原子、离子光电离过程的R-矩阵理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子和离子的光电离是光与原子相互作用的主要过程之一。研究原子的光电离过程有助于了解原子中的电子关联和相对论效应。光电离截面以及与之相关的一些物理量(共振位置、宽度、振子强度)在天体物理、等离子体物理、大气科学、辐射物理和化学等学科都具有很强的应用需求。
     本文利用R-矩阵方法对部分原子和离子的价壳层、内壳层光电离过程进行了较详细的研究。具体来说,本文的主要内容如下:
     1.由于已有的一些关于类Be和类B离子的光电离截面的理论计算结果与最新的实验结果之间存在较大的差异,本文使用R-矩阵方法在LS耦合下计算了类Be的N~(3+)和O~(4+)离子的基态1s~22s~2 ~1S和激发态1s~22s2p ~3P°的电离阈值附近的光电离截面。通过分光电离截面,指出实验结果对个别共振峰的辨认是错误的。通过光电离截面我们得到了里德堡系列2pnp~3D、~3S、2pnd ~1P°的共振能量。同时我们使用R-矩阵方法对类B的N~(2+)、O~(3+)和F~(4+)离子基态2s~22p ~2P°和激发态2s2p~2 ~4P的价壳层光电离过程进行了较详细的研究。在我们计算的激发态光电离截面中发现了2p~2(~3P)np ~4D°、~4P°里德堡共振系列。对个别实验中未能辨认的共振给出了正确的标记。本文计算的结果和已有的理论和实验结果进行了比较。相对已有的理论计算结果而言,本文的计算结果有了一定的改进,本文计算得到的共振结构和位置与最新的实验符合得更好。
     2.使用R-矩阵方法计算了Be原子基态1s~22s~2 ~1S的光电离截面。通过光电离截面得到了K壳层跃迁1s(2s2p ~1P3s)~1P°、1s(2s2p ~3Pns)~1P°(n=5-12)和1s(2s2p ~3Pnd)~1P°(n=5,6)系列的共振能量,本文的结果和最新的实验结果符合得很好。
     3.使用R-矩阵方法对C~+离子基态1s~22s~22p ~2P°和激发态1s~22s2p~2 ~4P、~2D、~2P、~2S、1s~22p~3~4S°的K壳层光电离进行了28-态的密耦计算。由光电离截面所展现的共振结构,我们得到了C~+离子1s-2p跃迁的共振能量、宽度和振子强度等参数。计算得到的共振能量与已有的其它实验和理论结果符合得很好,但是共振宽度与其它结果仍然存在一些差别。这些数据对分析等离子体光谱会有所帮助。
     4.分别利用非相对论和相对论R-矩阵方法详细计算了Mg原子基态2p~63s~2 ~1S_0的光电离截面。目前的结果表明,即使对于中Z素,相对论效应(主要为自旋-轨道相互作用)也是非常重要的。与非相对论计算结果相比,相对论效应(能级分裂)导致光电离截面中展示了更多的共振结构。在我们的计算中发现了5个自电离里德堡系列:3pns ~1P、3pnd ~1P、3pns~3P、3pnd ~3D、3pnd ~3P,其中3pnd ~3P系列为第一次研究发现。通过拟合共振峰我们也得到了这些共振的位置和宽度,结果与最新的实验结果符合得非常好。
Photoionization is the one of the main process when photon interacts with atoms and ions. Studying photoionization of atomic systems provides the opportunity to investigate the dynamic interplay among many-body electron-electron correlations and relativistic effects. The data on the cross sections or related quantities for photoionization processes are eagerly needed in many fields of application such as astrophysics, atmospheric science, plasma science, radiation physics and chemistry, etc.
     The photoionization of atoms and ions are studied theoretically by using the R-matrix method in this thesis. The following is the main contents of the present thesis:
     1. There exist notable discrepancies with regard to the resonance structures when compared previous theoretical calculations with recent absolute experimental measurements for some Be-like and B-like ions. The photoionization cross section of Be-like ions N~(3+) and O~(4+) from the ground state 2s~2 ~1S and excited state 2s2p ~3P°near the thresholds range are calculated using the R-matrix method. The resonance energies of 2pnp ~3D,~3S and 2pnd ~1P°Rydberg states are determined by analyzing the resonance structures of the photoionization cross sections. Detailed calculations are also performed on the photoionizations of the ground state 2s~22p ~2P°and excited state 2s2p~2 ~4P of B-like ions N~(2+), O~(3+) and F~(4+). In photoionization cross sections of B-like ions we find resonances 2p~2(~3P)np ~4D°,~4P°for the first time. Our results show a good improvement in comparison with previous theoretical results.
     2. 25-state close-coupling calculations using the R-matrix method are carried out for the photoionization cross section of the ground state of Be atoms. The resonance energies of series 1s(2s2p ~1P3s)~1P°, 1s(2s2p ~3Pns) ~1P°(n=5-I2) and 1s(2s2p ~3Pnd)~1P°(n=5,6) are obtained from the photoionization cross sections. Present values are higher no more than 0.15 eV when compared with experimental results.
     3. Detailed 28-state close-coupling calculations based on an R-matrix formalism have been carried out to investigate the K-shell photoionization cross sections from the states 1s~2s~22p ~2P°, 1s~22s2p~2 ~4P,~2D,~2P,~2S and 1s~22p~3 ~4S°of B-like CⅡions. Emphasis is laid on analyzing the 1s—2p resonances and on obtaining the resonance energies, widths of the core-excited states and the oscillator strengths of the 1s—2p transitions. The calculated resonance energies, autoionization widths are compared with existing experimental and theoretical results. Rather good agreement is found between our results and other experimental and theoretical results, but for autoionization widths there remain some differences. The present numerical values may help the analysis of astrophysical and laboratory plasmas.
     4. The photoionization cross section of the ground level (3s~2 ~1S_0) of atomic magnesium has been studied theoretically in the energy region between the Mg~+(3s) and Mg~+(3p) threshold using both the relativistic and nonrelativistic R-matrix method. Our results show that even for the intermediate-Z elements, the relativistic effects (mainly the spinorbit interactions) should not be neglected. The relativistic effects result in more extensive resonance structures due to many more coupled channels and different positions of resonances. The positions and widths of resonances have also been obtained and compared with a recent experiment. Excellent agreement is shown between our relativistic calculations and experimental measurements. In the present calculations, five Rydberg series of doubly excited states have been exhibited, i.e., 3pns ~1P, 3pnd ~1P, 3pns ~3P, 3pnd ~3D and 3pnd ~3P, where the 3pnd ~3P are found as the new fifth series.
