水杨酸对水分胁迫下大麦幼苗叶片光系统Ⅱ的影响中国象牙参属新分类群及花粉特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水杨酸(salicylic acid,SA)是植物体内产生的一种简单的酚类物质。作为植物内源信号分子,在植物许多生理过程中的作用越来越受到重视。近些年来。陆续发现水杨酸能提高植物对非生物逆境的抗性,如提高植物的抗盐性、抗寒性、抗热性以及抗旱性等。我们这项研究的目的在于考察外源水杨酸预处理对干旱条件下大麦幼苗生理活动的影响,初步阐明水分胁迫下,光系统Ⅱ的主要功能蛋白D1,D2,LHCⅡ及其相应的基因表达与水杨酸,活性氧ROS之间的关系和相互作用机理。
     供试材料为大麦(Hordeum vulgate L)。直接用含PEG-6000(16%)的培养液胁迫的大麦幼苗为对照样(CK);用0.25mmol/L的水杨酸浸泡大麦幼苗根部预处理1天再用含16%(w/v)PEG-6000的培养液进行水分胁迫(简称SA);用0.25mmol/L的水杨酸+0.5mmol/L DMTU(二甲基硫脲,一种H_2O_2清除剂)预处理24小时后再用含16%(w/v)PEG-6000的培养液进行水分胁迫处理(简称SA+D)。以1d为间隔,三组处理时间为0h、24h、48、72h。
     用0~1.5mmol/L11种不同浓度的水杨酸进行预处理,水分胁迫2天后,测量电渗率和丙二醛含量后分析表明:0.25mmol/L的水杨酸预处理是最佳浓度,说明水杨酸提高植物的水分胁迫抗性与浓度密切相关。
     测定CK、SA、SA+D的RWC,电渗率,MDA的含量及叶总H_2O_2的含量表明,水杨酸预处理能使RWC的下降和电渗率,MDA的含量及叶总H_2O_2的含量的上升减缓。在SA+D中,清除了H_2O_2,则后来的胁迫中水杨酸的保护作用消失,说明水杨酸的保护作用与ROS有关。水杨酸+DMTU预处理后细胞总H_2O_2的变化与叶绿体H_2O_2的变化不同,叶绿体H_2O_2总是维持低水平。
     SDS-PAGE和Western杂交分析表明:CK的类囊体膜蛋白组分稳态水平随胁迫处理时间的延长而持续下降,尤其是光系统Ⅱ功能蛋白中的内周天线CP43,CP47,OEE1,CF1和光系统Ⅱ外周天线LHCⅡ(23-30kD范围多肽)下降较为明显。相比之下,SA和SA+D的类囊体膜蛋白组分稳态水平随胁迫处理时间的延长下降的水平轻微。
     Northern杂交分析表明:水杨酸同样可以在转录水平保护光系统,但核编码的cab和rbcS基因的转录水平与叶绿体编码的基因的转录水平是不一样的,在用水杨酸+DMTU处理的幼苗中,核编码的cab和rbcS基因随着水分胁迫的下降加剧,转录水平下降的最严重,甚至超过了CK。水杨酸预处理的下降程度明显减缓。核基因cab和rbcS转录水平的变化与细胞核,细胞浆内的ROS的变化一致。叶绿体编码的基因psbA,psbD在SA和SA+D中,在水分胁迫下仅表现出轻微的下降,这和叶绿体内ROS和蛋白的变化是一致的。比较Northern杂交和Western杂交的结果可以得知:SA+D处理中,cab转录的mRNA的下降和LHCⅡ蛋白保持稳定的情况表现的不一致,这是因为LHCⅡ维持含量不需要大量cab mRNA,而它的含量主要与叶绿体的ROS有关。
     经水杨酸预处理24h后,气孔导度降低,随之CO_2的同化速率降低,这是一种胁迫反应,在随后的水分胁迫中,气孔导度和CO_2的同化速率降低程度减缓,水杨酸提高了水分胁迫抗性。在SA+D中清除了H_2O_2,则水杨酸的保护作用消失,说明水杨酸提高水分胁迫抗性与ROS有关。
     用水杨酸或水杨酸+DMTU预处理大麦幼苗24小时,在随后的水分胁迫中可观察到Fv/Fm,Fv'/Fm'和Φ_(PSⅡ)的数值比CK更高。表明水杨酸对Fv/Fm,Fv'/Fm'和Φ_(PSⅡ)有保护作用。这种保护作用与水杨酸或水杨酸+DMTU预处理后叶绿体内低水平ROS相关。
     用水杨酸预处理大麦幼苗24小时,可观察到Fv'/Fm'的值比对照CK更高,即在有热耗散时,PSⅡ的最大光合效率增高;对应的NPQ的变化是:加水杨酸后,降低很明显,即:水杨酸能减少PSⅡ的热耗散。SA+D的变化介于CK和SA之间,说明水杨酸对PSⅡ热耗散的调节部分依赖于活性氧。
     水杨酸预处理提高大麦幼苗水分胁迫抗性与水杨酸预处理所用的浓度有密切的关系。水杨酸预处理提高大麦幼苗对水分胁迫的抗性与活性氧有关。光系统Ⅱ的主要功能蛋白D1,D2,LHCⅡ及其相应的基因转录在水分胁迫下会逐渐下降,而水杨酸预处理能缓解这种下降,水杨酸缓解渗透胁迫主要是通过ROS,而并非水杨酸本身作用。
     第二章中国象牙参属新分类群及花粉特征的研究
     本研究报道了姜科Zingiberaceae象牙参属Roscoea的一种新植物,以及在光学显微镜和扫描电镜下观察到的象牙参属Roscoea 11种3变种的花粉形态特征和研究结果。
     描述了云南姜科Zingiberaceae一新种,即苍山象牙参Roscoeacangshanensis M.H.Luo,X.F.Gao & H.H.Lin。该种与大理象牙参R.forrestiiCowley在体态上相近,但唇瓣深裂成2裂片,每个裂片再2裂,基部收缩成具白色条纹的柄,叶片较狭窄,(2-)7-24×1.5-2.5cm,叶片基部狭缩成叶柄状而不同。该新种叶片基部狭缩成叶柄状,唇瓣倒卵状楔形,长2.5-30.5cm,宽2.5-3.0cm,基部收缩成具白色条纹的柄,与长柄象牙参R.debilis Gagnep.相似,但苞片非管状,较短,长5-15mm,隐藏于叶鞘内,花冠管较长,10-12.5cm,唇瓣深裂成2裂片,每个裂片再2裂,可与后者明显区别。就目前来看,本研究发现了象牙参的一新种是中国特有种。
     花粉特征的研究支持新种苍山象牙参R.cangshanensis的建立。
     对本属花粉的研究表明:花粉类型属于无萌发孔型(Type Nonaperturate),具刺亚型(Subtype Spinate),长刺组(Group Long-spinate)。花粉为单粒。球形花粉粒大小变异幅度为47.2—88.5μm,属中小型花粉。花粉不具萌发孔。花粉壁厚为1.8—3.4μm。外壁薄,分层不明显,内壁厚。根据Hesse和Kubitzki的研究资料,将内壁分为外层及内层。外壁表面具刺状纹饰,刺长为2.0—4.6μm,刺间的外壁表面有皱褶,或比较平整而带有少数颗粒或有小突起。
     花粉特征的相似性表明本属是一个单起源的自然类群。根据花粉表面刺间是否皱褶的稳定特征分为外壁刺间皱褶亚组Subgroup crapy-surface和外壁刺间平整亚组Subgroup smooth-surface两个亚组。根据花粉特征和分亚组支持毛象牙参R.cautleoides Gagnepain var.pubescens Z.Y.Zhu独立成种,予以恢复。并可将微凹象牙参R.tibetica Batalin var.emarginata S.Q.Tong并入藏象牙参Roscoea tibetica Batalin。与邻近属花粉的相似点表明了它们相近的亲源关系。象牙参属Roscoea的花粉形态的研究为进一步研究该属乃至姜科植物系统演化提供了资料。
Chapter 1 Physiological Effects of Salicylic Acid on Barley Photosystem II Under Osmotic Stress
     Salicylic acid (SA) is a simple hydroxybenzene in plant. As an endogenesis signal molecule, the effects of SA on many physiological progresses in plant have been paid more and more attentions. In recent years, the ability of SA to improve the endurance of plants in abiotic stress, such as salt, cold, hot and drought has been found. We tried to study the effects of exogenous SA pretreatment on the physiological functions and photosynthesis system II of barley seedlings under osmotic stress, and primarily evaluated the effects of exogenous SA to PSII major proteins D1, D2 and LHC II and the transcripts of corresponding genes psbA, psbD and cab and the interaction of PSII, ROS and SA under osmotic stress.
