新型碳基纳米功能材料的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型炭材料的特性几乎可涵盖地球上所有物质的性质甚至相对立的两种性质,从最硬到极软、全吸光-全透光、绝缘体-半导体-高导体、绝热-良导热、高铁磁体、高临界温度的超导体等。纳米炭材料会表现出特异的光、电、磁、热、力学、机械等性能,成为当前世界科学研究的热点。基于密度泛函理论的第一性原理方法因其不依赖于经验参数而成为凝聚态物理、量子化学和材料科学中的主要研究手段。本论文对一些不同维度的新型纳米碳基材料,如:富勒烯,碳纳米管,石墨烯等进行了第一性原理的研究。研究内容如下:
     (1)使用密度泛函理论分别研究了符合和不符合五元环最大分离规则(IPR)的Tb_3N@C_(84)一系列异构体的结构和电子性质。结果表明笼上存在一对毗邻的五元环的不符合IPR规则的结构具有最大的能隙,显示出最好的动力学稳定性;满足IPR规则的Tb_3N@C_(84)化合物具有最好的热力学稳定性。Tb3N与C84之间的作用力主要是离子键,并且在费米面上Tb_3N@C_(84)较C84有大的电子分布,说明Tb3N的嵌入可以增强笼的导电性。
     (2)使用B3LYP/6-31G(d)方法对有机太阳电池中作为电子受体材料的富勒烯衍生物苯基C61丁酸甲酯([60]PCBM)的同分异构体进行了计算。PCBM与C60通过六元环和六元环共用的C=C双键加成得到的产物是热力学控制产物;通过五元环和六元环共用的C-C键加成得到的产物则是动力学控制产物。[60]PCBM与C_(60)的第一绝热电子亲和势很接近。PCBM对前线轨道贡献很小,[60]PCBM的最高占据分子轨道(HOMO)和最低非占据分子轨道(LUMO)的电子云主要分布在笼上。PCBM提升了C_(60)的LUMO能级水平,有利于提高太阳能电池光电转化效率。自然布居分析表明PCBM与笼之间没有发生显著的电荷转移。所有的研究表明PCBM基团并不涉及电池光电转换的过程,但在调整C_(60)能级水平提高光电转换效率中发挥了重要作用。使用同样的方法也研究了[70]PCBM,得到了相同的规律。
     (3)通过第一性原理研究了Ag在碳管内壁的吸附和在管端修饰羧基和羟基基团上负载的情况。计算结果表明Ag可以被稳定的吸附在管内壁,在一定的直径范围内,这种吸附能力随着直径的增加而增加。对于Ag负载在修饰-COOH和-OH基团后的SWCNT上时,-COOAg的稳定性要高于-OAg。无论是单修饰-COOH或-OH基团,还是共修饰-COOH和-OH基团,只有第一个Ag是被稳定地化学吸附,之后吸附的Ag主要以物理吸附的形式负载在碳管的表面。这也从侧面说明实验中Ag离子在修饰后碳管中的负载主要以物理吸附为主。
     (4)使用密度泛函理论研究了修饰或掺杂Au原子后石墨烯(graphene)与半胱氨酸结合的能力和性质。Au-S之间化学键的作用增强了graphene与半胱氨酸之间的结合力。使用Au原子修饰或掺杂graphene,可增加graphene基底与半胱氨酸之间的电子转移,较多的电子转移改变了graphene基底费米能级附近的性质,改变了graphene的电导性质。计算结果表明Au原子修饰或者掺杂的graphene是一种潜在的检测半胱氨酸的传感器材料,会在检测富含半胱氨酸的金属硫蛋白等生物领域得到广泛的应用。本文也对Pt掺杂的graphene进行了研究,结果表明它也是一种好的半胱氨酸传感器材料。
The characteristics of new-carbon materials cover all the natures of substances, even the opposite ones from the hard to very soft, all absorption and all transmission, insulator - semiconductor - high conductor, insulation - good thermal conductivity, high ferromagnet, high critical temperature superconductors, etc. Owing to their novelty in optical,electronic,magnetic,thermal,or mechanic properties, carbon nanomaterials have attracted intensive research interest.Because of the independence of empirical parameters, the first principle study has become the main research means in condensed matter physics, quantum chemistry and materials science. In this paper, some novel materials with different dimensions,such as fullerene,nanotube,and graphene,were studied on the basis of the first principles calculations.The results are summarized as follows:
     (1) The geometric and electronic structures of fullerenes encapsulating trimetallic nitride cluster Tb_3N@C_(84) were studied using the density functional theory. Geometric optimization showed that Tb_3N@C_(84) that violates the Isolated-Pentagon Rule (IPR) with a pentalene unit formed by fused pentagon pair is the most kinetically stable isomer with the largest energy gap. Compared to IPR-violating Tb_3N@C_(84) isomers, IPR-Tb_3N@C_(84) is the most thermodynamically favorable endohedral compound with the lowest energy. The interaction between Tb3N and C84 is ionic and Tb_3N@C_(84) has a higher density of states (DOS) than empty C84 molecule at the Fermi energy, indicating that the embedment of Tb3N unit can increase the conductance of C84.
     (2) The electronic parameters of fullerenes are essential for their potential use as active layers in organic solar cells. Two isomeric forms of [60] PCBM (phenyl-C61-butyric acid methyl ester) clusters were calculated using the B3LYP method with 6-31G(d) basis set. It has been found that the contraction of C6-6 double bonds is favorable for addition. The first Adiabatic Electron Affinity (AEA) for [60] PCBM is similar to that for C_(60). The energy gaps between the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) of [60] PCBM are reduced compared with C_(60). PCBM derivatives show increased level of LUMO of fullerenes. From the natural charge populations, it was found that adding PCBM unit onto the C_(60) cages does not change the charge populations remarkably; attaching a PCBM has no effects on the electronic structures of C_(60). The results of theoretical calculation suppose that PCBM is not involved in the process of photoelectric conversion, but plays a key role in adjusting the level of HOMO-LUMO for increasing photoelectric conversion efficiencies. Similar results were also reached for [70]PCBM.
     (3) The first principles study was performed on the stability of Ag adsorbed on the internal walls of single-walled carbon nanotube (SWCNT) and loaded on acid modified SWCNT. The calculation results show that Ag can be adsorbed stably on the internal walls of SWCNT. The adsorption energy increases as the diameter in a certain range. Ag can also be loaded on the modified SWCNT surface in the form of–COOAg and-OAg groups, and -COOAg group is more stable than -OAg group. For either tne adsorption on the inner SWCNT or the load on the modified SWCNT surface, only a small part of the Ag ions can be stably bonded to the wall of SWCNT. In other word, most of Ag ions observed in experiments are loaded or adsorbed on CNT by physical adsorption.
     (4) The adsorption of cysteine molecule on intrinsic and Au-doped or decorated graphene sheets was studied by density functional theory calculations. Compared with the intrinsic graphene, Au-doped or decorated graphene strongly adsorbs cysteine molecules with high binding energy value and short distance between the cysteine molecules and the graphene surface. The calculation of electron transfers and dipole moment supports the notion that Au doping or decorating influences the electronic properties of graphene substantially. Furthermore, the density of states results show the orbital hybridization between cysteine and Au-doped or decorated graphene sheet. Therefore, the calculations suggest that Au-doped or decorated graphene is a promising candidate for sensor detecting a variety of S-containing proteins and metalloenzymes. Pt-doped graphene sheets are also studied and the same conclusion was obtained.
引文
[1] Friedman S H, Ganpathi P S, Rubin Y. Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation [J]. J. Med. Chem., 1998, 41: 2424-2429.
    [2] Da Ros T, Bergamin M, Vazquez E. Synthesis and molecular modeling studies of fullerene-5, 6, 7-trimethoxyindole-oligonucleotide conjugates as possible probes for study of photochemical reactions in DNA triple helices [J]. Eur. J. Org. Chem., 2002, 3: 405-413.
    [3] Cassell A M, Scrivens W A, Tour J M. Assembly of DNA/fullerene hybrid materials [J]. Angew. Chem. Int. ed. Engl., 1998, 37: 1528-1531.
    [4] Wilson L J, Cagle D W, Thrash T P, et al. Metallofullerene drug design [J]. Coord. Chem. Rev., 1999, 192: 199-207.
    [5] Kobayashi K, Kuwano M, Sueki K, et al. Activation and Tracer Techniques for Studyof Metallofullerenes [J]. J. Radioanal. Nucl. Chem. Art., 1995, 192(1): 81-89.