引文
[1] S.J. Buckman, J.W. Cooper, M.T. Elford, M. Inokuti, Y. Itikawa and H. Tawara, Photon and Electron Interactions with Atoms, Molecules and Ions, Edited by Y.Itikawa, Springer-Verlag Berlin Heidelberg (2000)
    [2] M. Protopapas, C. H. Keitel and P. L. Knight, Atomic physics with super-high intensity lasers, Rep. Prog. Phys., 60 389 (1997)
    [3] J. S. Briggs and V. Schmidt, Differential cross sections for photo-double-ionization of the helium atom, J. Phys. B, 33 R1 (2000)
    [4] E. Lindroth and J.L. Sanz-Vicario, Photodetachment of few-electron negative ions, Radiation Physics and Chemistry, 70 387 (2004)
    [5] V. K. Ivanov, Theoretical studies of photodetachment, Radiation Physics and Chemistry, 70 345 (2004)
    [6] T. Andersen, Atomic negative ions: structure, dynamics and collisions, Atomic negative ions: structure, dynamics and collisions, Physics Reports-Review Section of Physics Letters, 394 157 (2004)
    [7] D. J. Pegg, Structure and dynamics of negative ions, Reports on Progress in Physics, 67 857 (2004)
    [8] V. K. Ivanov and P. I. Yatsyshin, Resonances in the cross section of photodetachment of 2p electrons from negative ions Na-, Technical physics, 54 7 (2009)
    [9] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (London: Academic) (1957)
    [10] J. A. R. Samson, Angular distribution of photoelectrons, J. Opt. Soc. Am., 59 356 (1969)
    [11] V. Schmidt, Angular distribution of photoelectrons after photoionization by elliptically polarized light, Physics Letters A, 45 63 (1973)
    [12] T. E. H. Walker and J. T. Waber, Angular Distribution of Photoelectrons from Relativistic Wave Functions, Phys. Rev. Lett, 30 307 (1973)
    [13] J. A. R. Samson and A. F. Starace, Effect of elliptically polarized light on the angular distribution of photoelectrons, J. Phys. B, 8 1806 (1975), J. Phys. B 12 3993 (1979)
    [14] U. Fano, Spin Orientation of Photoelectrons Ejected by Circularly Polarized Light, Phys. Rev., 178 131 (1969)
    [15] B. Brehm, Angular distribution of low energy photoelectrons with defined spin orientation, Z. Phys., 242 195 (1971)
    [16] N. A. Cherepkov, Angular distribution and spin orientation of photoelectrons ejected by circularly polarized light, Phys. Lett, 40A 119 (1972)
    [17] V. L. Jacobs, Photoionization of atoms using synchrotron radiation, J. Phys. B, 5 2257 (1972)
    [18] R. H. Pratt, A. Ron and H. K. Tseng, Atomic Photoelectric Effect Above 10 keV,Rev. Mod. Phys., 45 273 (1973)
    [19] C. M. Lee, Spin polarization and angular distribution of photoelectrons in the Jacob-Wick helicity formalism. Application to autoionization resonances, Phys. Rev. A, 10 1598 (1974)
    [20] N. A. Cherepkov, Spin polarization of atomic and molecular photoelectrons, Adv. At.Mol. Phys., 19 395 (1983)
    [21] N. A. Cherepkov, On the identification of autoionisation resonances, J. Phys. B, 13 L181 (1980)
    [22] N. Chandra, Angular-momentum-transfer formalism for spin-polarized atomic photoelectrons, Phys. Rev., 42 4050 (1990)
    [23] H. A. Kramers, On the theory of X-ray absorption and the continuous X-ray spectrum,Phil.Mag, 46 836 (1923)
    [24] P. Altick and A. E. Glassgold, Correlation Effects in Atomic Structure Using the Random-Phase Approximation, Phys. Rev. A, 133 632 (1964)
    [25] M. Ya. Amusia and N. A. Cherepkov, Many-electron correlations in scattering processes, Case Stud. At. Phys., 5 47 (1975)
    [26] H. Kjeldsen, P. Andersen, F. Folkmann, H. Knudsen, B. Kristensen, J. B. West and T.Andersen, Absolute photoionization cross sections of I~+ and I~(2+) in the 4d ionization region, Phys. Rev. A, 62 020702(R) (2000a)
    [27] K-N. Huang, W. R. Johnson and K. T. Cheng, Theoretical photoionization parameters for the noble gases argon, krypton, and xenon, At. Data Nucl. Data Tables, 26 33(1981)
    [28] J.-P. Mosnier, M. H. Sayyad, E. T. Kennedy, J.-M. Bizau, D. Cubaynes, F. J. Wuilleumier, J.-P. Champeaux, C. Blancard, R. Hari Varma, T. Banerjee, P. C. Deshmukh, S.T. Manson, Absolute photoionization cross sections and resonance structure of doubly ionized silicon in the region of the 2p~(-1) threshold: Experiment and theory, Phys. Rev. A, 68 052712 (2003)
    [29] H. P. Kelly, Correlation Effects in Atoms, Phys. Rev., 131 684 (1963)
    [30] H. P. Kelly, Many-Body Perturbation Theory Applied to Atoms, Phys. Rev., 136 B896 (1964)
    [31] H. P. Kelly, Many-Body Perturbation Theory Applied to Open-Shell Atoms, Phys. Rev., 144 39 (1966)
    [32] H. P. Kelly, Many-Body Perturbation Theory Applied to Molecules, Phys. Rev. Lett., 23 455 (1969)
    [33] H. P. Kelly, Many body calculations of photoionization cross sections, Phys. Scr. T, 17 109 (1987)
    [22] T. N. Chang and R. T. Poe, Double photoionization of neon, Phys. Rev. A, 12 1432 (1975)
    [35] S. L. Carter and H. P. Kelly, Double photoionization of helium, Phys. Rev. A, 24 170(1981)