     The material for study is barley (Hordeum vulgare L.): the roots of control seedlings (CK) were submerged in half-strength Hoagland's nutrient solution; the roots of SA pretreated seedlings (SA) were submerged in 0.25mmol/L SA+half-strength Hoagland's nutrient solution; the roots of SA+D pretreated seedlings were submerged 0.25mmol/L SA+half-strength Hoagland's nutrient solution+0.5mmol/L DMTU(dimethylthioutea). Osmotic stress was initiated by submerging the roots of the seedlings into PEG solutions with an osmotic potential of - 0.6 MPa in beakers. All samples were treated for 0, 24, 48, and 72 h.
     Barley seedlings pretreated with different concentrations of SA pretreatment 24h were transferred into PEG solutions with an osmotic potential of - 0.6 MPa (16%) in beakers for 48 h. then the effects of different concentrations (0~1.5 mmol/L) of SA used in pretreatment were examined by the electrolyte leakage of membranes and Malonydialdehyde (MDA) Contents of leaves. It was shown that application of exogenous SA pretreatment at 0.25mmol/L most decreased the electrolyte leakage of membranes and MDA Contents of leaves, indicating that the effects of SA were related closely to concentration of SA used.
     The decrease in relative water content (RWC), and increase in electrolyte leakage of plasma membranes and MDA in water-stressed leaves were alleviated by SA pretreatment. The protective effects of SA in SA+D barley seedlings disappeared because SA-induced H_2O_2 was eliminated by DMTU, indicating that protective effects of SA was associated with ROS. In SA+D leaves, leaf total H_2O_2 changed differently from plastid H_2O_2, which almost did not increase.
     SDS-PAGE and Western blotting analysis showed that decrease in the PSII major protein D1, D2, and LHCII were alleviated by SA and SA+D pretreatment under osmotic stress because of lower levels of ROS in plastids of both pretreatments.
     Northern blotting analysis indicated that the transcripts of nuclear-coded cab and rbcS were different from those of plastid-coded psbA and psbD. The decrease in transcripts of cab and rbcS in SA+D barley seedings was more serious than that in SA and CK, which was in accord with the changes of ROS in cytosol. Compared with CK, the transcripts of psbA and psbD in SA and SA+D decreased slightly, which were in accord with the changes of ROS in plastid. the decrease in transcripts of cab did not lead to decrease of level of LHCII, because sustainability of LHCII content did not need corresponding mRNA and was associated with inner ROS in plastid.
     After 24h of SA pretreatments, stomatal conductance and CO_2 assimilation rate decreased, which can be regarded as a stress response. As the water stress developed, a less decrease of stomatal conductance and CO_2 assimilation rate was observed in SA plants, indicating that SA pretreatment improved water stress tolerance. and the effects of stomatal closure induced by SA pretreatment disappeared in SA+D pretreated plants because H_2O_2 was eliminated, showing that water stress tolerance promoted by SA pretreatment was relative to ROS.
     After 1 day pretreatment with SA or with SA+D, higher values of Fv/Fm, Fv'/Fm' andΦ_(PSII) were observed during subsequent osmotic stress, showing that SA had a protective role of the efficiency of Fv/Fm, Fv'/Fm' andΦ_(PSII). These effects were associated with the low level of ROS in plastid.
     After 24h pretreatment with SA and before osmotic stress, a higher value of Fv'/Fm' revealed the efficiency of excitaion energy capture by open reaction centres (Fv'/Fm') increased in the case of heat dissipation, meanwhile, corresponding value of NPQ was remarkbly lower than that in CK. In other words, pretreatment with SA could reduce the heat dissipation of PS II. After 1 day pretreatment with SA+D and before osmatic stress, the values of Fv'/Fm' and NPQ distributed between that of SA and CK, indicating that the modulating effect of SA for heat dissipation of PSII partly depended on ROS.
     As a whole, SA pretreatment enhanced water stress tolerance of barley seedlings, and the effects of SA were related closely to concentration of SA pretreatment. Osmotic stress tolerance enhanced by SA pretreatment was associated with ROS. The decrease in PSII major proteins D1, D2 and LHC II and the transcripts of corresponding genes psbA, psbD and cab were alleviated by SA pretreatment under water stress. We found that enhanced osmotic stress tolerance in barley seedings by SA pretreatment was mainly mediated with ROS, rather than the SA itself.
     Chapter 2 Studies on Pollen Morphology and A New Species of Roscoea (Zingiberaceae) in China
     Pollen morphology of 11 species and 3 varieties of Roscoea (Zingiberaceae) in China was studied under both light microscope and scanning electron microscope, and a new species of Roscoea was also reported in this paper.
     Roscoea cangshanensis M. H. Luo, X. F. Gao & H. H. Lin, a new species of the Zingiberaceae from Yunnan, China, is described and illustrated. The new species is related to R. forrestii Cowley in habit, but differs in having 2-lobed labellum, each lobe 2-lobulate, base narrowed to a stalk with white lines, and narrower leaf blade, (2-)7-24×1.5-2.5 cm, with base narrowed to petiolelike. The new species is also similar to R. debilis Gagnep. in having leaf base narrowed to petiolike, labellum obovate-cuneate, 2.5-3.5×2.5-3.0 cm, with white lines at throat, but differs in having bracts non-tubular, shorter, 5-15 mm long, concealed in leaf sheaths, corolla tubes longer, 10-12.5 cm long, labellum 2-lobed with each lobe further 2-lobulate.