    [6] Iezzi E B, Duchamp J C, Fletcher K R, et al. Lutetium-based trimetallic nitride endohedral metallofullerenes: New contrast agents [J]. Nano Lett., 2002, 2(11): 1187-1190.
    [7] Lauffer R B. Paramagnetic Metal Complexes as Water Proton Relaxation Agents for NMR Imaging: Theory and Design [J]. Chem. Rev., 1987, 87: 901-927.
    [8] Caravan P, Ellision J J, McMurry T J, et al. Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications [J]. Chem. Rev., 1999, 99: 2293-2352.
    [9]梁星原,黄继英.磁共振成像原理,陕西科技出版社,西安, 1998.
    [10] Zhang S R, Sun D Y, Li X Y, et al. Synthesis and solvent enhanced relaxation property of water-soluble endohedral metallofullerenols [J]. Fullerene Sci. Technol., 1997, 5(7): 1635-1643.
    [11] Wilson L J. Medical application of fullerenes and metallofullerenes [J]. Electrochem. Soc. Interface·Winter, 1999: p.24-28.
    [12] Shu C Y, Gan L H, Wang C R, et al. Synthesisand characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents [J]. Carbon, 2006, 44: 496-500.
    [13] Mikawa M, Kato H, Okumura M, et al. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents [J]. Bioconjugate Chem., 2001, 12(4): 510-514.
    [14] Bolskar R D, Benedetto A F, Husebo L O, et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation ofGd@C60[C(COOH)2]10 as a MRI contrast agent [J]. J. Am. Chem. Soc., 2003, 125(18): 5471-5478.
    [15] Kato H, Kanazawa Y, Okumura M, et al. Lanthanoid endohedral metallofullerenols for MRI contrast agents [J]. J. Am. Chem. Soc., 2003, 125(14): 4391-4397.
    [16] Okamura H, Terauchi T, Minoda M, et al. Synthesis of 1, 4-dipolystyryldihy drofullerenes by using 2, 2, 6, 6-tetramethyl-1-polystyroxypiperidine as a radical source [J]. Macromol., 1997, 30: 5279-5284.
    [17] Stephens P W, Bortel G, Faigel G, et al. Polymeric fullerene chains in RbC60 and KC60 [J]. Nature, 1994, 370: 636-639.
    [18] Ford W T, Graham T D, Mourey T H. Incorporation of C60 into poly(methyl methacrylate) and polystyrene by radical chain polymerization produces branched structures [J]. Macromol., 1997, 30, 6422-6429.
    [19] Fukuzaki M, Miura N, Shinyashiki N. Comparison of water relaxation time in serum albumin solution using nuclear magnetic resonance and time domain reflectometry [J]. J. Phys. Chem., 1995, 99, 431-435.
    [20] Mirkin C A, Caldwell W B. Thin film, fullerene-based materials [J]. Tetrahedron lett., 1996, 52, 5113-5130
    [21] Kawai T, Scheib S, Metzger R M, et al. Langmuir-blodgett films of a thermally labile 1:1 adduct of C60 fullerene and 8-(9-anthryl)-7-oxaoctanoic acid [J]. Langmuir, 1997, 13: 5627-5633.
    [22] Maggini M, Scorrano G, Prato M, et al. C60 derivatives embedded in sol-gel silica films [J]. Adv. Mater.,1995, 7: 404-406.
    [23] Kraus A, Schneider M, Gügel A, et al. Covalent incorporation of an alkoxysilyl- substituted fullerene derivative in sol-gel matrices [J]. J. Mater. Chem., 1997, 7: 763-765.
    [24] Armaroli N, Diederich F, Dietrich-Buchecker C, et al. A copper(I)-complexed rotaxane with two fullerene stoppers: synthesis, electrochemistry, and photoinduced processes [J]. Chem. Eur., J., 1998, 4: 406-416.
    [25] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene [J]. Science, 1992, 258: 1474– 1476.
    [26] Cravino A, Sariciftci N S. Double-cable polymers for fullerene based organic optoelectronic applications [J]. J. Mater. Chem., 2002, 12: 1931-1943.
    [27] Gu G, Huang H, Yang S, etc. The third-order non-linear optical response of the endohedral metallofullerene Dy@C82 [J]. Chem. Phys. Lett., 1998, 289: 167-173.
    [28] Huang H J, Yang S H, Zhang X X. Magnetic properties of heavy rare-earth metallofullerenes M@C82 (M = Gd, Tb, Dy, Ho, and Er) [J]. J. Phys. Chem. B, 2000, 104: 1473-1482.
    [29] Kobayashi K, Nagase S, Akasaka T. Endohedral dimetallofullerenes Sc2@C84 and La2@C80: Are the metal atoms still inside the fullerence cages [J]. Chem. Phys. Lett., 1996, 261: 502-506.
    [30] Deschenaux R, Even M, Guillon D. Liquid-crystalline mixed fullerene– ferrocene materials [J]. Chem. Commun., 1998, 5: 537-538.
    [31] Iijima S, Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [32] Ajayan P M I, Iijima S. Smallest carbon nanotube [J]. Nature, 1993, 361: 333-334.
    [33] Bethune D S, Kiang C H, de Vries M S, et al. Synthesis, structure and field emission of carbon nanotubes [J]. Nature, 1993, 363: 605-607.
    [34] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett.; 1992, 69(20): 2881-2884.
    [35] Wei B Q, Vajtai R, Ajayan P M. Carbon nanotube field-effect transistors and logic circuits [J]. Appl. Phys. Lett., 2001. 79: 1172-1174.
    [36] Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84: 4613–4616
    [37] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes [J]. Nature, 1992, 358: 220-222.
    [38] Ajayan P M. Opening carbon nanotubes with oxygen and implications for filling [J]. Nature, 1993, 362: 522-525.
    [39] Carotta M C, Benetti M, Ferrari E, et al. Basic interpretation of thick film gas sensors for atmospheric application [J]. Sens. Actuators B, 2007, 126(2): 672-677.
    [40] Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes [J]. Carbon, 1995, 33: 883-891.
    [41] Henning T, Salama F. Carbon in the universe [J]. Science, 1998, 282: 2204-2210.
    [42] Ebbesen T W, Carbon nanotubes [J]. Phy. Today, 1996, 49: 26-32.
    [43] Peigney A, Laurent C, Dobigeon F, et a1. Carbon nanotubes grown in situ by anovel catalytic method [J]. J. Mater. Res., 1997, 12(3): 613-615.
    [44] Wang N X. Review on the Nitration of [60] Fullerene [J]. Propell. Explos. Pyrot., 2001, 26: 109-111.
    [45] Yasaman J M, Yoshida M, Rendon L. Catalytic growth of carbon microtubules with fullerene structure [J]. Appl. Phys. Lett., 1993, 62(6): 657-659.
    [46] Ivanov V, Nagy J B, Lambin P, et al. The study of carbon nanotubules produced by catalytic method [J]. Chem Phys Lett, 1994, 223(2): 329-335.
    [47] Ye Y, Ahn C C, Witham C. Hydrogen in sigle-walled carbon nanotubes [J]. Appl. Phys. Lett., 1999, 74(16): 2307-2309.
    [48] Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science, 1999, 286: 1127-1136.
    [49] Chen P, Xu X, Li J. et al. High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures [J]. Science, 1999, 285: 91-93.
    [50] Lipson A G, Lyakhov B F, Saunin E I, et al. Determination of the gravimetric density of hydrogen by cyclic voltammetry in single-walled carbon nanotubes encapsulated in palladium [J]. Phys. Rev. B, 2008, 77: 261-264.
    [51] Durgun E, Ciracci S, Yildirm T. Functionalization of carbon based nanostructures with light transition metal atoms for hydrogen storage [J]. Phys. Rev. B, 2008, 77: 085405-085413.
    [52] Matsumoto K, Kinosita S, Gotoh Y, et al. Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition [J]. Appl. Phys. Lett., 2001, 78(4): 539-540.
    [53] Heer W A, Bacsa W S, Chatelain A, et al. Aligned carbon nanotube films: Production and optical and electronics properties [J]. Science, 1995, 268: 845-847.
    [54] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science, 1999, 283: 512-514.
    [55] Ajayan P M, Capillarity-induced filling of carbon nanotubes [J]. Nature, 1993, 361: 333-334.
    [56] Rinzler A G, Hafner J H, Nikolaev P, et al. Unraveling Nanotubes: field emission from an atomic wire [J]. Science, 1995, 269, 1550-1553.
    [57]汪家铭.碳纤维产业发展现状与市场前景[J].化工文摘, 2009, 3: 17-24.