    [36] W. R. Johnson and J. Sapirstein, Relativistic many-body perturbation theory applied to n=2 triplet states of heliumlike ions, Phys. Rev. A, 46 R2197 (1992)
    [37] V.K. Ivanov, Many-body effects in negative ion photodetachment, J. Phys. B, 32 R67(1999)
    [38] M. J. Seaton, The Quantum Defect Method, Mon. Not. R. Astron. Soc., 118 504(1958)
    [39] M. J. Seaton, Quantum defect theory Ⅰ. General formulation, Proc. Phys. Soc., 88 801(1966)
    [40] M. J. Seaton, Quantum defect theory Ⅱ . Illustrative one-channel and two-channel problems, Proc. Phys. Soc., 88 815 (1966)
    [41] M. Aymar, C. H. Greene and E. Luc-Koenig, Multichannel Rydberg spectroscopy of complex atoms, Rev. Mod. Phys., 68 1015 (1996)
    [42] P. G. Burke and W.D. Robb, The R-matrix theory of atomic processes, Adv. At. Mol. Phys., 11 143 (1975)
    [43] P. G. Burke and K. T. Taylor, R-matrix theory of photoionization. Application to neon and argon, J. Phys. B, 8 2620 (1975)
    [44] C. F. Fischer, The MCHF atomic-structure package, Comput. Phys. Commun., 128 635 (2000)
    [45] H. P. Saha, Multiconfiguration Hartree-Fock calculation of the photoionization of the Cs 7d excited state, Phys. Rev. A, 41 174 (1990)
    [46] H. P. Saha, Theoretical studies of the K-shell Auger spectrum of atomic oxygen, Phys. Rev. A, 49 894 (1994)
    [47] H. P. Saha and Dong Lin, Theoretical study of the valence and core photoionization of a three-electron system from lithium to neon, J. Phys. B, 30 1651 (1997)
    [48] H. P. Saha, Photoelectron angular distribution of 3s photoionization of atomic chlorine, Phys. Rev. A, 66 010702 (2002)
    [49] H. P. Saha, MCHF studies of atomic photoionization: autoionization resonances in the partial photoionization cross sections of atomic fluorine, Radiation Physics and Chemistry, 70 267 (2004)
    [50] H. P. Saha, MCHF studies of partial photoionization cross section of atomic fluorine, J. Phys. B, 39 1209 (2006)
    [51] K. Nuroh, M. J. Stott and E. Zaremba, Calculation of the 4d Subshell Photoabsorption Spectra of Ba, Ba~+, and Ba~(++), Phys. Rev. Lett., 49 862 (1982)
    [52] K. T. Chung, Resonances in atomic photoionization, Radiation Physics and Chemistry, 70 83 (2004)
    [53] T. N. Chang, T. K. Fang, Multiple excitation in photoionization using B-splines, Radiation Physics and Chemistry, 70 173 (2004)
    [54] T. K. Fang and T. N. Chang, Doubly excited resonance structures in He photoionization from 1s2s ~(1,3)S metastable states, Phys. Rev. A, 56 1650 (1997)
    [55] T. K. Fang, B. II . Nam, Y. S. Kim and T. N. Chang, Resonant structures of overlapping doubly excited autoionization series in photoionization of Mg-like Al~+ and Si~(2+) ions, Phys. Rev. A, 55 433 (1997)
    [56] T. K. Fang and T. N. Chang, B-spline-based multichannel K-matrix method for atomic photoionization, Phys. Rev. A, 61 062704 (2000)
    [57] 桑萃萃,万建杰,董晨钟,丁晓彬,蒋军,锂原子光电离过程中的驰豫效应,物理学报,57 2152(2008)
    [58] J. J. Wan, C. Z. Dong, C. C. Sang, X. B. Ding, L. Y. Xie and J. Jiang, Theoretical studies on photoionization of Na-like iron ion, Journal of Physics: Conference Series, 58 367 (2007)
    [59] H. L. Zhang, Relativistic calculations of photoionization cross sections, Phys. Rev. A, 57 2640 (1998)
    [60] B. Sonntag, A survey on the experimental developments in atomic photoionization, J. Phys. Collogues, 48 C9-439 (1987)
    [61] G. V. Marr, J. B. West, Absolute photoionisation cross-section tables for helium, neonargon, and krypton in the VUV spectral regions, At. Data Nucl. Data Tables, 18 497 (1976)
    [62] J. B. West and J. Morton, Absolute Photoionization-Cross Section Tables for Xenon in the VUV and the Soft X-Ray Regions, At. Data Nucl. Data Tables, 22 103 (1978)
    [63] W. F. Chan, G. Cooper, X. Guo, G. R. Burton and C. E. Brion, Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution.Ⅲ . The photoabsorption of argon, krypton, and xenon, Phys. Rev. A, 46 149 (1992)
    [64] I. C. Lyon, B. Peart, J. B. West and K. Dolder, Measurements of absolute cross sections for the photoionisation of Ba~+ ions, J. Phys. B, 19 4137 (1986)
    [65] I. C. Lyon, B. Peart, K. Dolder and J. B. West, Measurements of absolute photoionisation cross sections of Ca~+ ions, J. Phys. B, 20 1471 (1987)
    [66] I. C. Lyon, B. Peart and K. Dolder, Measurements of absolute photoionisation cross sections of Sr~+ ions, J. Phys. B, 20 1925 (1987)
    [67] B. Peart and I. C. Lyon, Measurements of absolute photoionisation cross sections of K~+ ions, J. Phys. B, 20 L673 (1987)
    [68] B. Peart, I. C. Lyon and K. Dolder, Measurements of absolute photoionisation cross sections of Ga~+ and Zn~+ ions, J. Phys. B, 20 5403 (1987)
    [69] H. Kjeldsen, F. Folkmann, J. Elp, H. Knudsen, J. B. West and T. Andersen, Absolute measurements of photoionization cross-sections for ions, Nuclear Instruments and Methods in Physics Research B, 234 349 (2005)
    [70] H. Kjeldsen, Photoionization cross sections of atomic ions from merged-beam experimentsm, J. Phys. B, 39 R325 (2006)