     Pollen grains of Roscoea are spherical, subspherical, 47.2—88.5μm in size, nonaperturate. The wall is composed of a very thin exine and a thick intine. The exine is spinate, crapy or smooth between spines, and spinas are about 1.8—3.4μm.
     According to pollen morphology, the pollen of Roscoea belonged to Group Long-spinate , Subtype Spinate, Type Nonaperturate, and could be considered as a natural group, and was divided into two subgroups: Subgroup crapy-surface and Subgroup smooth-surface. The taxonomic significance of the pollen types in Roscoea was also discussed.
引文
1. Alvarez ME. 2000. Salicylic acid in the machinery of hypersenstitive cell death and disease resistance. Plant Mol Biol, 44: 429-442.
    2. Affourtit C, Albury M S, Crichton P G, Moore A L. 2002. Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett., 510:121-126.
    3. Berhold DA, Andersson ME, Nordlund P. 2000. New insight into the structure and function of the alternative oxidase. Biochim Biophys Acta, 1460:241-254.
    4. Gonzalez-Meier MA, Ribas-Carbo M, Giles L, Siedow JN. 1999. The effect of growth and measurment temperature on the activitu of the alternative respiratoty pathway. Plant Phsiol, 120: 765-772.
    5. Maxwell DP, Nickels R, Mclntosh L. 2002. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes assoiated with pathogen attack and senescence. Plant J, 29:269-279.
    6. Rhoads DM, Umbach AL, Siedow JN. 1997. Identification of thealternative oxidase cysteine residue involed in regulatory disufide bond formation. Plant Physiol, 114;10-16.
    7. Igamberdiev AU, Bykova NU, Gardestrom P. 1997. In volvemengt of cyanide-resistant and rotenone-insensitive-insensitive pathwanys of mitochondrial electron transport during of glycine in higher plants. FEBS Lett, 412: 265-269.
    8. Lacomme C, Roby D. 1999. Identification of new early markers of the hypersensitive response of Arabidopsis thaliana. FEBS Lett;459,149-153.
    9. Djajanegara I, Holtzapffel R, Finnegan PM, Hoefnagel MHN, Berhold DA, Wiskich J T, Day DA. 1999. A single amino avid change in the plant alternative oxidase alters the specificity of organie acid activation. FEBS Lett, 454: 220-224
    10. Dennis ES, Walker JC, Liewellyn DJ. 1989. The response to anaerobic stress: transcriptional regulation of genes for anaerbically induced proteins. In: Cherry T H (2ed). Environmental Stress in Plants. Berlin: Springer-Verlag, 231-245
    11. Considine MJ, HolzapffeL RC, Day DA, Whelan J, Millar AH. 2002. Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol, 129: 949-953.
    12. Desikan R, Mackerness AH, Hancock JT, Neill SJ. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol, 127: 159-172.
    13. Marissen N, van der Plas LHW, Duys JP. 1986. Influence of temperature, ethylene and cyanide on the occurrence of alternative respiration in mitochondria from iris bulbs. Plant Sci, 45: 19-25
    14. Couee I, Defontaine S, Carde JP. 1992. Effects of anoxia on mitochondrial biogenesis in rice roots. Plant Physiol, 98: 411-421.
    15.王邦锡,孙莉,黄久常.1992.渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系.中国科学(B辑),21:364~368
    16.李得红,潘瑞炽.1995.水杨酸在植物体内的作用.植物生理学通讯,31:144~149
    17.李锦树,王洪春,王文英.1983.干旱对玉米叶片细胞透性及膜脂的影响.植物生理学报,9:223~229
    18. Baker NR. 1991. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiologia Plantarum, 81: 563-570
    19.王根轩,杨成德,梁厚果.1989.蚕豆叶片发育与衰老过程中超氧化物歧化酶活性与丙二醛含量变化.植物生理学报,115:13~17.
    20.林植芳,李双顺,林桂珠等.1988.衰老叶片和叶绿体中的H_2O_2的积累与膜脂过氧化的关系.植物生理学报,14:16~22.
    21. Hao LM, Liang HG, Wang ZL, Liu XM. 1999a. Effects of water stress and rewatering on turnover and gene expression of photosystem II reaction center polypeptide D1 in Zea mays. Austr J Plant Physiol, 26: 375-378
    22. Hao LM, Wang HL, Liang HG. 1999b. Effects of rewatering on light-harvesting chlorophyll a/b protein complex of photosystem Ⅱ in zea mays. Acta Bot Sin, 41: 613-616
    23. Hao LM, Wang HL, Wen JQ, Liang HG 1996. Effects of water stress on light-harvesting complex Ⅱ (LHCⅡ) and expression of a gene encoding LHCⅡ in Zea mays. J Plant Physiol, 149: 30-34
    24. Havaux M. 1992. Stress tolerance of photosystem Ⅱ in vivo: antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiology, 100: 424-432
    25. Havaux M, Canani O, Malkin S. 1986. Photosynthetic responses to water stress in leaves expressed by photoacoustics and related methods. Ⅱ. The effect of rapid drought on the electron transport and relative activities of the two photosystems. Plant Physiol, 82: 834-839
    26. He JX, Wang J, Liang HG. 1995. Effects of water stress on photochemical function and protein metabolism of photosystem Ⅱ in wheat leaves. Physiol Plant, 93: 771-777
    27. He JX, Wen JQ, Chong K, Liang HG. 1998. Changes in transcript levels of chloroplastpsbA andpsbD genes during water stress in wheat leaves. Physiol Plant, 102: 49-54
    28. Jagtap V, Bhargava S, Streb P, Feierabend J. 1998. Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J Exp Bot, 49: 1715-1721
    29. Lacerenza, NG, Cattivelli L, Fonzo ND. 1995. Expression of drought induced genes in durum wheat under water stress in field conditions. J Plant Physiol, 146: 169-172
    30. Lu C, Zhang J. 1999. Effects of water stress on photosystem Ⅱ photochemistry and its thermostability in wheat plants. J Exp Bot 50: 1199-1206
    31. Sambmok J, et al. Molecular Cloning. 2rid ed. New York, USA: Cold Spring Harbor Laboratory Press, 1989.
    32.周功克,梁厚果.2000.盐胁迫下烟草愈伤组织内源活性氧及乙烯的产生与交替途径发生、运行的关系.实验生物学报,33:285-291.
    33. Juszczuk IM, Wagner AM, Rychter AM. 2001. Regulation of alternative oxidase activity during phosphate deficiency in bean roots(P-haseolus vulgaris). Physiol Plant; 113: 185-92.
    34. Smith I., R. Cromie and Stainsby. 1988. Seeing Gel Wells Well. Anal. biochem., 169: 370~371.
    35. Prasad TK, Anderson MP, Martin BA. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6: 65~74.
    36.魏炜,赵欣平,吕辉,刘克武,喻东。三种抗氧化酶在小麦抗干旱逆境中的作用初探。四川大学学报(自然科学版),2003,40(6):1172~1175.