    [58] Postma H W C, Teepen T, Yao Z, et a1. Carbon nanotube single electron transistors at room temperature [J]. Science, 2001, 293: 76-79.
    [59] Kong J, Franklin N R, Zhou C, et a1. Nanotube molecular wires as chemical sensors [J]. Science, 2000, 287: 622-624.
    [60] Collins P G, Bradley K, Ishigami M, et a1. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science, 2000, 287: 1801-1804.
    [61]梁君武,胡慧芳,韦建卫等.氧吸附对单壁碳纳米管的电子结构和光学性能的影响[J].物理学报, 2005, 54(6): 2877-2881.
    [62] Goldoni A, Larciprete R, Petaccia L, et a1. Single-Wall Carbon Nanotube Interaction with gases: Sample contaminants and environmental monitoring [J]. J. Am. Chem. Soc., 2003, 125: 11329-11333.
    [63] Peng S, Cho K. Ab Initio Study of Doped Carbon Nanotube Sensors [J]. Nano Lett., 2003, 3: 513-517.
    [64] Wang R X, Zhang D J, Zhang Y M, et a1. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde [J]. J. Phys. Chem. B, 2006, 110: 18267-18271.
    [65]石敏先,黄志雄.新型吸波材料的研究进展[J].材料导报, 2007, 21(3): 36-38.
    [66]曹茂盛,高正娟,朱静. CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程, 2003, 2: 34-36
    [67]刘云芳,沈增民,于建民.活化碳纳米管的孔结构及微波吸收性能的研究[J].炭素, 2005, 1: 3.
    [68] Dai H J, Jason H, Nanotube as nanoprobes in scanning probe microscopy [J]. Nature, 1996, 384(3): 147-151.
    [69] Novoselov K S, Geim A K, Morozov S V, et a1. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
    [70] Partoens B, Peeters F M. From graphene to graphite: Electronic structure around the Kpoint [J]. Phy. Rew. B, 2006, 74(7): 1-11.
    [71] Meyer J C, Geim A K, Katsnelson M I, et a1. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene [J]. Nature, 2007, 466: 198-201.
    [72] Geim A K, Novoselciv K S, The rise of graphene [J]. Nature Mater, 2007, 6:183-191.
    [73] Berger C, Song Z M, Li X B, et a1. Electronic confinement and coherence in patterned epitaxial graphene [J]. Science, 2006, 312(5777): 1191-1196.
    [74] Berger C, Song Z M, Li T B, et a1. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J]. J. Phys. Chem. B, 2004, 108: 19912-19916.
    [75] de Heer W A, Berger C, Wu X S, et a1. Epitaxial graphene [J]. Solid State Commun., 2007, 143: 92-100.
    [76] Emtsev K V, Bostwick A, Horn K, et a1. Towards wafer-sizegraphene layers by atmospheric pressure graphitization of silicon carbide [J], Nat. Mater., 2009, 8: 203-207.
    [77] N’Diaye A T, Bleikamp S, Feibelman P J, et a1. Two. dimensional Ir cluster lattice on a graphene moird on Ir(111) [J]. Phys. Rev. Lett., 2006, 97: 215501 -215504.
    [78] Kim K S, Zhao Y, Jang H, el a1. Large-scale pattem growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457: 706-710.
    [79] Reina A, Jia X T, Ho J, et a1. Large area, few-layer graphene films on arbitrary substrates bu chemical vapor deposition [J]. Nano Lett., 2009, 9(1): 30-35.
    [80] Gomez De Acro L, Zhang Y, Kumar A, et a1. Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition [J]. IEEE Transactions on Nanotechnology, 2009, 8(2): 135-138.
    [81] Li X S, Cai W W, An J H, et a1. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science, 2009: 5, 1312-1314.
    [82] Kim K Su, Hong S H, Lee K, et a1. Continuous synthesis of nanostructured sheetlike carbons by thermal plasma decomposition of methane [J]. Science, 2007, 35(2): 434-443.
    [83] Wang X B, You H Y, Liu F M, et a1. Large-scale synthesis of few-layered graphene using CVD [J]. Chem. Vap. Deposition, 2009, 15: 53-56.
    [84] Dato A, Radmilovic V, Lee Z H, et a1. Phase synthesis of graphene sheets [J]. Nano Letters, 2008, 8(7): 2012-2016.
    [85] Liang X, Fu Z L, Stephen Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer [J]. Nano Lett., 2007, 7: 3840-3844.
    [86] Loh K P, Bao Q L, Ang P K, et al. The chemistry of graphene, J. Mater. Chem., 2010, 20: 2277–2289.
    [87] Paredes J I, Villar-Rodil S, Martinez-Alonso A, et a1. Graphene oxide dispersions in organic solvents [J]. Langmuir, 2008, 24: 10560-10564.
    [88] Cai D Y, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents [J]. J. Mater. Chem., 2007, 17: 3678-3680.
    [89] Schniepp H C, Li J L, McAllister M J, et a1. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J. Phys. Chem. B, 2006, 110(17): 8535-8539.
    [90] Yang D X, Velamakanni A, Bozoklu G, et a1. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy [J]. Carbon, 2009, 47: 145-152.
    [91] Gómez-Navarro C, Weitz R T, Bittner A M, et a1. Electronic thansport properties of individual chemically reduced graphene oxide sheets [J]. Nano Lett., 2007, 7(11): 3499-3503.
    [92] Wu Z S, Ren W C, Gao L, et a1. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation [J]. ACS. Nano., 2009, 3(2): 411-417.
    [93] Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nature Nanotech., 2009, 4: 217-224.
    [94] Chen G H, Wu D J, Weng W G, et al. Exfoliation of graphite flake and its nanocomposites [J]. Carbon, 2003, 41(3): 619-621.
    [95] Viculis L M, Mack J J, Mayer O M, et al. Intercalation and exfoliation routes to graphite nanoplatelets [J]. J. Mater. Chem., 2005, 15(9): 974-978.
    [96] Shioyama H, Cleavage of graphite to graphene [J]. J. Mater. Sci. Lett., 2001, 20: 499-500.
    [97] Hemandez Y, Nicolosi V, Lotya M, et a1. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nature Nanotech., 2008, 3, 563-568.
    [98] Pall Y, Jiang N, Sun J T, et a1. Millimeter-scale, highly ordered single crystalline graphene grown on Ru (0001) surface [J]. Phys. Rev. B, 2007, 76: 075429-0754439.
    [99] Liu N, Luo F, Wu H, et a1. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite [J].Adv. Funct. Mater., 2008, 18: 1518-1525.
    [100] Turchanin A, Beyer A, Nottbohm C T, et a1. One nanometer thin carbon nanosheets with tunable conductivity and stiffness [J]. Adv. Mater., 2009, 21: 1233-1237.
    [101] Kuang Q, Xie S Y, Jiang Z Y, et a1. Low temperature solvothermal synthesis of crumpled carbon nanosheets [J]. Carbon, 2004, 42: 1737-1741.
    [102] Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication [J]. Nature Nanotech., 2009, 4: 30-33.
    [103] Geim A K, Novoselov K S, The structure of suspended graphene sheets [J]. Nat. Mater., 2007, 6: 183-191.
    [104] Heersche H B, Jarillo-Herrero P, Oostinga J B. Bipolar super-current in graphene [J]. Nature, 2007, 446: 56-59.
    [105] McCann E, Kechedzhi K, Fal′kov I., et al. Weak-localization magnetoresistance and valley symmetry in graphene [J]. Phys. Rew. Lett., 2006, 97: 146805-146808.
    [106] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper [J]. Nature, 2007, 448: 457-460
    [107] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nat. Mate., 2007, 6, 652-655.
    [108] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666-669.
    [109] Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater., 2007, 6: 183-191.
    [110] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimen-sional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438: 197-200.
    [111] Zhou S Y, Gweon G H, Fedorov A V. Substrate-induced bandgap opening in epitaxial graphene [J]. Nat. Mater., 2007, 6: 770-775.
    [112] Lv W, Yang Q H, Hou P X, et al. Low temperature approaches for functionalized graphene sheets in a high vacuum atmosphere [J]. J. Chem. Sci., 2007, 23(2): 97-103.
    [113] Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors [J]. Nano Lett., 2008, 8: 3498-3502.
    [114] Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors [J]. J Chem Sci., 2008, 120(1): 9-13.
    [115] Yoo E, Kim J, Hsono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Lett., 2008, 8(8): 2277-2282.