    [71] G. Miecznik, K. A. Berrington, P. G. Burke and A. Hibbert, Photoionization of the ground state of singly ionized calcium, J. Phys. B, 23 3305 (1990)
    [72] V. K. Ivanov and J. B. West, The photoionization cross sections of the 4s, 3p and 3s subshells of Ca~+, J. Phys. B, 26 2099 (1993)
    [73] A. Hibbert and J. E. Hansen, Calculations of inner-shell excitations in Ca~+, J. Phys. B, 32 4133 (1999)
    [74] G. Mehlman-Balloffet and J. M. Esteva, Far-Ultraviolet Absorption Spectra with Auto-Ionized Levels of Beryllium and Magnesium, Astrophys. J., 157 945 (1969)
    [75] P. K. Carroll and J. Costello, Giant-Dipole-Resonance Absorption in Atomic Thorium by a Novel Two-Laser Technique, Phys. Rev. Lett., 57 1581 (1986)
    [76] J. B. West, Photoionization of atomic ions, J. Phys. B, 34 R45 (2001)
    [77] J. B. West, Photoionization cross sections of atomic ions, Journal of Electron Spectroscopy and Related Phenomena, 123 247 (2002)
    [78] J. B. West, Photoionization cross sections of atomic ions, Radiation Physics and Chemistry, 70 275 (2004)
    [79] V. Schmidt,Photoionization of atoms using synchrotron radiation, Rep. Prog. Phys., 55 1483 (1992)
    [80] J. R. Oppenheimer, On the Quantum Theory of the Capture of Electrons, Phys. Rev., 31 349 (1928)
    [81] M. Stobbe, Zur Quantenmechanik photoelektrischer Prozesse, Ann. Phys., 7 661 (1930)
    [82] L. H. Andersen, J. Bolko and P. Kvistgaard, Radiative recombination between fully stripped ions and free electrons, Phys. Rev. Lett., 64 729 (1990)
    [83] L. H. Andersen and J. Bolko, Radiative recombination between fully stripped ions and free electrons, Phys. Rev. A, 42 1184 (1990)
    [84] L. H. Andersen and J. Bolko, Radiative recombination measurements with H- and Li-like ions, J. Phys. B, 23 3167 (1990)
    [85] M(?)ller, S. Schennach, M. Wagner, J. Haselbauer, O. Uwira, W. Spies, E. Jennewein, R. Becker, M. Kleinod, U. Probstel, N. Angert, J. Klabunde, P. H. Mokler, P. Sp(?)dtke and B. Wolf, Recombination of Free Electrons with Ions, Phys. Scr., T37 62 (1991)
    [86] U. Schramm, J. Berger, M. Grieser, D. Habs, E. Jaeschke, G. Kilgus, D. Schwalm, A. Wolf, R. Neumann and R. Schuch, Observation of laser-induced recombination in merged electron and proton beams, Phys. Rev. Lett., 67 22 (1991)
    [87] F. B. Yousif, P. Van der Donk, Z. Kucherovsky, J. Reis, E. Brannen, and J. B. A. Mitchell, Experimental observation of laser-stimulated radiative recombination, Phys. Rev. Lett., 67 26 (1991)
    [88] M. J. Seaton, Atomic data for opacity calculations. Ⅰ. General description, J. Phys. B, 20 6363 (1987)
    [89] http://cdsweb.u-strasbg.fr/topbase/topbase.html
    [90] S. N. Nahar and A. K. Pradhan, Unified treatment of electron-ion recombination in the close-coupling approximation, Phys. Rev. A, 49 1816 (1994)
    [91] D. G. Hummer, K. A. Berrington, W. Eissner, A. K. Pradhan, H. E. Saraph, J. A. Tully, Atomic data from the IRON Project. 1: Goals and methods, Astron. Astrophys.,279 298 (1993)
    [92] http://www.astronomy.ohio-state.edu/ pradhan/ip.html
    [93] K. A. Berrington, The RmaX Network: R-matrix calculations for X-ray atomic processes, http://heasarc.gsfc.nasa.gov/docs/heasarc/atomic/(2000)
    [94] http://www.camdb.ac.cn/db/
    [95] 刘建胜,李儒新,徐至展,刘晶儒,碳、氮原子内壳层光电离X射线激光的理论探讨,光学学报,21 706(2001)
    [96] M. A. Duguay and P. M. Rentzepis, Some approaches to vacuum uv and X-ray lasers, Appl. Phys. Lett., 10 350 (1967)
    [1] E. P. Wigner, Resonance Reactions and Anomalous Scattering, Phys. Rev., 70 15(1946)
    [2] E. P. Wigner, Resonance Reactions, Phys. Rev., 70 606 (1946)
    [3] E. P. Wigner and L. Eisenbud, Higher Angular Momenta and Long Range Interaction in Resonance Reactions, Phys. Rev., 72 29 (1947)
    [4] P. G. Burke, A. Hibbert and W. D. Robb, Electron scattering by complex atoms, J. Phys. B, 4 153 (1971)
    [5] P. G. Burke and K. A. Berrington, Atomic and Molecular Processes: an R-matrix Approach (Bristol, UK: Institute of Physics Publishing) (1993)
    [6] C. E. Hudson, C. A. Ramsbottom, P. H. Norrington and M. P. Scott, Breit-Pauli Rmatrix calculation of fine-structure effective collision strengths for the electron impact excitation of Mg V, Astronomy. Astrophysics, 494 729 (2009)
    [7] C. E. Hudson, Breit-Pauli R-matrix calculation for fine structure effective collision strengths from electron impact excitation of Mg IX, Astronomy. Astrophysics, 493 697 (2009)
    [8] K. Butler and N. R. Badnell, Atomic data from the IRON project - LXVI. Electron impact excitation of Fe~(18+), Astronomy. Astrophysics, 489 1369 (2008)
    [9] S. Kaur, K. L. Baluja and J. Tennyson, Electron-impact study of NeF using the Rmatrix method, Phys. Rev. A, 77 032718 (2008)
    [10] A. M. Sossah,H. L. Zhou and S.T. Manson, Photoionization of doubly-charged scandium ions, Phys. Rev. A, 78 053405 (2008)
    [11] J. Tennyson, Fully vibrationally resolved photoionisation of H_2 and D_2, J. Phys. B, 20 L375 (1987)