    37. Chen Z, Ricigliano JR, Klessig DE 1993a. Purification and characterization of a soluble salicylic acid binding protein from tobacco. Proc Natal[J]. Acad Sci. USA. 90: 9533-9537.
    38. Mohanty P, Boyer JS. 1976. Chloroplast response to low water potentials. Ⅳ. Quantum yield is reduced. Plant Physiol, 57: 704-709
    39. Ruban AV, Young AJ, Horton P. 1993. Induction of nonphotochemical energy dissipation and absorbance changes in leaves. Plant Physiol, 102: 741-750
    40. Shinozaki K, Yamaguchi-Shinozaki K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiology, 115: 327-334
    41. Yang YN, Qi M , Mei CS. 2004. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. The Plant Journal 40: 909-919
    42. Kuwabare T, Murata N. 1982. Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptide in the Photosystem II particles of spinach chloroplasts. Plant Cell Physiol, 23: 533-539
    43. Laemmli UK. 1970. Cleavage of structure proteins during assembly of the head of bacterio-phase T4. Nature, 227: 680-682
    44. Yamamoto N, Mukai Y, Matsuoka M, et al. 1991. Light-independent expression of cab and rbcS genes in dark-grown pine seedlings. Plant Physiol, 95: 379-383
    45. Yuan S. and Lin H. H. 2004. Transcription, translation, degradation, and circadian clock. Biochem. Biophys. Res. Commun. 321,1-6
    46. Lu C, Zhang J., and Vonshak A. Inhibition of quantum yield of PS II electron transport in Spirulina platensis by water stress may be explained mainly by an increase in the proportion of the QB-non-reducing PS II reaction centres. Aust. J. Plant Physiol. 25, 689- 694.
    47. Mateo A, Funck D, Muhlenbock P, Kular B, Mullineaux MP, Karpinski S. 2006. Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Journal of Experimental Botany, 57,1795 - 1807.
    48. Janda, T. et al. 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208,175-180
    49. Kang, G.Z. et al. 2003. Participation of H_2O_2 in Enhancement of cold chilling by salicylic acid in banana seedlings. Acta Bot. Sin. 45,567-573
    50. Schreck R, Rieber P, Bauerle, PA, 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EMBO J. 10, 2247-2258
    51. Prasad, T.K, Anderson, M.D., Martin, B.A., Stewart, CR., 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell,6: 65-74
    52. Kaeano T, Muto S. 2000. Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in Cytosolic calcium in tobacco cell suspension culture. J Exp Bot, 51: 685-693
    53. Huang QQ, Sun X, Zhang NH. Feng H, Yuan S, Dai QL, Liang HG,. Du LF, Lin HH. 2004. Effects of salicylic acid on leaves of cucumber seedings under water stress. Acta Bot. Boreal. -Occident. Sin. 24: 2202-2207
    54. Yuan S, Liu WJ, ZhangNH, Wang MB, Liang HG, Lin HH. 2005. Effects of water stress on major PSⅡ gene expression and protein metabolism in barley leaves. Physiol. Plant., 125, 464-473.
    55. Liu WJ, Yuan S, ZhangNH, Lei T. Duan HG, Liang HG, and Lin HH. 2006. Effect of water stress onphotosystem 2 in two wheat cultivars. Biol. Plant. 50, 597-602.
    56. Bergantino E, Sandona D, Cugini D, Bassi R. The photosystem Ⅱ subunit CP29 can be phosphorylated in both C3 and C4 plants as suggested by sequence analysis. Plant Mol Biol, 1998, 36: 11-22
    57. Yuan S, Lin HH. 2007. The role of salicylic acid in abiotic stresses-Knife that cuts both ways. Physiologia Plantarum, in press
    58. Hu XL, Zhang AY, Zhang JH, Jiang MY. 2006. Abscisic Acid Is a Key Inducer of Hydrogen Peroxide Production in Leaves of Maize Plants Exposed tO Water Stress. Plant and Cell Physiology, 47: 1014-1028
    1.陈忠毅,陈升振,黄向旭,黄少甫.1987.国产姜科植物的染色体计数.广西植物,7:39-44.
    2.方鼎.1978.广西姜科新植物.植物分类学报,16:-53
    3.郭毅,吴七根.1991.象牙参属(Roscoea Smith)营养器官的比较解剖.中国科学院华南植物研究所集刊,7:39-51
    4.梁元辉.1989.中国山姜属植物花粉形态观察.中国科学院华南植物研究所集刊,4:03-108
    5.唐源江,廖景平.2001.象牙参种子的解剖学和组织化学研究.植物研究,21:53-56
    6.吴德邻,陈升振.1978.中国姜科新资料.植物分类学报,16:25-46
    7.吴德邻.1994.姜科植物地理.热带亚热带植物学报,2:1-14
    8.吴征缢,路安民,汤彦承,陈之端,李德铢.2003.中国被子植物科属综论,北京,科学出版社.296
    9. Burtt BL, Smith RM. 1972. The Limits of the Tripe Zingiberaceae. Notes Roy. Bct. Gard. Edinburgh 31: 177-227
    10. Cowan JM. 1952. The Journeys ang Plant Introduction of George Forest. Oxford Univ. Press. 220-221
    11. Cowley EJ. 1982. Notes on Floristic Roscoea Smith. Kew Bulletin 36: 747-777
    12. Cowley J. Baker W. 2001. Roscoea purpurea 'Red Gurkha. KEW MAG. 11: 104-109
    13. Dahlgren RM, Clifford HT, Yeo PE 1985. The Families of the Monocotyledons-Structure, Evolution, and Taxonomy. Springer-verlag Berlin Heidelberg New York Tokyo, 360-367
    14. Erdtman G. 1952. Pollen Morphology and Plant Taxonomy I. Angiosperms. Stockholm and Waltham Mass.66-71
    15. Erdtman G. 1969. Handbook of Palynology Munksgaard, 64-65
    16. Hesse M,Kubitzki K.1983.The Sporoderm Ultra structure in Persea Nectandra, Hernandia Gomortoga and some other Lauralean Genera, P1. Syst. Evol., 141: 299-311
    17. Huang TC. 1972. Pollen Flora of Taiwan, Taiwan Univ. Press, Taibei China, 54-56
    18. Ikuse M. 1956. Pollen Grains of Japan Tokyo, 128-129
    19. Kress WJ, Prince LM, Williams KJ. 2002. The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. Am. J. Bot. 89:1684-1698
    20. Liang YH. 1988. Pollen Morphology of the Family Zingiberaceae in China__Pollen Types and Their Significance in the Taxonomy. Acta Phytotaxonomica Sinica (植物分类学报) 26: 265-281
    21. Michael S. 1983. Comparative Morphology of Monocat Pollen and Evolution Ttends of Apertures and Wall Structures. Bot. Rev. 49:331-397
    22. Nair PK. 1970. Pollen Morphology of Angiosperms -A Historical and Phylotenetic Study, Scholar Publishing House, 224-232
    23. Ngamriabsakul C, Newman MF, Cronk QCB. 2000. Phylogeny and disjunction in Roscoea (Zingiberaceae). Edinb. J. Bot. 57 (1), 39-61
    24. Ngamriabsakul C, Newman MF, Cronk QCB. 2003. The phylogeny of tribe Zingibereae (Zingiberaceae) based on ITS(nrDNA) and trnL-F sequences (cpDNA). Edinb. J. Bot. 60: 217-232
    25. Punt W. 968. Pollen Morphology of the American Species of the Subfamily Costoideae (Zingigeraceae).Rev.Palaeobotany Palynol, 7: 31-43
    26. Rao CK, Nijagunaian R. 1983. LM and SEM Morphology of Pollen of Elettaria Maton and Amumom Roxb (Zingiberaceae). J. of Palynology, 19: 299
    27. Schuman K. 1904. Zingiberaceae in Englers Planzenreich, 4: 458
    28. Stone DE, Sellers SC, Kress WJ. 1981. Ontogentic and Evolutionary Implication of a Neotenous Exine in Tapeinochilos (Zingiberaceae: Costaceae) Amer. J.Bot. 68: 49-63