    [116] Khantha M, Cordero N A, Molinal M, et al. Interaction of lithium with graphene: an ab initio study [J]. Phys. Rew. B, 2004, 70: 125422.
    [117] Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells [J]. Nano Lett., 2008, 8(1): 323-327.
    [118] Liu Q., Liu Z., Zhang X., et al., Organic photovoltaic cells based on an acceptor of soluble graphene [J]. Appl. Phys. Lett., 2008, 92, 223-303.
    [119] Wu J, Becerril H. A, Bao Z, et al. Organic solar cells with solution-processed graphene transparent electrodes [J]. Appl. Phys. Lett., 2008, 92: 263-302.
    [120] Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and langmuir-blodgett films [J]. Nature Nanotech., 2008, 3: 538-542.
    [1] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864-B871.
    [2] Thomas L H. The calculation of atomic fields [J]. Proc. Camb. Phil. Soc., 1927, 23: 542-548.
    [3] Fermi E. Un metodo statistice per la determinazione di alcune proprieta dell’atomo [J]. Accad. Naz. Lincei., 1927, 6: 602-607.
    [4] Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[J]. Proc. Natl. Acad. Sci. USA., 1979, 76: 6062-6065.
    [5] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A., 1965, 140:1133-1138.
    [6] Hedin L, Lundqvist B I. Explicit local exchange correlation potentials [J]. J. Phys. C., 1971, 4: 2064-2083.
    [7] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys Rev. Lett., 1980, 45: 566-569.
    [8] Lundqvist S, March N. (Eds), Theory of the inhomogeneous electron gas, New York: Plenum, 1983.
    [9] Slater J C. A simplification of the Hartree-Fock method [J]. Phys. Rev., 1951, 81: 385-390.
    [10] Vosko S J, Wilk L,. Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis [J]. Can. J. Phys., 1980, 58: 1200-1211.
    [11] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B., 1992, 45: 13244-13249.
    [12] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B., 1992, 46, 6671-6687.
    [13] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation aade simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
    [14] Hammer B, Hansen L B, Norskov J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Phys. Rev. B, 1999, 59: 7413-7421.
    [15] Slater J C. Quantum theory of molecular and solids. Vol. 4: The Self-Consistent Field for Molecular and Solids. New York: McGraw-Hill, 1974.
    [16] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38: 3098-3100.
    [17] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37: 785-789.
    [18] Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98: 5648-5652.
    [19] Curtiss L A, Raghavachari K, Trucks G W, et al.Gaussian-2 theory for molecular energies of first- and second-row compounds [J]. J. Chem. Phys., 1991, 94: 7221-7230.
    [20] Louie S G, Froyen S, Cohen M L. Nonlinear ionic pseudopotentials in spin- density-functional calculations [J]. Phys. Rev. B, 1982, 26: 1738-1742.
    [21] Hamann D R, Schluter M, Chiang C. Norm-conserving pseudopotentials [J]. Phys. Rev. Lett., 1979, 43: 1494-1497
    [22]李正中,固体理论,(第二版),北京:高等教育出版,2002.
    [23] Delley B. Analytic energy derivatives in the numerical local-density-functional approach [J]. J. Chem. Phys., 1991, 94: 7245-7250.
    [1] Kroto H W, Health J R, O’Brien S C. C60: Buck Minster fullerence[J]. Nature, 1985, 318: 162-163.
    [2] Kroto H W. The stability of the fullerenes Cn, with n=24,28,32,36,50,60 and 70[J]. Nature, 1987,329: 529-531.
    [3] Hunter J, Fye J, Jarrold M F. An-nealing Csa+: synthesis of fullerenes and large carbon rings [J]. Science, 1993, 260: 784-786.
    [4] Lu X, Chert Z F. Curved-conjugation, aromaticity, and the related chemistry of small fullerenes(    [5] Wang C R, Kai T, Tomiyama T, et al. Materials science: C66 fullerene encaging a scandium dimer [J]. Nature, 2000, 408: 426-427.
    [6] Stevenson S, Fowler P W, Heine T, et al. Materials science: A stable non-classical metallofullerenefamily [J]. Nature, 2000, 408: 427-428.
    [7]Wakahara T, Nikawa H, Kikuchi T, et al. La@C72 having a non·IPR carbon cage[J]. J. Am. Chem. Soc., 2006, 128: 14228-14229.
    [8] Shi Z Q, Wu X, Wang C R, et al. Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage[J]. Angew. Chem. Int. Ed., 2006, 45: 2107-2111.
    [9] Mercado B Q, Beavers C M, Olmstead M M, et al. Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene-Gd3N@Cs(39663)-C82[J]. J. Am. Chem. Soc., 2008, 130: 7854-7855.
    [10] Yang S, Kalbac M, Popov A, et al. A facile route to the non-IPR fullerene Sc3N@C68 synthesis, spectroscopic characterization and density functional theory computations (IPR=isolated pentagon rule)[J]. Chemistry, 2006, 12: 7856-7863.
    [11] Bandow S, Shinohara H, Saito Y, et al. High yield synthesis of lanthanofullerenes via lanthanum carbide[J]. Phys. Chem. Lett., 1993, 97: 6101-6103.
    [12] Kroto H W, Walton D R M, Stable derivatives of small fullerenes[J]. Phys. Chem. Lett., 1993, 214: 353-356.
    [13] Xie S Y, Gao F, Lu X, et al. Capturing the labile fullerene[50]as C50C110[J]. Science, 2004, 304: 699-699.
    [14] Wang C R,Shi Z Q,Wan L J, et al. C64H4:Production,isolation,and structural characterizations of a stable unconventional fulleride[J]. J. Am. Chem. Soc., 2006,128: 6605-6610.
    [15] Fowler P W, Manolopoulos D E. An atlas of fullerenes[J]. Oxford: Clarendon, 1995, 19: 855-876.
    [16] Ettl R, Chao I, Diederich F, et al. Isolation of C76, a chirl (D2) allotrope of carbon[J]. Nature, 1991, 353: 149-153.
    [17] Diederich F, Whetten R L, Thilgen C, et al. Fullerene Isomerism: Isolation of C2v-C78 and D3-C78[J]. Science, 1991, 254: 1768-1770.
    [18] Akasaka T, Wakahara T, Nagase S, et al. Structural Determination of the La@C82 Isomer [J]. J. Phys. Chem. B, 2001, 105: 2971?2974.
    [19] Manolopoulos D E, Fowler P W. Molecular graphs, point groups, and fullerenes[J]. J. Chem. Phys., 1992, 96: 7603-7614.
    [20] Cai T, Xu L, Shu C Y, et al. Synthesis and characterization of a non-IPR fullerene derivative: Sc3N@C68[C(COOC2H5)2][J]. J. Phys. Chem. C, 2008, 112: 19203-19208.
    [21] Reveles J U, Heine T, K?ster A M. 13C NMR pattern of Sc3N@C68 Structural assignment of the first fullerene with adjacent pentagons[J]. J. Phys. Chem. A, 2005, 109: 7068-7072.
    [22] Campanera J M, Bo C, Olmstead M M, et al. Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHCl3)[J].J. Phys. Chem. A, 2002, 106: 12356-12364.
    [23] Campanera J M, Bo C, Poblet J M. General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates[J]. Angew. Chem. Int. Ed., 2005, 117: 7396-7399.
    [24] Saunders M, Jimenezvaquez H A, Cross R J, et al. Probing the interior of fullerenes by He NMR spectroscopy of endohedral 3He@C60 and 3He@C70[J]. Nature, 1994, 367: 256-258.
    [25] Dietel E, Hirsch A, Pietzak B, et al. Atomic nitrogen encapsulated in fullerenes: effects of cage variations[J]. J. Am. Chem. Soc., 1999, 121: 2432-2437.
    [26] Lips K, Waiblinger M, Pietzak B, et al. Atomic nitrogen encapsulated in fullerenes: proof of an ideal chemical faraday cage[J]. Mol. Mater., 2000, 13: 217-224.
    [27] Yang S F, Popov Alexey A, Dunsch L. Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70[J]. Angew. Chem. Int. Ed., 2007, 46: 1256-1259.
    [28] Liu B B, Xu W G, Liu Z Y, et al. High yield synthesis and extraction of La@C2n[J]. Solid State Commun., 1996, 97: 407-410.
    [29] Wan T S M, Zhang W, Nakane T, et al. Production, isolation, and electronic properties of missing fullerenes: Ca@C72 and Ca@C74[J]. J. Am. Chem. Soc., 1998, 120: 6806-6807.