    [12] M. Fogle, E. M. Bahati, M. E. Bannister, C. R. Vane, S. D. Loch, M .S. Pindzola, C. P. Ballance, R. D. Thomas, V. Zhaunerchyk, P. Bryans, W. Mitthumsiri and D. W. Savin, Electron-impact ionization of Be-like CIII , NIV, and OV, Astrophysical journal supplement series, 175 543 (2008)
    [13] E. Clementi and C. Roetti, Roothaan-Hartree-Fock Atomic Wavefunctions: Basis Functions and Their Coefficients for Ground and Certain Excited States of Neutral and Ionized Atoms, Z≤54, At. Data Nucl. Data Tables, 14 177 (1974)
    [14] A. Hibbert, CIV3- A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths, Comput. Phys. Commun., 9 141(1975)
    [15] W. Eissner, M. Jones and H. Nussbaumer, Techniques for the calculation of atomic structures and radiative data including relativistic corrections, Comput. Phys. Com- mun., 8 270 (1974)
    [16] J. C. Green and P. Decleva, Photoionization cross-sections: a guide to electronic structure, Coordination Chemistry Reviews, 249 209 (2005)
    [17] J. W. Cooper, Interaction of maxima in absorption of soft x rays, Phys. Rev. Lett., 13 762 (1964)
    [18] K. T. Chung, Resonances in atomic photoionization, Radiation Physics and Chemistry, 70 83 (2004)
    [19] N. S. Scott and P. G. Burke, Electron scattering by atoms and ions using the Breit-Pauli Hamiltonian: an R-matrix approach, J. Phys. B, 13 4299 (1980)
    [20] N. S. Scott, K. T. Taylor, A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method, Comput. Phys. Commun., 25 347 (1982)
    [21] K. A. Berrington, W. B. Eissnerb and P. H. Norrington, RMATRX1: Belfast atomic R-matrix codes, Comput. Phys. Commun., 92 290 (1995)
    [22] J. J. Chang, The R-matrix theory of electron-atom scattering using the Dirac Hamiltonian, J. Phys. B, 8 2327 (1975)
    [23] J. J. Chang, Relativistic R-matrix theory of photoionisation: application to neon, J. Phys. B, 10 3195 (1977)
    [24] P. H. Norrington and I. P. Grant, Electron scattering from Ne Ⅱ using the relativistic R-matrix method, J. Phys. B, 14 L261 (1981)
    [25] http://web.am.qub.ac.uk/DARC/
    [26] F. A. Parpia, C. F. Fischer and I. P. Grant, GRASP92: A package for large-scale relativistic atomic structure calculations, Comput. Phys. Commun., 94 249 (1996)
    [27] H. Beutler, Absorption spectra produced by the excitation of inner electrons. Ⅶ . The rubidium spectrum between 900 and 600 A. arising from the excitation of the (4p)6 shell (Rb Ib). Appendix: comparison of the x-ray absorption of the (4p)6 shell of rubidium in the solid state, with the Rb Ib spectrum, Zeit. Phys., 91 131 (1934)
    [28] U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts, Phys. Rev., 124 1866 (1961)
    [29] R. Gersbacher and J. T. Broad, Resonances in helium photoionisation, J. Phys. B, 23 365 (1990)
    [30] M. M. Tabanli, J. L. Peacher and D. H. Madison, A convenient formalism for Auger and autoionization of overlapping resonances, J. Phys. B, 36 217 (2003)
    [31] R. Wehlitz, D. V. Lukic and P. N. Juranic, Observation of a new 3s~2→3pnd double-excitation Rydberg series in ground-state magnesium, J. Phys. B, 40 2385 (2007)
    [1] M. J. Seaton, Atomic data for opacity calculations. Ⅰ. General description, J. Phys. B, 20 6363 (1987)
    [2] J. A. Tully, M. J. Seaton and K. A. Berrington, Atomic data for opacity calculations. 14. The beryllium sequence, J. Phys. B, 23 3811 (1990)
    [3] J. A. Fernley, A. Hibbert, A. E. Kingston and M. J. Seaton, Atomic data for opacity calculations: ⅩⅩⅣ. The boron-like sequence, J. Phys. B, 32 5507 (1999)
    [4] D. G. Hummer, K. A. Berrington, W. Eissner, A. K. Pradhan, H. E. Saraph and J. A. Tully, Atomic data from the IRON Project. 1: Goals and methods, Astron. Astrophys., 279 298 (1993)
    [5] S. N. Nahar and A. K. Pradhan, Electron-ion recombination rate coefficients, photoionization cross sections, and ionization fractions for astrophysically abundant elements .1. Carbon and nitrogen, ApJS, 111 339 (1997)
    [6] S. N. Nahar, Photoionization cross sections and oscillator strengths for oxygen ions: O I-O Ⅶ , Phys. Rev. A, 58 3766 (1998)
    [7] S. N. Nahar, Photoionization cross sections of O Ⅱ , OⅢ , O Ⅳ, and O Ⅴ: Benchmarking R-matrix theory and experiments, Phys. Rev. A, 69 042714 (2004)
    [8] J.-P. Champeaux, J.-M. Bizau, D. Cubaynes, C. Blancard, S. Nahar, D. Hitz, J. Bruneau and F. J. Wuilleumier, Measurements and calculations of photoionization cross sections of multiply charged ions in ground and metastable states along the isonuclear series of oxygen: O~(2+) to O~(4+), ApJS, 148 583 (2003)
    [9] J.-M. Bizau, J.-P. Champeaux, D. Cubaynes, F. J. Wuilleumier, F. Folkmann, T. S. Jacobsen, F. Penent, C. Blancard and H. Kjeldsen, Absolute cross sections for L-shell photoionization of the ions N~(2+), N~(3+), O~(3+), O~(4+), F~(3+), F~(4+) and Ne~(4+), Astron.Astrophys, 439 387 (2005)