    29. Sugaya A, Ikuse M. 1970. The Fine Structure of Pollen Wall of some Zingiberaceae (1). Jap. J. of Palynology, 6: 1-2
    30. Tong SQ. 1992. Notes on the genus Roscoea of Zingiberaceae in China. Bulletin of Botanical Research, 12:247-253.
    31. Tong SQ. 1997. Roscoea Smith. In: Wu ZY, Chen SK. Flora Yunnanica (云南植物志). Beijing:Science Press. 8:572-581.
    32. West JP, Cowly J. 1994. Floristic notes and chromosome numbers of some Chinese Roscoea (Zingiberaceae). Kew Bulletin 48:799-803
    33. Wu TL. 1981. Roscoea Smith. In: Flora Reipublicae Popularis Sinicae (中国植物志). Beijing: Science Press, 16:48-55.
    34. Wu TL, Larsen K 2002. Roscoea Smith. In: Wu ZY, Raven P H eds. Flora of China. Beijing: Science Press; St. Louis: Missouri Garden Press. 24: 363-367.
    35. Wu TL. 1997. Notes on the Lowiaceae, Musaceae, and Zingiberaceae for the Flora of China. Novon, 7:440-442
    36. Zhu ZY. 1988. Two new species of Roscoea Smith (Zingiberaceae) from Sichuan. Acta Phytotaxonomica Sinica (植物分类学报) 26: 315-317.
    1.董永华,史吉平,李广敏等.1998.外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果.西北植物学报,18:202-206
    2.郭连旺,沈允钢.1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,32:1-8
    3.姜闯道,高辉远,邹琦.2002.D1蛋白周转及其对能量耗散的调节.植物生理学通讯,38:207-212
    4.荆家海,马书尚.1990.玉米、早稻、豇豆、棉花叶片气体交换对水分胁迫的反应.作物学报,16:342-347
    5.蒋明义,杨文英,徐江等.1994.渗透胁迫诱导水稻幼苗的氧化伤害.作物学报,20:733-738
    6.梁峥,马德钦,汤岚等.1997.菠菜甜菜碱醛脱氢酶基因在烟草中的表达.生物工程学报,13:236~240
    7.卢振民.1988.冬小麦近轴和远轴叶面气孔对土壤水分胁迫反应的敏感性.植物生理学报,14:223-227
    8.马宗仁,刘荣堂.1993.牧草抗旱生理的基本原理.兰州大学出版社.
    9.汤章城.1983.植物对水分胁迫的反应和适应性Ⅱ植物对干旱的反应和适应性.植物生理学通讯,3:1-7
    10.汤章城.1986.植物渗透调节及其遗传工程的研究.植物生理生化进展,4:51-60
    11.孙钦秒,冷静,李良璧,匡廷云.2000.高等植物光系统II捕光色素蛋白复合体结构与功能研究的新进展.植物学通报,17:289-301
    12.王邦锡,何军贤,黄久常.1992.水分胁迫导致小麦叶片光合作用下降的非气孔因素.植物生理学报,18:77-84
    13.王宝山,赵思齐.1987.干旱对小麦幼苗膜脂过氧化及保护酶的影响.山东师范大学学报(自然科学版),2:29-39
    14.王宝山.1988.生物自由基与生物膜的伤害.植物生理学通讯,2:12-16
    15.王万里.1981.植物对水分胁迫的响应.植物生理学通讯,5:55-64
    16.王学臣,任海云,娄成后.1992.干旱下植物根与地上部间的信息传递.植物生理学通讯,28:397-402
    17.吴忠义,张大鹏,贾文锁.1999.蚕豆叶片下表皮ABA结合蛋白的分离纯化.植物学报,41:842-845
    18.许大全.1999.光系统Ⅱ反应中心的可逆失活及其生理意义.植物生理学通讯,35:273-276
    19.薛崧,汪沛洪,许大全等.1992.水分胁迫对冬小麦CO_2同化作用的影响.植物生理学报,18:1-7
    20.杨暹,关佩聪.1998.干旱胁迫与菜心叶片活性氧代谢的研究.华南农业大学学报,19(2):81-85
    21.叶济宇.2001.叶绿体的电子传递.余书文,汤章城主编:植物生理与分子生物学.科学出版社,201-202
    22.周瑞莲等.1997.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用.草业学报,6(4):39-43
    23. Adamska I, Loppstech K. 1994. Low temperature increases the abundance of early light-inducible transcript under light stress conditions. J Biol Chem, 269: 30221-30226
    24. Alien JF, Nilsson A. 1997. Redox signaling and the structural basis of regulation of photosynthesis by protein phosphorylation. Physiol Plant, 100: 863-868
    25. Allen JF. 1995. Thylakoid protein phosphorylation, states 1-sates 2 transitions and photosystem stoichiometry adjustment: Red0x control at multiple levels of gene expression. Physiol Plant, 93: 196-205
    26. Anderson BE, Ward JM, Schroder JI. 1994. Evidence for an extracellar reception site for abscisic acid in commelina guard cells. Plant Physiology, 104:1177-1183
    27. Anderson B, Barber J. 1996. Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In: Baker NR(ed). Photosynthesis and the Environment. Dordrecht: Kluwer Academic, 101-117
    28. Aro EM , Kettunen R, Tyystjarvi T. 1992. ATP and light regulated D1 protein modification and degradation. Role of Dl in photoinhibition. FEBS Lett, 297: 29-33
    29. Aro EM, Virgin I, Andersson B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta, 1143: 113-134
    30. Arvidsson PO, Bratt CE, Andreasson LE, Akerlund HE. 1993. The 28 kDa apoprotein of CP-26 in PS-II binds copper. Photosynth Res, 37: 217-225
    31. Baena-Gonzalez E, Barbato R, Aro EM. 1999. Role of phosphorylation in the repair cycle and Oligomeric structure of photosystem II. Planta, 208:196-204
    32. Barber J, Norris J, Morris EP, et al. 1997. The structure, function and dynamics of photosystem two. Physiol Plant, 100: 817-828
    33. Barzda V, Peterman EJ, Grondelle RV, Amerogen HV. 1998. The influence of aggregation on the triple formation in light-harvesting chlorophyll a/b pigment-protein complex of green plants. Biochemistry, 37:546-551
    34. Bassi R, Dainese PA. 1992. Supermolecular antenna complex from photosystem II membranes. Eur J Biochem, 204: 317-326
    35. Bassi R, Pineau B, Dainese P, et al. 1993. Carotenoid-binding proteins of photosystem II. Eur J Biochem, 212: 297-303
    36. Bassi R, Rigbni F, Giacometti GM. 1990. Chlorophyll binding proteins with antenna function higher plants and green algae. Photochem and Photobiol, 52(6): 1187-1206
    37. Bassi R, Sandona, Croce R. 1997. Novel aspects of chlorophyll a/b-binding proteins. Physiol Plant, 100:769-779
    38. Bergantino E, Dainese P, Cerovic Z, Sechi S, Bassi R. 1995. A post-translational modification of photosystem II subunit CP29 protects maize from cold stress. J Biol Chem, 270: 8474-8481
    39. Bergantino E, Sandona D, Cugini D, Bassi R. 1998. The photosystem II subunit Cp29 can be phosphorylated in both C3 and C4 plants as suggested by sequence analysis. Plant Mol Biol,
    40. Bogre L, Ligternk W, Boes EB, et al. 1996. Mechanosensors in plants. Nature, 383: 489-490 Bohnert HJ. 1994. Biochemical and cellular mechanism of stress tolerance in plants: response to salt stress in the halophyte Mesembryanthemum crytallinum. In Cherry JH (ed). Biochemical and cellular mechanism of stress tolerance in plants. Berlin: Springer-Verlag, 415-428
    41. Bohnert HJ, Nelson DE, Jensen RG. 1995. Adaptions to environmental stress. The plant cell, 7:1099-1111
    42. Bohnert HJ, Jensen RG. 1996. Stratigies for engineering water-stress solerance in plants. Trend in Biontechnology, 14: 89-97
    43. Buffoni M, Testi MG, Pesaresi P, Garlasvhi FM, Jennings RC. 1998. A study of the relation between CP29 phosphorylation zeaxanthin content and fluorescence quenching parameters in Zea mays leaves. Physiol Plant, 102: 318-324
