;26(2):170-177.
    155. Cordon-Cardo C, Vlodavsky I, Haimovitz-Friedman A, Hicklin D, Fuks Z. Expression of basic fibroblast growth factor in normal human tissues. Lab Invest. Dec 1990;63(6):832-840.
    156. Rogelj S, Klagsbrun M. Atzmon R. et al. Basic fibroblast growth factor is an extracellular matrix. component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC 12 cells. J CellBiol. Aug 1989; 109(2):823-831.
    157. Torelli S, Dell'Era P, Ennas MG, et al. Basic fibroblast growth factor in neuronal cultures of human fetal brain. J Neurosci Res. Sep 1990;27(1):78-83.
    158. Vlodavsky I. Fuks Z, Ishai-Michaeli R, et al. Extracellular matrix-resident basic fibroblast growth factor:implication for the control of angiogenesis. J Cell Biochem. Feb 1991;45(2):167-176.
    159. Bolander ME. Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med.Jun 1992:200(2):165-170.
    160. Elford PR, Lamberts SW. Contrasting modulation by transforming growth factor-beta-1 of insulin-like growth factor-I production in osteoblasts and chondrocytes. Endocrinology. Oct 1990; 127(4):1635-1639.
    161. Leunig M, Yuan F, Gerweck LE, Jain RK. Effect of basic fibroblast growth factor on angiogenesis and growth of isografted bone:quantitative in vitro-in vivo analysis in mice. Int J Microcirc Clin Exp. Jan-Feb 1997;17(1):1-9.
    162. Wang JS. Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants. Acta Orthop Scand Suppl. Apr 1996:269:1-33.
    163. Bao LY, Jin Y, Shi JN, Niu ZY, Wang P, Wang HG. [Tissue engineering of dentin-pulp complex-like structures by human dental mesenchymal cells]. Zhonghua Kou Qiang Yi Xue Za Zhi. Sep 2005;40(5):408-411.
    164. Li Y, Lee IS, Cui FZ, Choi SH. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials. May 2008;29(13):2025-2032.
    165. Haynes LW. Fibroblast (heparin-binding) growing factors in neuronal development and repair. Mol Neurobiol. Winter 1988;2(4):263-289.
    166. Olson L. Grafts and growth factors in CNS. Basic science with clinical promise. Stereotact Funct Neurosurg.1990;54-55:250-267.
    167. Edelman ER, Nugent MA, Smith-LT, Karnovsky MJ. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest. Feb 1992;89(2):465-473.
    168. Eppley BL, Doucet M, Connolly DT, Feder J. Enhancement of angiogenesis by bFGF in mandibular bone graft healing in the rabbit. J Oral Maxillofac Surg. May 1988;46(5):391-398.
    169. Presta M, Statuto M, Rusnati M, Dell'Era P, Ragnotti G. Characterization of a Mr 25,000 basic fibroblast growth factor form in adult, regenerating, and fetal rat liver. Biochem Biophys Res Commun. Nov 15 1989;164(3):1182-1189.
    170. Pei XW, Wang KZ, Song JH, Wang Q, Shi ZB, Gao DF. [Arnebia root oil promotes histological change and up-regulates bFGF and it's mRNA expression in the raw surface of the rabbits]. Zhongguo Zhong Yao Za Zhi. Feb 2006;31(4):336-339.
    171. Fukuda A, Kato K, Hasegawa M, et al. Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials. Jul 2005;26(20):4301-4308.
    172. Miyakoshi N, Kobayashi M, Nozaka K, Okada K, Shimada Y, Itoi E. Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits. Arch Orthop Trauma Surg. Dec 2005:125(10):683-692.
    173. Siebert CH, Miltner O, Weber M, Sopka S, Koch S, Niedhart C. Healing of osteochondral grafts in an ovine model under the influence of bFGF. Arthroscopy. Feb 2003; 19(2):182-187.
    174.李卫国 吴,蒋立坚,艾虹.bFGF复合生物活性玻璃修复即刻种植体周骨缺损的实验研究.广东医学.2008;28(11):1793-1795.
    175. Hanada K, Dennis JE, Caplan AI. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res. Oct 1997; 12(10):1606-1614.
    176. Varkey M, Kucharski C,Haque T, Sebald W, Uludag H. In vitro osteogenic response of rat bone marrow cells to bFGF and BMP-2 treatments. Clin Orthop Relat Res. Feb 2006:443:113-123.
    177.李博 张,永刚,张莉,赵斌,等.骨形态发生蛋白和碱性成纤维细胞生长因子激发纤维环细胞成骨的潜能. 脊柱外科杂志2008;6(3):161-164.
    179.郑军.HA/TcP复合BMP及bFGF在体内成骨能力及对骨缺损修复的实验研究.南京:外科学,东南大学;2005.
    179.王明.定量缓释rhBMP-2、rbFGF促进免下颌牵张成骨的实验研究.广州:口腔颌面外科,中山大学;2006.
    180. Smadja DM, Bieche I, Silvestre JS, et al. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol. Dec 2008;28(12):2137-2143.
    181. Springer IN, Niehoff P, Acil Y, et al. B.MP-2 and bFGF in an irradiated bone model. J Craniomaxillofac Surg. Jun 2008;36(4):210-217.
    182. Power RA, Iwaniec UT, Wronski TJ. Changes in gene expression associated with the bone anabolic effects of basic fibroblast growth factor in aged ovariectomized rats. Bone. Jul 2002;31(1):143-148.
    183. Wang L, Huang Y, Pan K, Jiang X. Liu C. Osteogenic responses to different concentrations/ratios of BMP-2 and bFGF in bone formation. Ann Biomed Eng. Jan;38(1):77-87.