    [10] P. G. Burke and K. A. Berrington, Atomic and Molecular Processes: an R-matrix Approach (Bristol, UK: Institute of Physics Publishing) (1993)
    [11] K. A. Berrington, P. G. Burke, K. Butler, M. J. Seaton, P. J. Storey, K. T. Taylor and Y. Yan, Atomic data for opacity calculations. Ⅱ . Computational methods, J. Phys. B, 20 6379 (1987)
    [12] K. A. Berrington, B. Werner, P. H. Norrington, RMATRX1: Belfast atomic R-matrix codes, Comput. Phys. Commun., 92 290 (1995)
    [13] E. Clementi and C. Roetti, Roothaan-Hartree-Fock Atomic Wavefunctions: Basis Functions and Their Coefficients for Ground and Certain Excited States of Neutral and Ionized Atoms, Z≤54, At. Data Nucl. Data Tables, 14 177 (1974)
    [14] A. Hibbert, CIV3- A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths, Comput. Phys. Commun., 9 141(1975)
    [15] http://physics.nist.gov/PhysRefData/contents.html
    [16] I. Murakami, U. I. Safronova, A. A. Vasilyev and T. Kato, Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates to excited states for B-like oxygen, At. Data Nucl. Data Tables, 90 1(2005)
    [1] J. L. Zeng, J. M. Yuan and Q. S. Lu, Photoionization of OⅢ low-lying states: autoionization resonance energies and widths of some ls-2p excited states, J. Phys. B, 34 2823 (2001)
    [2] J. L. Zeng, F. T. Jin, J. M. Yuan, Q. S. Lu and Y. S. Sun, Detailed-term-accounting-approximation simulation of x-ray transmission through laser-produced Al plasmas, Phys. Rev. E, 62 7251 (2000)
    [3] http://Chandra.harvard.edu/
    [4] http://sci.esa.int/xmm
    [9] P. G. Burke and K. A. Berrington, Atomic and Molecular Processes: an R-matrix Approach (Bristol, UK: Institute of Physics Publishing) (1993)
    [6] K. A. Berrington, W. Eissner and P. Norrington, RMATRX1: Belfast atomic R-matrix codes, comput. Phys. Commun., 92 290 (1995)
    [7] L. VoKy, H. E. Saraph, W. Eissner, Z. W. Liu, and H. P. Kelly, Inner-shell photoionization of beryllium, Phys. Rev. A, 46 3945 (1992)
    [8] B. Zhou and C. D. Lin, Photoionization of the beryllium atom, Phys. Rev. A, 51 1286 (1995)
    [9] H. P. Saha and C. D. Caldwell, K-shell photoionization of beryllium, Phys. Rev. A, 40 7020 (1989)
    [10] P. L. Altick, Photo-Ionization Cross Section of Beryllium near Threshold, Phys. Rev., 169 21 (1968)
    [11] C. H. Greene, Doubly excited states of the akaline-earth atoms, Phys. Rev. A, 23 661 (1981)
    [12] V. Radojevi and W. R. Johnson, Multiconfiguration Tamm-Dancoff approximation applied to photoionization of the outer shells of Be and Mg, Phys. Rev. A, 31 2991 (1985)
    [13] D. S. Kim, S. S. Tayal, H. L. Zhou, and S. T. Manson, Photoionization of atomic beryllium from the ground state, Phys. Rev. A, 61 062701 (2000).
    [14] R. Wehlitz, D. Lukic and J. B. Bluett, Resonance parameters of autoionizing Be 2pnl states, Phys. Rev. A, 68 052708 (2003)
    [15] G. Mehlman-Balloffet and J. M. Esteva, Far-Ultraviolet Absorption Spectra with Auto-Ionized Levels of Beryllium and Magnesium, Astrophys. J., 157 945 (1969)
    [16] G. Mehlman and J. M. Esteva, Autoionization Spectra of Beryllium (Be Ⅰ and be Ⅱ ) in the 110- to 140-eV Energy Range, Astrophys. J., 188 191 (1974)
    [17] E. Jannitti, P. Nicolosi, G. Tondello, Z. Yongzhen, and M. Mazzoni, Inner-shell photoabsorption spectra of the Be Ⅰand Be Ⅱ ions, Opt. Commun., 63 37 (1987)
    [18] M. O. Krause and C. D. Caldwell, Strong Correlation and Alignment near the Be 1s Photoionization Threshold, Phys. Rev. Lett, 59 2736 (1987)
    [19] C. D. Caldwell, M. G. Flemming, M. O. Krause, P. van der Meulen, C. Pan, and A. F. Starace, Near-100% production of the excited Be~+ 1s~22p ion from decay of Be 1s2s~22p,Phys. Rev. A, 41 542 (1990)
    [20] R. Wehlitz and S. B. Whitfield, Valence double photoionization of beryllium, J. Phys. B, 34 L719 (2001)
    [21] D. Lukic, J. B. Bluett, and R. Wehlitz, Unexpected Behavior of the Near-Threshold Double-Photoionization Cross Section of Beryllium, Phys. Rev. Lett, 93 023003 (2004)
    [22] Fumiko Yoshida, Leo Matsuoka, Ryuta Takashima, Tetsuo Nagata, Yoshiro Azuma, Satoshi Obara, Fumihiro Koike and Shuichi Hasegawa, Analysis of 1s(2s2p ~3P)nl Rydberg states in the K-shell photoionization of the Be atom, Phys. Rev. A, 73 062709(2006)
    [23] E. Clementi and C. Roetti, Roothaan-Hartree-Fock Atomic Wavefunctions: Basis Functions and Their Coefficients for Ground and Certain Excited States of Neutral and Ionized Atoms, Z≤54, At. Data Nucl. Data Tables, 14 177 (1974)
    [24] A. Hibbert, CIV3- A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths, Comput. Phys. Commun., 9 141(1975)
    [25] http://physics.nist.gov/PhysRefData/contents.html [26] G. Mehlman and J. M. Esteva, Autoionization spectra of beryllium (Be Ⅰ and Be Ⅱ ) in the 110-to 140-eV energy range, Astrophys. J., 188 191 (1974)
    [27] E. Jannitti, P. Nicolosi, G. Tondello, Z. Yongzhen, and M. Mazzoni, Inner-shell photoabsorption spectra of the Be Ⅰ and Be Ⅱ ions, Opt. Commun., 63 37 (1987)