    44. Bush DS. 1995. Calcium regulation in plant cells and its role in signaling. A nnu Rev Plant Physiol Plant Mol Boil, 46: 95-122
    45. Chaves MM. 1991. Effect of water deficiet on carbon assimilation. J Exp Bot, 8: 99-101
    46. Crane FL, Sun IL, Sun EE, et al. 1995. Plasma membrane redox and regulation of cell growth. Protoplasma, 184: 3-7
    47. Critchley C, Russell AV. 1994. Photoinhibition of photosynthesis in vivo: the role of protein turnover in PS II. Physiol Plant, 92:188-196
    48. Crofts AR, Yeekes CT. 1994. A molecular mechanism for qE-quenching. FEBS Lett, 352: 265-270
    49. Dannehl H, Wietoska H, Heckmann H, et al. 1996. Changes in D1 protein turnover and recovery of PS II activity precede accumulation of chlorophyll in plants after release from mineral stress. Planta 199: 34-42
    50. Darko E, Varadi G, Lemoine Y, Lehoczki E. 2000. Defensive strategies against high-light stress in wild and D1 protein mutant biotypes of Erigeron canadensis. Aust J Plant Physiol 27: 325-333
    51. Davies WJ, Zhang J. 1991. Root signals and the regulation of growth and development of plants in drying soil. A nnu Rev Plant Physiol Plant Mol Boil, 42: 55-76
    52. Demming-Adams B, Adams WW, Hebber U, et al. 1990. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by DTT in Spinach leaves and chloroplast. Plant Physiol, 92: 293-301
    53. Ding JD, Pickard BG, et al. 1993. Mechanosensory calcium selective cation channels in epidermal cells. Plant J, 3: 83-110
    54. Eskling M, Arvidsson PO, kerlund HE. 1997. The xanthophyll cycle, its regulation and components. Physiol Plant, 100: 806-816
    55. Flanigan YS, Critchley C. 1996. Light response of D1 turnover and photosystem II efficiency in the seagrass Zostera capricorni. Planta, 198: 319-323
    56. Frandsen G, Frieder NU, Nielsen M, et al. 1996. Novel plant Ca~(2+) binding protein expressed in response to abscisic acid and osmotic stress. J Bio Chem, 271: 343-345
    57. Funk C, Schroer WP, Green BR. 1994. The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II. FEBS Lett, 342: 261-266
    58. Gal A, Zer H, Ohad I. 1997. Redox-controlled thylakoid protein phosphorylation. News and views. Physiol Plant, 100: 869-885
    59. Gilmore AM. 1997. Mechanistic aspects of xanthophyll cycle dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant, 99:197-209
    60. Gilroy S, Trewavas T. 1994. A decade of plant signals. Bio Essays, 16: 677-681
    61. Golden SS, Brusslan J, Haselkorn R. 1986. Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystisnidulans R2. EMBO J, 5: 2789-2798
    62. Grabov A, Leung J, Giraudat J, et al. 1997. Alteration of anion channel kinetics in wild type and abiY2\ trancgenic Nicotiana benthamiana guard cells by abscisic acid. Plant J, 12: 203-213
    63. Greenberg BM, Gaba V, Canaani O, et al. 1989. Separate photo sensitizers mediate degradation of the 322 kDa photosystem II reaction center protein in the visible and UV spectral regions. Proc Natl Acad Sci USA, 86: 6617-6620
    64. Greenberg BM, Gaba V, Mattoo AK, et al. 1987. Identification of a primary in vivo degradation product of the rapidly turning over 32 kDa protein of photosystem II. EMBO J, 6: 2865-2869
    65. Guerrero FD, Jones JT, Mullet JE. 1990. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Molecular Biology, 15:11-26
    66. Hager A, Holocher K. 1994. Localization of xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta, 192: 581-589
    67. Hartwig HD, Allen JF, Paulsen H, Race HL. 1998. Truncated recombinant light harvesting complex II protein are substrates for a protein associated with photosystem II core complexes. FEBS Lett, 435: 101-104
    68. Heimovaara Dijkstra S, Nieland TJF, Nieland RM, et al. 1996. Abscisic acid induced gene expression requires the activity of protein sensitive to the protein tyosine Phosphatase inhibitor phenylarsine oxide. Plant Growth Regul, 18:115-123
    69. Hirayama T, Ohto C, Mizoguchi T, et al. 1995. Gene encoding a phosphatidylinositol specific phospholipase C is induced by dehydration and salt stress in A rabidopsis thaliana. Proc Natl Acad Sci USA, 92: 3903-3907
    70. Hong SS, Xu DQ. 1999. Light-induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PS II reaction centers in soybean leaves. Photosynth Res, 61: 269-280
    71. Horton P, Ruban A. 1994. The role of LHCII in energy quenching in green plants. In Photoinhibition of Phototsynthesis (Baker NR, Bowyer JR. eds), Bios Scientific Publishers, Oxford, 111-128
    72. Horton P, Ruban AV, Walters RG. 1996. Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol, 47: 655-684
    73. Horton RF. 1987. Stomatal openign :the role of abscisic acid. Canadian Journal of Botany, 49: 583-585
    74. Ingram J, Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Mol Biol, 47: 377-403
    75. Ingram J, Chandler J, Gallagher L, et al. 1997. Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugar interconversions associated with dehydration in the resurrection plant Craterostigma plantagineum Hochst. Plant Physiology, 115: 113-121
    76. Ishitani M, Nakamura T, Han SY, et al. 1995. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Molecular Biology, 27: 307-315
    77. Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, et al. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol, 116: 173-181
    78. Jansson C, Maenpaa P. 1997. Site-directed mutagenesis for structure function analysis of the photosystem II reaction center protein D1. Progr Bot, 58: 352-367
    79. Jackson MB. 1993. Are plant hormones involved in the root to shoot communication. Adv Bit Res, 19:103-187
    80. Jansson S, Pichersky E. 1992. A nomencalture for the genes encoding the chlorophyll