    [30] Slanina Z, Chen Z F, Schleyer P V R, et al. La2@C72 and Sc2@C72: computational characterizations[J]. J. Phys. Chem. A, 2006, 110: 2231-2234.
    [31] Stevenson S, Burbank P, Harich K, et al. La2@C72: metal-mediated stabilization of a carbon cage[J]. J. Phys. Chem. A, 1998, 102: 2833-2837.
    [32] Dunsch L, Bartl A, Georgi P, et al. New metallofullerenes in the size gap of C70 to C82 -From La2@C72 to Sc3N@C80[J]. Synth. Met., 2001, 121: 1113-1114.
    [33] Kodama T, Fujii R, Miyake Y, et al. 13C NMR study of Ca@C74: the cage structure and the site-hopping motion of a Ca atom inside the cage[J]. Chem. Phys. Lett., 2004, 399: 94-97.
    [34] Okazaki T, Lian Y, Gu Z, et al. Isolation and spectroscopic characterization of Sm-containing metallofullerenes[J]. Chem. Phys. Lett. 2000, 320: 435-440. [ 35 ] Sun B Y, Inoue T, Shimada T, et al. Synthesis and characterization of Eu-metallofullerenes from Eu@C74 to Eu@C90 and their nanopeapods[J]. J. Phys. Chem. B, 2004, 108: 9011-9015.
    [36] Stevenson S, Dorn H C, Burbank P, et al. Automated HPLC separation of endohedralmetallofullerene Sc@C2n and Y@C2n fractions[J]. Anal. Chem., 1994, 66: 2675-2679.
    [37] Slanina Z, Kobayashia K, Nagasea S. Ca@C72 IPR and non-IPR structures: computed temperature development of their relative concentrations[J]. Chem. Phys. Lett., 2003, 372: 810-814.
    [38] Kobayashi K, Nagase S, Endohedral metallofullerenes are the isolated pentagon rule and Fullerene structures always satisfied?[J]. J. Am. Chem. Soc., 1997, 119: 12693-12694.
    [39] Kato H, Taninaka A, Sugai T, et al. Structure of a missing-caged metallofullerene: La2@C72[J]. J. Am. Chem. Soc., 2003, 125: 7782-7783.
    [40] Karin B, Lars E, Jens M, et al. Synthesis, isolation and characterization of new endohedral fullerenes M@C72 (M=Eu, Sr, Yb)[J]. Phys. Stat. Sol. (b), 2006, 243: 3025-3027.
    [41] Karin B, Jens M, Michael M, et al. Isolation and spectroscopic characterization of Eu@C72. Fuller[J]. Nanotub. Car. N., 2007, 15: 29-42.
    [42] Karin B, Jens M, Michael M et al. Isolation and spectroscopic characterization of Eu@C72[J]. Fuller, Nanotub. Car. N., 2007, 15: 29-42.
    [43] Haufe O, Hecht M, Grupp A, et al. Isolation and spectroscopic characterisation of new endohedral fullerenes in the size gap of C74 to C76[J]. Anorg. Allg. Chem., 2005, 631: 126-130.
    [44]Reich A, Panthofer M, Modrow H, et al. The structure of Ba@C74 [J]. J. Am. Chem. Soc., 2004, 126: 14428-14432.
    [45] Chai Y, Guo T, Jin C, et al. Fullerenes with metals inside[J]. J. Phys. Chem., 1991, 95: 7564-7568.
    [46] Tang C M, Deng K M, Tan W S, et al. Influence of a dichlophenyl group on the geometric structure, electronic properties and static linear polarizability of La@C74[J]. Phys. Rev. A, 2007, 76: 013201-013206.
    [47] Nikawa H, Kikuchi T, Wakahara T, et al. Missing Metallofullerene La@C74[J]. J. Am. Chem. Soc., 2005, 127: 9684-9685.
    [48] Tagmatarchis N, Aslanis E, Prassides K, et al. Mono-, di- and trierbium endohedral metallofullerenes: production, separation, isolation, and spectroscopic study[J]. Chem. Mater., 2001, 13: 2374-2379.
    [49] Kuran P, Krause M, Bartl A, et al. Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene[J]. Chem. Phys. Lett., 1998, 292: 580-586.
    [50] Matsuoka H, Ozawa N, Kodama T, et al. Multifrequency EPR study of metallofullerenes: Eu@C82 and Eu@C74[J]. J. Phys. Chem. B, 2004, 108: 13972-13976.
    [51] Xu J X, Lu X, Zhou X H, et al. Synthesis, isolation, and spectroscopic characterization of ytterbium-containing metallofullerenes [J]. Chem. Mater., 2004, 16: 2959-2964.
    [52] Slanina Z, Uhlík F, Nagase S, Computed structures of two known Yb@C74 isomers[J]. J. Phys. Chem. A, 2006, 110:12860-12863.
    [53] Zhang B L, Wang C Z, Ho K M, Structures of large fullerenes: C60 to C94[J]. Chem. Phys. Lett., 1992, 193: 225-230.
    [54] Bühl M, Wüllen C V, Computational evidence for a new C84 isomer[J]. Chem. Phys. Lett., 1995, 247: 63-68.
    [55] Osawa E, Ueno H, Yoshida M, et al. Combined topological and energy analysis of the annealing process in fullerene formation Stone–Wales interconversion pathways among IPR isomers of higher fullerenes[J]. J. Chem. Soc. Perkin. Trans., 1998, 2: 943-950.
    [56] Sun G, Kertesz M, Theoretical 13C NMR Spectra of IPR Isomers of Fullerenes C60, C70, C72, C74, C76, and C78 Studied by Density Functional Theory[J]. J. Phys. Chem. A, 2000, 104: 7398-7403.
    [57] Cai T, Xu L, Gibson H W, et al. Sc3N@C78: encapsulated cluster regiocontrol of adduct docking on an ellipsoidal metallofullerene sphere[J]. J. Am. Chem. Soc., 2007, 129: 10795-10800.
    [58] Krause M, Wong J, Dunsch L. Expanding the world of endohedral fullerenes-the Tm3N@C2n (39≤n≤43) clusterfullerene family[J]. Chem. Eur. J., 2005, 11: 706-711.
    [59] Yang S F, Dunsch L. A Large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39≤n≤44) [J]. J. Phys. Chem. B, 2005, 109: 12320-12328.
    [60] Yumura T, Sato Y, Suenaga K, et al. Which do endohedral Ti2C80 metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? a theoretical study[J]. J. Phys. Chem. B, 2005, 109: 20251-20255.
    [61] Hennrich F H, Michel R H, FischerA, et al. Isolation and characterization of C80[J]. Angew. Chem. Int. Ed. Engl., 1996, 35: 1732-1734.
    [62] Wang C R, Sugai T, Kai T, et al., Production and isolation of an ellipsoidal C80 fullerene[J]. Chem. Commun. Cambridge, 2000, 557-558.
    [63] Stevenson S, Rice G, Glass T, et al. Small-bandgap endohedral metallofullerenes in high yield and purity[J]. Nature, 1999, 401: 55-57.
    [64] Iiduka Y, Ikenaga O, Sakuraba A, et al. Chemical reactivity of Sc3N@C80 andLa2@C80[J]. J. Am. Chem. Soc., 2005, 127: 9956-9957.
    [65] Akasaka T, Nagase S, Kobayashi K, et al. 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral[J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 1643-1645.
    [66] Kobayashi K, Sano Y, Nagase S. Theoretical study of endohedral metallofullerenes: Sc3-nLanN@C80 (n=0-3)[J]. J. Comput. Chem., 2001, 22: 1353-1358.
    [67] Dunsch L, Krause M, Noack J, et al. Endohedral nitride cluster fullerenes: Formation and spectroscopic analysis of L3?xMxN@C2n (0≤x≤3; N=39,40)[J]. J. Phys. Chem. Solids, 2004, 65: 309-315.
    [68] L, Yang S, The recent state of endohedral fullerene research[J]. Electrochem. Soc. Interface, 2006, 15: 34-39.
    [69] Yang S, Dunsch L, Expanding the number of stable isomeric structures of the C80 cage: a new fullerene Dy3N@C80[J]. Chem. Eur. J., 2006, 12: 413-419.
    [70] Cai T, Xu L, Anderson M R, et al. Structure and enhanced reactivity rates of the D5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif[J]. J. Am. Chem. Soc., 2006, 128: 8581-8589.
    [71] Krause M, Dunsch L, Isolation and characterisation of two Sc3N@C80 isomers[J]. Chem. Phys. Chem., 2004, 5: 1445-1449.