    [28] J. A. Fernley, A. Hibbert, A. E. Kingston and M. J. Seaton, Atomic data for opacity calculations: ⅩⅩⅣ. The boron-like sequence, J. Phys. B, 32 5507 (1999)
    [29] Y. Yan, K. T. Taylor and M. J. Seaton, Atomic data for opacity calculations.3. Oscillator-strengths for C-Ⅱ , J. Phys. B, 20 6399 (1987)
    [30] E. Jannitti, M. Gaye, M. Mazzoni, P. Nicolosi and P. Villoresi, K-shell photoabsorption spectrum of C-Ⅱ , Phys. Rev. A, 47 4033 (1993)
    [31] A. S. Schlachter, M. M. Sant'Anna, A. M. Covington, A. Aguilar, M. F. Gharaibeh, E. D. Emmons, S. W. J. Scully, R. A. Phaneuf, G. Hinojosa, I. Alvarez, C. Cisneros, A. MⅡ ller and B. M. McLaughlin, Lifetime of a K-shell vacancy in atomic carbon created by 1s-2p photoexcitation of C~+, J. Phys. B, 37 L103 (2004)
    [1] S. Ait-Tahar, I. P. Grant, and P. H. Norrington, Electron scattering by Fe ⅩⅩⅡ within the Dirac R-matrix approach, Phys. Rev. A, 54 3984 (1996)
    [2] S. J. Buckman, J.W. Cooper, M.T. Elford, M. Inokuti, Y. Itikawa and H. Tawara, Photon and Electron Interactions with Atoms, Molecules and Ions, Edited by Y.Itikawa, Springer-Verlag Berlin Heidelberg (2000)
    [3] J. B. West and G. V. Marr, The Absolute Photoionization Cross Sections of Helium, Neon, Argon and Krypton in the Extreme Vacuum, Proc. R. Soc. London A, 349 397 (1976)
    [4] J. A. R. Samson, Z. X. He, L. Yin and G. N. Haddad, Precision measurements of the absolute photoionization cross sections of He, J. Phys. B, 27 887 (1994)
    [5] M. Domke, C. Xue, A. Puschmann, T. Mandel, E. Hudson, D. A. Shirley and G. Kaindl, Extensive double-excitation states in atomic helium, Phys. Rev. Lett., 66 1306 (1991)
    [6] M. Domke, K. Schulz, G. Remmers, G. Kaindl and D. Wintgen, High-resolution study of ~1P° double-excitation states in helium, Phys. Rev. A, 53 1424 (1996)
    [7] S. M. W. Bailey, Phd.Thesis: Relativistic Atomic Photoionization, The Queen's University of Belfast (1997)
    [8] M. Domke, C. Xue, A. Puschmann, T. Mandel, E. Hudson, D. A. Shirley, G. Kaindl, C. H. Greene, H. R. Sadeghpour and H. Petersen, Extensive double-excitation states in atomic helium, Phys. Rev. Lett., 66 1306 (1991)
    [9] J. J. Wan and C. Z. Dong, Doubly excited 2s2p ~(1,3)P_1 resonances in photoionization of Helium, Chinese Physics B, to be published (2010)
    [10] Mehlman-Balloffet and J. M. Esteva, Far-Ultraviolet Absorption Spectra with Auto-Ionized Levels of Beryllium and Magnesium, Astrophys. J., 157 945 (1969)
    [11] J. M. Esteva, Mehlman-Ballofet and J. Romand, Spectres d'absorption dans I'ultraviolet lointain de Be, B, C, N, Mg, Al ET Si, J. Quant. Spectrosc. Radiat. Transfer, 12 1291 (1972)
    [12] M. A. Baig and J. P. Connerade, Extensions to the Spectrum of Doubly Excited Mg I in the Vacuum Ultraviolet, Proc. R. Soc. A, 364 353 (1978)
    [13] J. M. Preses, C. E. Burkhardt, W. P. Garver and J. J. Leventhal, Photoionization of magnesium near threshold, Phys. Rev. A, 29 R985 (1984)
    [14] W. Fiedler, Ch. Kortenkamp and P. Zimmermann, Photoionization study of the 3pns and 3pnd ~1P_1 resonances in Mg I, Phys. Rev. A, 36 384 (1987)
    [15] G. W. Schinn, C. J. Dai, and T. F. Gallagher, Mg 3pns and 3pnd (J=1) autoionizing series, Phys. Rev. A, 43 2316 (1991)
    [16] H. S. Fung, C. C. Chu, S. J. Hsu, H. H. Wu, and T. S. Yih, A simple apparatus for determining column density and absolute photoabsorption cross sections, Rev. Sci. lustrum., 71 1564 (2000)
    [17] H. S. Fung and T. S. Yih, The absolute photoabsorption cross section measurement of magnesium in the 75 nm to 162 nm spectral range, Nucl. Phys. A, 684 696 (2001)
    [18] R. Wehlitz R, D. V. Lukic and P. N. Juranic, Observation of a new 3s~2→3pnd double-excitation Rydberg series in ground-state magnesium , J. Phys. B, 40 2385 (2007)
    [19] R. Wehlitz and P. N. Juranic, Relative single- and double-photoionization cross sections of Mg around the 2p→n1 resonances, Phys. Rev. A, 79 013410 (2009)
    [20] G. N. Bates and P. L. Altick, The photoionization cross section of magnesium near threshold, J. Phys. B, 6 653 (1973)
    [21] C. H. Greene, Doubly excited states of the akaline-earth atoms, Phys. Rev. A, 23 661 (1981)
    [22] P. F. O' Mahony and C. H. Greene, Doubly excited states of beryllium and magnesium, Phys. Rev. A, 31 250 (1985)
    [23] T. N. Rescigno, Atomic photoionization by the complex-basis-function expansion method: Application to ground-state and metastable Mg, Phys. Rev. A, 31 607 (1985)
    [24] V. Radojevic and W. R. Johnson, Multiconfiguration Tamm-Dancoff approximation applied to photoionization of the outer shells of Be and Mg, Phys. Rev. A, 31 2991 (1985)
    [25] C. Mendoza and C. J. Zeippen, Radiative atomic data for neutral magnesium. Ⅱ : Photoionization cross sections, Astron. Astrophys., 179 346 (1987)
    [26] R. Moccia and P. Spizzo, Atomic magnesium: Ⅱ . One-photon transition probabilities and ionisation cross sections. A valence-shell L~2 CI calculation, J. Phys. B, 21 1133 (1988)