    81. Jeannette E, Rona JP, Bardat E, et al. 1999. Induction of RAB18 gene expression and activation of K~+ outward rectifying channels depend on an extracellular perception of ABA in Arabilopsis thaliana suspension cells. Plant J, 18:13-22
    82. Jimenez C, Pick U. 1993. Differential reactivity of a-carotene isomers from Dunaliella bardawl toward oxygen radicals. Plant Physiol, 101: 385-390
    83. Jones HG, Luton MT, Higgs K, et al. 1983. Experimental control of water status in an apple orchard. J Hortical Sci, 58: 301
    84. Kaiser WM. 1982. Correlation between changes in photosynthetic activity and changes in total protoplast volume in leaf tissue from hygro-meso-, and xerophytes under osmotic stress. Planta, 154: 538-545
    85. Keren N, Berg A, van Kan PJM, et al. 1997. Mechanism of photosystem II photoinactivation and Dl protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA, 94:1579-1584
    86. Klein RR, Mullet JE. 1987. Control of gene expression during higher plant chloroplast biogenesis. Protein synthesis and transcript levels of psbA, psaA-psaB and rbcl in dark grown and illuminated barley seedings. J Biol Chem, 262: 4341-4348
    87. Knetsch MLM, Wang M, Snaarjagalska BE, et al. 1996. Abscisic acid induced mitogen activated protein kinase activation in barley aleurone protoplasts. Plant Cell, 8: 1061-1067
    88. Komatsu S, Karibe H, Masuda T. 1997. Effect of abscisic acid on phosphatidyserine sensitive calcium independendent protein kinase activity and protein phosphorylation in rice. Biosci Biotech Biochem, 61(3): 418-423
    89. Kuhlbrandt W, Wang DN, Fujiyoshhi Y. 1994. Atomi model of plant light-harvesting complex by electron crystallography. Nature, 367: 614-621
    90. Lamb C, Dixon RA. 1997. The oxidative burst in plant disease resistance. A nnu Rev Plant Physiol Plant Mol Boil, 48 :251-275
    91. Leckie CP, McAinsh MR, Allen GJ, et al. 1998. Abscisic acid induced Stomatal closure mediated by cyclic ADP ribose. Proc Natl Acad Sci USA, 95:15837-15842
    92. Lee HY, Hong YN, Chow WS. 2001. Photoinactivation of photosystem II complex and photoprotection by non-functional neighbours in Capsicum annuum L. Leaves. Planta, 212: 332-342
    93. Lee Y, Choi YB, Sub CS, et al. 1996. Abscisic acid induced phosphoinositide turnover in guard cell protoplasts of Vicia f aba. Plant Physiol, 110: 987-996
    94. Leshem YY, Wurzburger J, Grossman S. 1981. Cytokinin interaction with tree radical metabolism and senescence. Physiol Plant,53: 9-12
    95. Leung J, Micehelle BD, Morris PC, et al. 1994. A rabi dopsis ABA response gene ABI1: features of a calcium modulated protein Phosphatase. Sci, 264:1448-1451
    96. Leung J, Mrflot S, Giraudat J. 1997. The Arabidopsis abscisic acid-insensitive ABI2 and ABI1 genes encode redundant protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 9: 759-771
    97. Levings CSIII, Siedow JN. 1995. Regulation by redox poise in chloroplast. Science, 268: 695-696
    98. Li X, Bjjrkman O, Shih C, et al. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature,403: 391-395
    99. Liu J, Zhu JK. 1998. A calcium sensor homolog required for plant salt tolerance. Sci, 280: 1943-1945
    100. Mariaux JB, Bockel C, Salamini F, et al. 1998. Desiccation- and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Molecular Biology, 38: 1089-1099
    101. Mehdy MC. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol, 105:467-472
    102. Mehdy MC, Sharma YK, Sathasivan L, et al. 1996. The role of activated oxygen species in plant disease resistance. Physiol Plant, 98: 365-374
    103. Melis A, Andersson JM. 1983. Structural and functional organization of the photosystems in spinach chloroplasts: Antenna size, relative electron transport capacity and chlorophyll composition. Biochim Biophys Acta, 724: 473-484
    104. Meng YL, Wang YM, Zhang B, et al. 2001. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res, 11(3): 187-193
    105. Morris CF, Anderberg, RJ, Goldmark, PJ, et al. 1991. Molecular cloning and expression of. abscisic-acid responsive genes in embryos of dormant wheat seeds. Plant Physiol, 95: 814-821
    106. Neill SJ, Burnett, EC. 1999. Regulation of gene expression during water deficit stress. Plant Growth Regulation, 19: 23-33
    107. Niyogi K. 1999. Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol, 50: 333-359
    108. Ohad I, Keren N, Zer H, et al. 1994. Light-induced degradation of the photosystem II reaction center protein in vivo: An integrative approach. In: Baker NR, Bowyer JR(eds). Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Oxford: BIOS, 161-177
    109. Ort DR, Yocum CF. 1996. Electron transfer transduction in photosynthesis: an overview. In: Ort DR, Yocum CF (eds). Vol 4 Oxygenic Photosynthesis: the Light Reactions. Dordrecht: Kluwer Academic, 1-9
    110. Osmond CB ,Winter K, Powles SB. 1980. Adaptive Significance of Carbon Dionxide Cycling During Photosynthesis in Water-stressde Plants. In: Turner NC & Kramer PJ (eds) Adaptition of Plants to Water and Temperature Stress, John Wiley & Sons, New York, Inc. 139-154
    111. Osmond CB. 1994. What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR (eds). Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Oxford: Bios Scientific, 1-24
    112. Owens TG. 1994. Excitation energy transfer between chlorophyll and carotenoids A proposed molecular mechanism for non-photochemical quenching. In Photoinhibition of Photosynthesis (Baker N R, Bowyer J R. eds). Bios Scientific Publishers, Oxford, 95-109
    113. Pardo JM, Reddy MP, Yang S, et al. 1998. Stress signaling through Ca~(2+) / calmodulin dependendent protein Phosphatase calcinerin mediates salt adaptation in plants. Proc Natl Acad Sci USA, 95: 9681-9686
    114. Paulsen H. 1995. Chlorophyll a/b-binding proteins. Photochemistry and Photobiology, 62: 367-382
    115. Pennisi E. 1997. Plants decode a universal signal. Sci, 278: 2054-2055