    [72] Sato Y, Suenaga K, Okubo S, et al. Structures of D5d-C80 and Ih-Er3N@C80 fullerenes and their rotation inside carbon nanotubes demonstrated by aberration-corrected electron microscopy[J]. Nano. Lett., 2007, 7: 3704-3708.
    [73] Krause M, Dunsch L. Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength[J]. Angew. Chem. Int. Ed., 2005, 44: 1557-1560.
    [74] Shiozawa H, Rauf H, Pichler T, et al. Electronic structure of the trimetal nitride fullerene Dy3N@C80[J]. Phys. Rev. B., 2005, 72: 195409-195413.
    [75] Akasaka T, Nagase S, Kobayashi K, et al. 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral[J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 1643-1645.
    [76] Olmstead M M. Bettencourt-Dias A d, Duchamp J C, et al. Isolation and crystallographic characterization of ErSc2N@C80: an endohedral fullerene which crystallizes with remarkable internal order[J]. J. Am. Chem. Soc., 2000, 122: 12220-12226
    [77] Chen N, Zhang E Y, Wang C R. C80 encaging four different atoms: the synthesis, isolation, and characterizations of ScYErN@C80[J]. J. Phys. Chem. B, 2006, 110:13322-13325.
    [78] Wang X L, Zuo T M, Olmstead M M, et al. Preparation and structure of CeSc2N@C80: an icosahedral carbon cage enclosing an acentric CeSc2N unit with buried f electron spin[J]. J. Am. Chem. Soc., 2006, 128: 8884-8889.
    [79] Tan K, Lu X, Wang C R. Unprecedentedμ4-C26- Anion in Sc4C2@C80[J].. J. Phys. Chem. B, 2006, 110: 11098-11102
    [80] Huang H J, Yang S H, Zhang X X. Magnetic properties of heavy rare-earth metallofullerenes M@C82 (M=Gd, Tb, Dy, Ho, and Er) [J]. J. Phys. Chem. B, 2000, 104: 1473-1482.
    [81] Kobayashi K, Nagase S. Structures and electronic states of M@C82 (M=Sc, Y, La and lanthanides)[J]. Chem. Phys. Lett., 1998, 282: 325-329.
    [82] Nishibori E, Takata M, Sakata M, et al. Determination of the cage structure of Sc@C82 by synchrotron powder diffraction[J]. Chem. Phys. Lett., 1998, 298: 79-84.
    [83] Feng L, Wakahara T, Tsuchiya T, et al. Structural characterization of Y@C82[J]. Chem. Phys. Lett., 2005, 405: 274-277.
    [84] Akasaka T, Wakahara T, Nagase S, et al. La@C82 anion. An unusually stable metallofullerenes[J]. J. Am. Chem. Soc., 2000, 122: 9316-9317.
    [85] Maeda Y, Matsunaga Y, Wakahara T, et al. Isolation and characterization of a carbene derivative of La@C82 [J]. J. Am. Chem. Soc., 2004, 126: 6858-6859.
    [86] Tsuchiya T, Wakahara T, Maeda Y, et al. 2D NMR characterization of the La@C82 anion[J]. Angew. Chem. Int. Ed., 2005, 44: 3282-3285.
    [87] Wakahara T, Kobayashi J I, Yamada M, et al. Characterization of Ce@C82 and its anion[J]. J. Am. Chem. Soc., 2004, 126: 4883-4887.
    [88] Wakahara T, Okubo S, Kondo M, et al. Ionization and structural determination of the major isomer of Pr@C82 [J]. Chem. Phys. Lett., 2002, 360: 235-239.
    [89] Cai T, Xu L, Anderson M R, et al. Structure and enhanced reactivity rates of the D5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif[J]. J. Am. Chem. Soc., 2006, 128: 8581-8589.
    [90] Wang G W, Saunders M, Khong A, et al. A new method for separating the isomeric C84 fullerenes[J]. J. Am. Chem. Soc., 2000, 122: 3216-3217.
    [91] Dennis T J S, Kai T, TomiyanaT, et al. Isolation and characterisation of the two major isomers of [84]fullerene (C84) [J]. Chem. Commun., 1998, 619-620.
    [92] Tagmatarchis N, Okada K, Tomiyama T, et al. A catalytic synthesis and structuralcharacterization of a new [84] fullerene isomer[J]. Chem. Commun., 2001, 1366-1367.
    [93] Cao B P, Suenaga K, Okazaki T, et al. Production, isolation, and EELS characterization of Ti2@C84 dititanium metallofullerenes[J]. J. Phys. Chem. B, 2002, 106: 9295-9298.
    [94] Inakuma M, Yamamoto E, Kai T, et al. Structural and electronic properties of isomers of Sc2@C84(I, II, III): 13C NMR and IR/Raman spectroscopic studies[J]. J. Phys. Chem. B, 2000, 104: 5072-5077.
    [95] Tagmatarchis N, Aslanis E, Shinohara H, et al. Isolation and spectroscopic study of a series of mono- and dierbium endohedral C82 and C84 metallofullerenes[J]. J. Phys. Chem. B, 2000, 104: 11010-11012.
    [96] Wu H P, Deng K M, Lu G L, et al. Geometric and electronic properties of Sc2C2@C84[J]. J. Phys. Condens. Matter., 2006, 18: 7115-7122.
    [97] Zhang Z X, Chi M, Han P D, et al. What is stable structure about Tb3N@C84? IPR or IPR-violating[J]. J. Mol. Struct. (THEOCHEM), 2008, 857: 1-6.
    [98] T. Akasaka, T. Wakahara, S. Nagase, et al. La@C82 anion. an unusually stable metallofullerene[J]. J. Am. Chem. Soc. 2000, 122: 9316-9317.
    [99]Akasaka T, Nagase S, Kobayashi K, et al. 13C and 139La NMR Studies of La2@C80: First Evidence for Circular Motion of Metal Atoms in Endohedral Dimetallofullerenes[J]. Angew. Chem. Int. Ed. Engl. 1997, 36: 1643-1645.
    [100]Nishibori E, Takata M, Sakata M, et al. Pentagonal-Dodecahedral La2 Charge Density in [80-Ih]Fullerene: La2@C80[J]. Angew. Chem. Int. Ed. 2001, 40: 2998-2999.
    [101]Liu X G, Chi M, Han P D, et al. Geometric and electronic structures of non-IPR metallofullerene La@C72[J]. J. Mol. Struct.(Theochem), 2007, 818: 71-75.
    [102]Slanina Z, Ishimura K, Kobayashi K, et al. C72 isomers: the IPR-satisfying cage is disfavored by both energy and entropy[J]. Chem. Phys. Lett. 2004, 384: 114-118.
    [103]Ichikawa T, Kodama T, Suzuki S, et al. Isolation and Characterization of a New Isomer of Ca@C72[J]. Chem.Lett. 2004, 33: 1008-1012.
    [104]Kato H, Taninaka A, Sugai T, et al. Structure of a missing-caged metallofullerene: La2@C72 [J]. J. Am. Chem. Soc., 2003, 125: 7782-7783.
    [105]Furche F, Ahlrichs R. Absolute configuration of D2-symmetric fullerene C84[J]. J. Am. Chem. Soc., 2002, 124: 3804-3805.
    [106]Dennis T J S, Hulman M, Kuzmany H, et al. Vibrational infrared spectra of the two major isomers of [84] fullerene:C84{D2(IV)} and C84{D2d(II)}[J]. J. Phys. Chem. B, 2000, 104: 5411-5413.
    [107]Beavers C M, Zuo T, Duchamp J C, et al. Tb3N@C84: An improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule[J]. J. Am. Chem. Soc., 2006, 128: 11352-11353.
    [108]Krause M, Wong J, Dunsch L. Expanding the world of endohedral fullerenes-the Tm3N@C2n (39n≤4≤3) clusterfullerene family[J]. Chem. Eur. J. 2005, 11: 706-711.
    [109]Nagase S, Kobayashi K, Structural study of endohedral dimetallofullerenes Sc2@C84 and Sc2@C74[J]. Chem. Phys. Lett. 1997, 276: 55-61.
    [1] kearns D, Calvin M. Photovoltaic effect and photoconductivity in laminated organic systems[J]. J. chem. phys., 1958, 29: 950~951.
    [2] Tang C W, Vanslyke S A. Two-layer organic photovoltaic cell[J]. Appl . phys. Lett., 1986, 48: 183-185.
    [3] Sariciftci N S, Smilowitz L, Heeger A J, et al.Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258: 1474-1476.