    [27] K. Butler, C. Mendoza and C. J. Zeippen, Atomic data for opacity calculations. ⅪⅩ. The magnesium isoelectronic sequence, J. Phys. B, 26 4409 (1993)
    [28] H. C. Chi and K. N Huang, Photoionization of magnesium including double excitations, Phys. Rev. A, 50 392 (1994)
    [29] C. J. Dai, Spectroscopic properties of Mg 3pns autoionizing states, Phys. Rev. A, 51 2951 (1995)
    [30] D. S Kim and S. S. Tayal, Autoionizing resonances in the photoionization of ground state atomic magnesium, J. Phys. B, 33 3235 (2000)
    [31] K. A. Berrington, W. Eissner and P. Norrington P, RMATRX1: Belfast atomic R-matrix codes, Comput. Phys. Commun., 92 290 (1995)
    [32] E. Clementi and C. Roetti, Roothaan-Hartree-Fock Atomic Wavefunctions: Basis Functions and Their Coefficients for Ground and Certain Excited States of Neutral and Ionized Atoms, Z≤54, At. Data Nucl. Data Tables, 14 177 (1974)
    [33] A. Hibbert, CIV3-A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths, Comput. Phys. Commun., 9 141 (1975)
    [34] F. A. Parpia, C. F. Fischer and I. P. Grant, GRASP92: A package for large-scale relativistic atomic structure calculations, Comput. Phys. Commun., 94 249 (1996)
    [35] http://physics.nist.gov/PhysRefData/contents.html
    [36] http://cdsweb.u-strasbg.fr/topbase/topbase.html
    [1] J. M. Bizau, J. P. Champeaux, D. Cubaynes, F. J. Wuilleumier, F. Folkmann, T. Jacobsen, F. Penent, C. Blancard and H. Kjeldsen, Absolute cross sections for L-shell photoionization of the ions N~(2+), N~(3+),O~(3+),O~(4+), F~(3+), F~(4+) and Ne~(4+), Astron. Astrophys., 439 387 (2005)
    [2] R. Wehlitz and P. N. Juranic, Relative single- and double-photoionization cross sections of Mg around the 2p→n1 resonances, Phys. Rev. A, 79 013410 (2009)
    [3] R. Wehlitz and P. N. Juranic, Resonant double photoionization of lithium studied with medium energy resolution, Phys. Rev. A, 74 042721 (2006)
    [4] Y. Hikosaka, P. Lablanquie, F. Penent, T. Kaneyasu, E. Shigemasa, J. H. D. Eland, T. Aoto and K. Ito, Double photoionization into double core-hole states in Xe, Phys. Rev. Lett, 98 183002 (2007)
    [5] D. Kilbane, F. Folkmann, J.-M. Bizau, C. Banahan, S. Scully, H. Kjeldsen, P. van Kampen,l M. W. D. Mansfield, J. T. Costello and J. B. West, Absolute photoionization cross-section measurements of the Kr I isoelectronic sequence, Phys. Rev. A, 75 032711 (2007)
    [6] R. Wehlitz R, P. N. Juranic and D. V. Lukic, Double photoionization of magnesium from threshold to 54 eV photon energy, Phys. Rev. A, 78 033428 (2008)
    [7] T. W. Gorczyca and N. R. Badnell, Photoionization - excitation of helium using an R-matrix with pseudostates method, J. Phys. B, 30 3897 (1997)
    [8] K. W. Meyer, C. H. Greene, and B. D. Esry, Two-Electron Photoejection of He and H-, Phys. Rev. Lett, 78 4902 (1997)
    [9] D. C. Griffin, M. S. Pindzola, C. P. Ballance and J. Colgan, Double photoionization of Be and Mg atoms using the R-matrix-with-pseudostates method, Phys. Rev. A, 79 023413 (2009)
    [10] S. S. Tayal, Photoelectron angular distributions for 2p ionization of atomic oxygen, J. Phys. B, 34 2215 (2001)
    [11] C. McKenna and H. W. van der Hart, Multiphoton ionization cross sections of neon and argon, J. Phys. B, 37 457 (2004)
    [12] E. C. I. Bricha, C. L. S. Lewis and H. W. van der Hart, Multiphoton ionization of Ar~(7+) in two-colour laser fields using R-matrix Floquet theory, J. Phys. B, 37 2755(2004)
    [13] H. W. van der Hart, M. A. Lysaght and P.G. Burke, Time-dependent multielectron dynamics of Ar in intense short laser pulses, Phys. Rev. A, 76 043405 (2007)
    [14] C. J. Joachain, R-matrix-Floquet theory of multiphoton processes: concepts, results and perspectives, Journal of modern optics, 54 1859 (2007)
    [15] Xiaoxu Guan, O. Zatsarinny, K. Bartschat, B. I. Schneider, J. Feist and C. J. Noble, General approach to few-cycle intense laser interactions with complex atoms, Phys.Rev. A, 76 053411 (2007)
    [16] Xiaoxu Guan, C. J. Noble, O. Zatsarinny, K. Bartschat and B. I. Schneider, Time-dependent R-matrix calculations for niultiphoton ionization of argon atoms in strong laser pulses, Phys. Rev. A, 78 053402 (2008)
    [17] O. Zatsarinny and C. Froese Fischer, The use of basis splines and non-orthogonal orbitals in R-matrix calculations: application to Li photoionization, J. Phys. B, 33 313 (2000)
    [18] O. Zatsarinny and K. Bartschat, B-spline Breit - Pauli R-matrix calculations for electron collisions with neon atoms, J. Phys. B, 37 2173 (2004).
    [19] O. Zatsarinny, BSR: B-spline atomic R-matrix codes, Comput. Phys. Commun., 174 273 (2006).
    [20] O. Zatsarinny and K. Bartschat, Relativistic B-spline R-matrix method for electron collisions with atoms and ions: Application to low-energy electron scattering from Cs,Phys. Rev. A, 77 062701 (2008)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700