    Pestenaacz A, Erdei L. 1996. Calcium dependendent protein kinase in maize and sorghum induced by polyethylene glycol. Physiol Plant, 97: 360-364
    116. Pesaresi P, Sandona D, Giufra E, Bassi R. 1997. A single point mutation (E166Q) prevents dicychlohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Lett, 402: 151-156
    117. Peterman EJ , Gradinaru CC, Calkoen F. 1997. Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry, 36:12208-12215
    118. Pilon-Smits EAH, Ebskamp MJM, Paul MJ, et al. 1996. Improved performances of transgenic fructan-accumulating tobacoo under drought stress. Plant Physiol, 107: 125-130
    119. Price A, Knight M, Knight H, et al. 1996. Cytosolic calcum and oxidative plant stress, Biochem Soc Trans, 24: 470-483
    120. Prasil O, Adir N, Ohad I. 1992. Dynamics of photosystem II: mechanism of photoinhibition and recovery process. In: Barber NR, Bowyer JR(eds). Topics in Photosynthesis. Vol 11. The Photosystems: Structure, Function, and Molecular Biology. Oxford: Elsevier Scientific Publisher, 295-348
    121. Ritchie S, Gilroy S. 2000. Abscisic acid stimulation of phospholipase D in the barley Aleurone is G-protein mediated and localized to plama membrane. Plant Physiol, 124: 693-702
    122. Rockholm DC, Yamamoto HY. 1996. Violaxanthin de-epoxidase. Plant Physiol, 110: 697-703
    123. Roger RL. 1996. Pressure regulation of the electrical properties of growing Arabidopsis thaliana root hairs. Plant Physiol, 112: 1089-1100
    124. Salter AH, Virgin I, Hagman, et al. 1992. On the molecular mechanism of light-induced D1 protein degradation in photosystem II core particles. Biochemistry 31: 3990-3998
    125. Scandalios JG. 1993. Oxygen stress and superoxide dismutases. Plant Physiol, 101: 7-12
    126. Schwartz A, Wu WH, Tucker EB, et al. 1994. Inhibtion of inward K~+ Channels and Stomatal response by abscisic acid: an intracellar locus of phytohormone action. Pro Natl Sci USA, 91 (9): 4019-4023
    127. Seel WE, Hendry GAF, Lee JA. 1992. The combined effects desiccation and irradiance on mosses from xeric and hydric habitats. J Exp Bot, 43:1023-1030
    128. Seki M, Narusaka M, Abe H, et al. 2001. Monitoring the expression pattern of 1300 Arabilopsis genes under drought and cold stresses by using a full-lengh cDNA microarray. Plant Cell, 13: 61-72
    129. Shen Q, Uknes SJ, Ho TH. 1993. Hormone response complex in a novel abscisic acid and cycloheximide- inducible barley gene. J Biol Chem, 268: 23652-23660
    130. Shen Q, Chen CN, Brands A, et al. 2001. The stress and abscisic acid induced barley gene HVA22: developmental regulation and homologs in diverse organisms. Plant Molecular Biology, 45 (3): 327-340
    131. Singh M, Satoh IC 1999. Characterization of a phototolerant mutant of Synechocystis sp PCC6803 created by random mutagenesis of psbAII gene. Bot Soc Japan, 63:108-114
    132. Stone JM, Walker JC. 1995. Plant protein kinase families and signal transduction. Plant Physiol, 108: 451-457
    133 Strizhov N, Abraham E, Okresz L, et al. 1997. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant Journal, 12(3): 557-569
    134. Testi MG, Crocce R. 1996. A'CK'site is reversibly phosphorylated in the PSII subunit Cp29. FEBS Lett, 399: 245-250
    135. Thornber JP. 1975. Chlorophyll-proteins: Light-harvesting and reaction center components of plants. Annu Rev Plant Physiol, 26: 127-158
    136. Trebst A, Depka B. 1990. Degradation of the D1 protein subunits of photosystem II in isolated thylakoids by UV light. Z Naturforsch, 45: 765-771
    137. Turner NC, Jones MM. 1980. Turgormaintenance by osmotic adjustment; a review and evaluation. In: Turner NC & Kramer PJ (eds). A daptation of plants and High Temperature stres. John Wiley& Sons, Inc 87-103
    138. Uno Y, Furihata T, Abe H, et al. 2000. Arabidosis basic leucine zipper transcription factors involved an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 96:11632-11637
    139. Vener AV, Kan PJMV, Rich PR, Ohad I, Andersson B. 1997. Plastoquinol at the quinol oxidation site of reduced cytochrome b/f mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single turnover flash. Proc Natl Acad USA, 1585-1690
    140. Virgin I, Ghanotakis D, Andersson B. 1990. Light-induced D1 protein degradation in isolated photosystem II core complexes. FEBS Lett, 269: 45-48
    141. Virgin I, Salter AH, Ghanotakis D, et al. 1991. Light-induced D1 protein degradation is catalysed by a serine type protease. FEBS Lett, 281: 125-128
    142. Walton DC. 1990. Biochemistry and Physiology of abscisic acid. A nnual Review of Plant Physiology, 31: 453-489
    143. Wraight CA, Kraan GPB, Gerrits NM. 1972. The pH dependence of delayed and prompt fluorescence in uncoupled chloroplasts. Biochim Biophys Acta, 283: 259-267
    144. Wu Y, Kuzma J, Marechal E, et al. 1997. Abscisic acid signaling through cyclic ADP Ribose in plants. Sci, 278: 2126-2130
    145. Wurgler Murphy SM, Saito H. 1997. Two component signal transducers and MAPK cascades. Trend Biochem Sci, 22:172-176
    146. Xu D, Duan X, Wang B, et al. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 110: 249-257
    147. Xu Q, Fu H, Gupta R, et al. 1998. Molecular characterization of a protion tyrosine Phosphatase encoded by a stress responsive gene in Arabidopsis. Plant Cell, 10: 849-858
    148. Yahraus T, Chandra L, Legendre L, et al. 1995. Evidence for a mechanically induced oxidative burst. Plant Physiol, 109: 1259-1266
    149. Yamaguchi-Shinozaki K, Shinozaki K. 1997. The Plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Molecular and General Genetics, 238: 17-25
    150. Yamamoto HY, Bassi R. 1996. Carotenoids : Localization and function. Ort DR, Yocum CF (eds). Oxygenic Photosynthesis: Thelight Reactions, Kluwer Academic Publishers, Printeed in the Netherlands, 539-563

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700