    [4] Sariciftci N S, Braun D, Zhang C. Semiconducting polymer-buckminster fullerene heterojunctions: diodes photodiodes and photovoltaic cells[J]. Appl. Phys. Lett., 1993, 62: 585-587.
    [5] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007, 317: 222-225.
    [6] Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat. Mater., 2005, 4: 864-868.
    [7] Hummelen J C, Knight B W, LePeq F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives[J]. J. Org. Chem., 1995, 60: 532–538.
    [8] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270: 1789-1791.
    [9] Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv. Funct. Mater., 2005,15: 1617-1622.
    [10] Zheng L P, Zhou Q M, Deng X Y, et al. Methanofullerenes used as electron acceptors in polymer photovoltaic devices[J]. J. Phys. Chem. B., 2004, 108: 11921-11926.
    [11] Kooistra F B, Knol J, Kastenberg F, et al. Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor[J]. Org. Lett., 2007, 9: 551-554.
    [12] Ramos A Marcos, Rispens M T, van Duren J K J, et al. photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes[J]. J. Am. Chem. Soc., 2001, 123: 6714-6715.
    [13] Wienk M M, Kroon J M, Verhees W J H, et al. Efficient methano [70]fullerene /MDMO-PPV bulk heterojunction photovoltaic cells[J]. Angew. chem. int. edit., 2003, 42: 3371-3375.
    [14] Kooistra F B, Mihailetchi V D, Popescu L M, et al. New C84 derivative and its application in a bulk heterojunction solar cell [J]. Chem. Mater., 2006, 18: 3068-3073.
    [15] Padinger F, Rittberger R S, Sariciftci N S. Effects of postproduction treatment on plastic solar cells[J]. Adv. Funct. Mater., 2003, 13: 85-88.
    [16] Dewar M J S, Zoebisch E G, Healy E F, et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model [J]. J. Am. Chem. Soc., 1985, 107: 3902-3909.
    [17] Becke A D J. Density-functional thermochemistry. III. The role of exact exchange[J].Chem. Phys., 1993, 98: 5648-5652.
    [18] Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 03, Revision A. 1, Gaussian Inc., Pittsburgh PA, 2003.
    [19] Anderson H L, Boudon C, Diederich F, et al. 61, 61-Bis (trimethylsil-ylbutadiynyl) -1,2-dihydro-1,2-methanofullerene[60]: crystal structure at 100 K and electrochemical conversion to a conducting polymer[J]. Angew Chem Int Editissn, 1994, 33: 1628-1632.
    [20] Osterodt J, Nieger M, V?gtle F et al. First X-ray determination of cyclopropane structure in methanofullerenes[J]. J. Chem. Soc. Chem. Commun., 1994, 1607-1608.
    [21] Timmerman P, Anderson H L, Faust R, et al. Fullerene-acetylene hybrids: Towards a novel class of molecular carbon allotropes[J]. Tetrahedron, 1996, 52: 4925-4947.
    [22] Paolucci F, Marcaccio M, Roffia S, et al. Electrochemical monitoring of valence bond isomers interconversion in bipyridyl-C61 anions[J]. J. Am. Chem. Soc., 1995, 117: 6572–6580.
    [23] Janssen R A J, Hummelen J C, Wudl F. Photochemical fulleroid to methanofullerene conversion via the Di-.pi.-methane (zimmerman) rearrangement[J]. J. Am. Chem. Soc., 1995, 117: 544–545.
    [24] Eiermann M, Wudl F, Prato M, et al. Electrochemically induced isomerization of a fulleroid to a methanofullerene[J]. J. Am. Chem. Soc., 1994, 116: 8364–8365.
    [1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [2] Treacy M M J, Ebbessen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678-680.
    [3] Wong W E, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, l997, 277: 1971-1975.
    [4] Morisada Y, Fujii H, Nagaoka T, et al. Structural materials:properties, microstructure and processing [J]. Mater. Sci. Eng. A, 2006, 419: 344-346.
    [5] Durgun E, Dag S, Bagci V M, et a1. Systematic study of adsorption of single atoms on a carbon nanotube [J]. Phys. Rev. B., 2003, 67: 201401-201404.
    [6] Dai H J. Carbon nanotubes: opportunities and challenges [J]. Surf. Sci., 2002, 500: 2l8-241.
    [7] Kruger P, Rakotomahevitra A, Parlebas J, et a1, Magnetism of epitaxial 3d-transition -metal monolayer on graphite [J]. Phys. Rev. B., 1998, 57: 5276-5280.
    [8] Ma Q, Rosenberg A. Interaction of Ti with the (0001) surface of highly oriented pyrolyticgraphite [J]. Phys. Rev. B., l999, 60: 2827-2832.
    [9] Ma Q, Rosenberg R. Interaction of Al clusters with the (0001) surface of highly oriented pyrolyric graphite [J]. Surf, Sci., 1997, 39l: L1224-1229.
    [10] Ohno T R, Chen Y, Harvey S E, et al. C60 bonding and energy-level alignment on metal and semiconductor surfaces [J]. Phys. Rev. B., 1991, 44: l3747-13755.
    [11] Vijayalrishnan V, Santra A, Seshadri R, et a1. A comparative study of the interaction of nickel clusters with buckministerfullerene C60 and graphite [J]. Surf. Sci., 1992, 262: L87-90.
    [12] Menon M, Andrjotis A, Froudakis G. Curvature dependence of metal catalyst atom interaction with carbon nanotubes walls[J]. Chem. Phys. Lett., 2000, 320: 425-434.
    [13] Gao C, Jin Y Z. Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization [J]. and metal loading, Macromolecules, 2005, 38: 8634-8648.
    [14] Jiang K, Eitan A, Schadler L S. Selective attachmen of gold nanoparticles to nitrogen-doped carbon nanotubes [J]. Nano. Lett., 2003, 3: 275-277.
    [15] Yang M, Koutsos V, Zaiser M. Interactions between polymers and carbon nanotubes:A molecular dynamics study [J]. J. Phys. Chem. B., 2005, 109: 10009-100014.
    [16] Katz E, Willner I. Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics [J]. Chem Phys Chem., 2004, 5: 1084-1086.
    [17] Huang B, Xia Y, Zhao M, et al. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes [J]. J. Chem. Phys., 2004, 122: 084708-084716.
    [18] Gao H, Kong Y, Cui D. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes[J]. Nano. Lett., 2003, 3: 471-473.
    [19] Kang Y J, Choi J, Moon C Y, et al. Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms [J]. Phys. Rev. B., 2005, 71: 115441-115447..
    [20] Yin Y E, Mays T, McEnaney B, Molecular simulations of hydrogen storage in carbon nanotube arrays, Langmuir, 2000, 16: 10521-10527.
    [21] Xia Y, Zhu J Z, Zhao M, et a1. Enhancement of hydrogen physisorption on single-walled carbon nanotubes resulting from defects created by carbon bombardment [J]. Phys. R. B, 2005, 71: 075412-075420.
    [22] Yang J, Liu H J, Chan C T. Theoretical study of alkali-atom insertion into small-radius carbon nanotubes to form single-atom chains [J]. Phys. Rev. B., 2001, 64: 085420-085424.
    [23] Moghaddam M J, Taylor S, Gao M, et a1. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry [J]. Nano Lett., 2004, 4: 89-93.
    [24] Tsang S C, Chert Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372: 159-162..
    [25]侯文生.载银4A沸石抗菌剂及载银锌纳米SiO2抗菌纤维的制备、结构与性能的研究, [学位论文],太原,太原理工大学, 2007.
    [26] Fletcher R. Practical methods of optimization, Vol.1, New York: Wiley, 1980.
    [1] Margoshes M, Vallee B L. A cadmium protein from equine kidney cortex [J].J. Am. Chem. Soc.,1957, 79: 4813-4814.
    [2]郝守进,茹炳根.金属硫蛋白及其在食品工业应用中的研究进展[J].食品与发酵工业,2002, 28: 62-67.
    [3]张保林,盛湘溶,刘兴军,等.金属硫蛋白测定方法—银饱和分析法[J].药物生物技术,1996, 3: 3l-33.
    [4]Shaidh Z A. Radio immunoassay for metallothionein in body fluids and tissues [J]. Methods Enzymol., 1991, 205: 120-130.
    [5]周棱,王衍真.金属硫蛋白研究进展及其RIA的应用[J].国外医学,1995, 19: 11-15.
    [6]郑军恒,茹刚,茹炳根.人胎肝金属硫蛋白的分离纯化及酶联免疫吸附检测[J].北京大学学报(自然科学版),1999, 35: 225-229.