    1. Branemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl.1977;16:1-132.
    2. Albrektsson T, Wennerberg A. Oral implant surfaces:Part 1--review focusing on topographic and chemical. properties of different surfaces and in vivo responses to them. Int. J Prosthodont. Sep-Oct 2004;17(5):536-543.
    3. Esposito M, Coulthard P, Thomsen P, Worthington HV. The role of implant surface modifications, shape and material on the success of osseointegrated dental implants. A Cochrane systematic review. Eur J Prosthodont Restor Dent. Mar2005;13(1):15-31.
    4. Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am. Jul 2006;50(3):323-338, v.
    5. Stanford CM, Keller JC, Solursh M. Bone cell expression on titanium surfaces is altered by sterilization treatments. J Dent Res. May 1994;73(5):1061-1071.
    6. Groessner-Schreiber B, Tuan RS. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J Cell Sci. Jan1992;101(Pt1):209-217.
    7. Grossner-Schreiber B, Tuan RS. [The influence of the titanium implant surface on the process of osseointegration]. Dtsch Zahnarztl Z. Oct 1991;46(10):691-693.
    8. Yang Y, Ong JL, Tian J. Deposition of highly adhesive ZrO(2) coating on Ti and CoCrMo implant materials using plasma spraying. Biomaterials. Feb 2003;24(4):619-627.
    9. Lavos-Valereto IC, Wolynec S, Deboni MC, Konig B, Jr. In vitro and in vivo biocompatibility testing of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating. J Biomed Mater Res.2001;58(6):727-733.
    10. Kajiwara H, Yamaza T, Yoshinari M, et al. The bisphosphonate pamidronate on the surface of titanium stimulates bone formation around tibial implants in rats. Biomaterials. Feb 2005;26(6):581-587.
    11. Wehrbein H, Merz BR, Hammerle CH, Lang NP. Bone-to-implant contact of orthodontic implants in humans subjected to horizontal loading. Clin Oral Implants Res. Oct 1998;9(5):348-353.
    12. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface:a histometric study in the canine mandible. J Biomed Mater Res. Apr 1998:40(1):1-11.
    13. Buser D, Nydegger T, Hirt HP, Cochran DL, Nolte LP. Removal torque values of titanium implants in the maxilla of miniature pigs. Int J Oral Maxillofac Implants. Sep-Oct 1998;13(5):611-619.
    14. Lamolle SF, Monjo M, Rubert M, Haugen HJ, Lyngstadaas SP, Ellingsen JE. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials. Feb 2009;30(5):736-742.
    15. Tamilselvi S, Raghavendran HB, Srinivasan P, Rajendran N. In vitro and in vivo studies of alkali-and heat-treated Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys for orthopedic implants. J Biomed Mater Res A. Aug 2009;90(2):380-386.
    16. Yang XF, Chen Y, Yang F, He FM, Zhao SF. Enhanced initial adhesion of osteoblast-like cells on an anatase-structured titania surface formed by H2O2/HCl solution and heat treatment. Dent Mater. Apr 2009;25(4):473-480.
    17. Yang GL, He FM, Zhao SS, Wang XX, Zhao SF. Effect of H2O2/HCl heat treatment of implants on in vivo peri-implant bone formation. Int J Oral Maxillofac Implants. Nov-Dec 2008;23(6):1020-1028.
    18. Nishimura K. [Effect of extracellular matrix and serum components on cellular adhesion and growth in vitro and in vivo]. Nichidai Koko Kagaku. Jun 1990;16(2):237-260.
    19. Schliephake H, Scharnweber D, Dard M, et al. Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. An experimental pilot study in dogs. Clin Oral Implants Res. Jun 2002;13(3):312-319.
    20. Le Guillou-Buffello D, Bareille R, Gindre M, Sewing A, Laugier P, Amedee J. Additive effect of RGD coating to functionalized titanium surfaces on human osteoprogenitor cell adhesion and spreading. Tissue Eng Part A. Aug 2008;14(8):1445-1455.
    21. Liu Y, de Groot K, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. May2005;36(5):745-757.
    22. Ohtsuki C, Iida H, Hayakawa S, Osaka A. Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res. Apr 1997;35(1):39-47.
    23. Wissink MJ, Beernink R, Scharenborg NM, et al. Endothelial cell seeding of (heparinized) collagen matrices:effects of bFGF pre-loading on proliferation (after low density seeding) and pro-coagulant factors. J Control Release. Jul 3 2000;67(2-3):141-155.
    24. Park SN, Park JC, Kim HO, Song MJ. Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. Feb 2002;23(4):1205-1212.
    25. GDecher. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science.1991:277:1232-1237.
    26. Mao Z, Ma L, Zhou J, Gao C, Shen J. Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjug Chem. Sep-Oct 2005;16(5):1316-1322.
    27. Constantine CA, Mello SV, Dupont A, et al. Layer-by-layer self-assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J Am Chem Soc. Feb 19 2003;125(7):1805-1809.
    28. Zhong Y, Li B, Haynie DT. Fine tuning of physical properties of designed polypeptide multilayer films by control of pH. Biotechnol Prog. Jan-Feb 2006;22(1):126-132.
    29. Ren K, Ji J, Shen J. Tunable DNA release from cross-linked ultrathin DNA/PLL multilayered films. Bioconjug Chem. Jan-Feb 2006;17(1):77-83.
    30. Cai K, Wang Y. Polysaccharide surface engineering of poly(D, L-lactic acid) via electrostatic self-assembly technique and its effects on osteoblast growth behaviours. J Mater Sci Mater Med. Oct 2006; 17(10):929-935.
    31. Kirchhof K, Hristova K, Krasteva N, Altankov G, Groth T. Multilayer coatings on biomaterials for control of MG-63 osteoblast adhesion and growth. J Mater Sci Mater Med. Apr 2009;20(4):897-907.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700