    [7] Sanz-Nebot V, Andn B, Barbosa J. Characterization of metallothionein isoforms from rabbit liver by liquid chromatography coupled to electrospray mass spectrometry [J]. J.Chromatog. B, 2003, 796: 379-393.
    [8] Chi Q, Zhang J, Nielsen J U. et a1. Molecular Monolayers and Interfacial Electron Transfer of Pseudomonas aeruginosa Azurin on Au(111) [J]. J. Am. Chem. Soc., 2000, 122: 4047-4055.
    [9] Zhang J, Chi Q, Kutznetsov A M. et a1. Electronic properties of functional biomolecules at metal/aqueous solution interfaces [J]. J. Phys. Chem. B, 2002, 106: 1131-1152.
    [10] Ritchie S M C, Kissick K E, Bachas LG.. et a1. Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture [J]. Environ. Sci. Technol, 2001, 35: 3252-3538.
    [11] Kong J, Franklin N R, Zhou C, et a1. Nanotube molecular wires as chemical sensors [J]. Science, 2000, 287: 622-627.
    [12] Collins P G, Bradley K, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science, 2000, 287: 1801-1804.
    [16] Peng S,Cho K. Ab initio study of doped carbon nanotube sensors [J]. Nano Lett., 2003, 3: 513-518.
    [14] Goldoni A R, Larciprete L, Petaccia S, Single-wall carbon nanotube interaction gases: sample contaminants and environmental monitoring [J]. J. Am. Chem. Soc., 2003, 125: l1329-l1333.
    [15] Wei B Y, Lin C S, Lin H M. Examining the gas-sensing behaviors of carbon nanotubes using a piezoelectric quartz crystal microbalance [J]. Sens. Mater., 2003, 15: 177-190.
    [16] Kong J, Chapline M. Dai G H. Functionalized carbon nanotube for molecular hydrogen sensors [J]. Adv. Mater., 2001, 13: 1384-1386.
    [20] Duclaux L. Review of the doping of carbon nanotubes (multiwalled and single-walled) [J]. Carbon, 2002, 40: 1751-1764.
    [18] Peng S, Cho K. Ab initio study of doped carbon nanotube sensors [J]. Nano. Lett., 2003, 3: 513.
    [19] Wei B Y, Hsu M C, Su P G. et a1. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature[J]. Sens. Actuators. B, 2004, 101: 81-86.
    [20] Modi A, Koratkar N, Lass E. et a1. Miniaturized gas ionization sensors US carbon nanotubes [J]. Nature, 2003, 424: 171-174.
    [21] Zhao Q, Nardelli M B, Bernhol C J. Carbon nanotube-metal cluster composites: A new road to chemical sensors [J]. Nano Let., 2005, 5: 847-852.
    [22] Wang R, Zhang D, Sun W, Liu C. A novel aluminum-doped carbon nanotubes sensor for carbon monoxide [J]. J.Mo.Struc:Theochem, 2007, 806: 93-99.
    [23] Zhang Y M, Zhang D J, Liu C B. Novel chemical sensor for cyanides: Boron-doped carbon nanotubes [J]. J. Phys. Chem. B, 2006, 110: 4671-4675.
    [24] Wohlstadter J N, Wilbur J L, Sigal G B, et a1. Carbon nanotube-based biosensor [J]. Adv. Mater, 2003, 15: 1184-1190.
    [25] Besteman K, Lee J O, Dekker C, et a1. Enzyme coated carbon nanotubes as single molecule biosensor [J]. Nano. Lett, 2003, 3: 727-730.
    [26] Schedin F, Geim A K, Morozov S V, et a1. Detection of individual gas molecules adsorbed on graphene [J]. Nat. Mater, 2007, 6: 652-657.
    [27] Leenaerts O, Partoens B, Peeters F M. Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study [J]. Phys.Rew. B, 2008, 77: 125-126.
    [28] Wehling T O, Novoselov K S, Morozov S V, et a1. Molecular doping of graphene [J]. Nano. Lett, 2008, 8: 173-176.
    [29] Novoselov K S, Geim A K, Morozov S V, et a1. Two-dimensional gas of massless Diracfermions in graphene [J]. Nature, 2005, 438: 197-200.
    [30] Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater, 2007, 6: 183.
    [31] Zhang Y, Tan J W, Stormer H L, et a1. Experimental observation of the quantum Hall effect and Berry’s phase in graphene [J]. Nature, 2005, 438: 201-205.
    [32] Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite [J]. Adv. Phys, 2002, 51: 1-6.
    [33] Dutta P, Horn P M. Low-prequency fluctuations in solids:1f noise [J]. Rev. Mod. Phys., 1981, 53: 497.
    [34] Ullman A. Formation and structure of self-assembled monolayers[J]. Chem. Rev., 1996, 96: 1533-1554.
    [35] Xia Y, Rogers J A, Paul K E. Unconventional methods for fabricating and patterning nanostructures [J]. Chem. Rev., 1999, 99: 1823-1848.
    [36] Joachim C, Gimzewski J K. Electronics using hybrid-molecular and mono-molecular devices [J]. Nature, 2000, 408: 541-548.
    [37] Mao S, Lu G H, Yu K H, et al. Specific biosensing using carbon nanotubes functionalized with gold nanoparticle–antibody conjugates [J].Carbon, 2010, 48: 479-486.
    [38] Alwarappan S, Erdem A, Liu C, Li C Z. Probing the electrochemical properties of graphene nanosheets for biosensing applications[J]. J. Phys. Chem. C, 2009, 113: 8853-8857.
    [39] Liu Z, Robinson J T, Sun XM, Dai H J. PE Gy lated nanographene oxide for delivery of water-insoluble cancer drugs[J]. J. Am. Chem. Soc., 2008, 130: 10876-10877.
    [40] Moseley P T. Solid state gas sensors[J]. Meas. Sci. Technol, 1997, 8: 223.
    [41] Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors [J]. Science, 2000, 287: 622-625.
    [42] Collins P G, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science, 2000, 287: 1801-1804.
    [43] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nat. Mater., 2007, 6: 652-655.
    [44] Gan Y, Sun L, Banhart F. One- and two-dimensional diffusion of metal atoms in graphene [J]. Small, 2008, 4: 587-591.
    [45] Khantha M, Cordero N A, Molina L M, et al. Interaction of lithium with graphene: An ab initio study [J]. Phys. Rev. B, 2004, 70: 125422.
    [46] Duffy D M, Blackman J A. Magnetism of 3d transition metal adatoms and dimers on graphite [J]. Phys. Rev. B, 1998, 58: 7443.
    [47] Yagi Y, Briere T M, Kumar H F, et al. Phase diagram of single wall carbon nanotube crystals under hydrostatic pressure [J]. Phys. Rev. B, 2004, 69: 1-11.
    [48] Duffy D M, Blackman J A. The energies of Ag adatoms and dimers on graphite [J]. Surf. Sci., 1998, 415: L1016
    [49] Ao Z M, Yang J, Li S, et al. NO2 and humidity sensing characteristics of few-layer graphene[J]. Chem. Phys. Lett., 2008, 461: 276-279.
    [50] Chi M, Zhao Y P. Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study[J]. Com. Mats. Sci., 2009, 46: 1085-1090.
    [51]Avramov P V, Kudin K N, Scuseria G E. Single wall carbon nanotubes density of states: comparison of experiment and theory [J]. Chem. Phys. Lett., 2003, 370: 597-601.
    [52] Jeloaica L, Sidis V. DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface [J].Chem. Phys. Lett., 1999, 300: 157-162.
    [53] Bain C D, Evall J, Whitesides G M. Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent[J]. J. Am. Chem. Soc., 1989, 111: 7155-7164.
    [54] Kuhnle A, Linderoth T R, Hammer B. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy [J]. Nature, 2002, 415: 891-893.
    [55]Gorbitz C H, Dalhus B. L-Cysteine, monoclinic form, redetermination at 120K [J]. Cryst. Struct. Commun., 1996, 52: 1756-1759.
    [56] Lugo-solis A, Vasiliev I. Ab initio study of K adsorption on graphene and carbon nanotubes: Role of long-range ionic forces[J]. Phys. Rew. B, 2007, 76: 235431.
    [57] Delley B. Hardness conserving semilocal pseudopotentials[J]. Phys. Rew. B, 2002, 66: 155125.
    [58] Bierbach U, Hambley T W, Farrell N. Modification of Platinum(II) Antitumor Complexes with Sulfur Ligands[J]. Chem, 1998, 37: 717-723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700